# GANDALF

A computer code for quench analysis of dual flow CICC's

Version 2.2

by CryoSoft

January 2001





5,rue de la Belette F-01710 THOIRY, France e-mail: Luca.Bottura@cern.ch

### DISCLAIMER

Even though CryoSoft has carefully reviewed this manual, CRYOSOFT MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS PROVIDED "AS IS", AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of such damages.

Copyright © 1996-2002 by CryoSoft

| INTRODUCTION                                                  | 4  |
|---------------------------------------------------------------|----|
| CODE STRUCTURE                                                | 7  |
| MAIN SOLVER                                                   | 7  |
| Post processor                                                |    |
| MATERIAL PROPERTIES                                           |    |
| INPUT VARIABLES                                               |    |
| EXTERNAL ROUTINES                                             | 20 |
|                                                               |    |
| CROSS SECTIONS                                                |    |
| COIL CURRENT                                                  |    |
| MAGNETIC FIELD                                                |    |
| External heat input                                           |    |
| EXTERNAL BOUNDARY CONDITIONS                                  |    |
| USER'S DEFINED MESH                                           |    |
| ELECTRICAL AND THERMAL PROPERTIES OF USER'S DEFINED MATERIALS |    |
| Density                                                       |    |
| Specific heat                                                 |    |
| Thermal conductivity                                          |    |
| Electrical resistivity                                        |    |
| Critical current density                                      |    |
| Critical temperature                                          |    |
| Current sharing temperature                                   |    |
| FRICTION FACTOR                                               |    |
| HEAT TRANSFER COEFFICIENT                                     |    |
| Conductor-bundle heat transfer coefficient                    |    |
| Conductor-jacket equivalent heat transfer coefficient         |    |
| Jacket-bundle wall equivalent heat transfer coefficient       |    |
| Hole-bundle mixing heat transfer coefficient                  |    |
| QUALITY INDICATORS AND GENERAL GUIDELINES FOR RUNNING         |    |
| ERROR CODES                                                   |    |
|                                                               |    |
| POST PROCESSING                                               |    |
| COMMAND LANGUAGE FOR THE POST PROCESSORS                      | 40 |
| REFERENCES                                                    | 45 |
| EXAMPLES                                                      | 46 |
| INPUT FOR THE FIRST RUN WITH GANDALF                          | 46 |
| INPUT FOR THE RESTART WITH GANDALF                            |    |
| INPUT FOR THE POST PROCESSOR GANDALF POST                     |    |

Gandalf ! If you had heard only a quarter of what I have heard about him, and I have only heard very little of all there is to hear, you would be prepared for any sort of remarkable tale.

(J.R.R.Tolkien, The Hobbit)

# Introduction

GANDALF is the numerical implementation of a 1-D model for the simulation of quench initiation and quench propagation in CICC's with cooling channels. The model is described extensively in Refs. [1,2], together with the details on the numerical method (see also [3] and [4]). The basic conductor scheme modelled is reported in Fig. 1. The 1-D model consists of a maximum of four independent components at different thermodynamic states:

- $\infty$  the strands, consisting of stabilizer and superconductor,
- $\infty$  the conduit, grouping the jacket and insulation,
- $\infty$  the *bundle* helium, surrounding the strands in the cable, and
- $\infty$  the *hole* helium, flowing in an independent cooling passage.

The temperatures of these four components are treated separately and the energy balances are coupled through heat transfer coefficients at the contact (wetted) surfaces. With respect to the helium flow, Gandalf can treat single phase supercritical and superfluid compressible helium flow. The model takes into account the presence of two separate flows at different thermodynamic state (i.e. pressure and temperature) and velocity. The two flows are assumed to take place in the intersticial spaces of the cable bundle (as for standard CICC's) and in a separate cooling hole. The helium in the bundle and in the hole exchange mass and momentum in addition to energy. Note that it is possible, by setting the hole area to zero, to suppress the hole flow and to solve a simplified model for a CICC without central cooling hole. In this case Gandalf effectively eliminates the equations that are not necessary, thus avoiding unnecessary CPU and memory overheads.

The conductor length, or flow path, is modelled along its length using linear finite elements. At each node 8 degrees of freedom are defined, i.e. the temperature of strands and conduit, and the two temperatures, pressures and velocities of the bundle and hole helium. A schematic view of the finite element is given in Fig. 2, where the thermal couplings are evidenced and the dof's are indicated.

The boundary conditions at the ends of the flow paths are assumed to be given for the helium either by reservoirs with specified pressure and temperature or by closed valves (i.e. no flow). The conductor ends are assumed adiabatic. In case of helium superfluid the boundary temperature is prescribed.

Operating current and magnetic field can be arbitrarely specified as a function of time and position (for the field)

An external heat source in the strands or in the conduit, user's specified, initiates the quench. The Joule heat generation is computed consistently with the non-linear critical current density relation. The electric field in the superconductor at the resistive transition is modelled using a power law dependence, which can be reduced to the limit of infinitely sharp transition. The Joule heat is distributed resistively among strands and conduit (this feature is useful for low-resistance conduits such as, e.g., Aluminium).

Additional features of the numerical implementation of *GANDALF* are automatic mesh size and time step adaptivity. The mesh is refined or coarsened among a minimum and a maximum element size

4

specified by the user following the evolution of the normal fronts in the flow path, by means of a front tracking procedure. The time step is adapted in order to satisfy an *a priori* relative accuracy criterion based on a simplified model equation and the amplificaton factor of the time integration scheme. At the moment two options (to be selected by the user) are programmed for the integration method: a second order accurate algorithm for higher accuracy but subject to the possibility of oscillations in the solution, and a first order algorithm which damps the oscillations, with a higher numerical stability, but lower accuracy. Details on the numerics are again given in [1].

The present version of *GANDALF* computes some error and quality indicators for the solution obtained. They are based on variables interpolation, numerical diffusivity and additional numerical propagation. The user must use this information to check that the solution is numerically converged. In other words, the trade-off between CPU cost and solution quality is left to the user. Later we deal with the meaning of the error and quality indicators and we give guidelines for judging the quality of a solution.

The solver decides whether a quench or a recovery has taken place. In particular, the algorithm for the decision is based on the total Joule heating in the conductor length analysed. The decision is taken at the last step in the following way:

```
if (time < 2 * heating_time or d( Joule_heating)/dt < 0) then
    transient in process
elseif(time > 2*heating_time and Joule_heating = 0) then
    recovery
elseif(time > 2*heating_time and Joule_heating > 0) then
    quench
endif
```

This insures that no decision on recovery and quench is taken before the heating is off, and until the joule heating is growing. Note that, as explained in the description of the input parameters, the heating time TAUQ is used for the tests above. This implies that, in the case that the user defines the heating through an external routine, the value of the heating time must still be set if a meaningful decision on recovery/quench is desired. A message is output at the end of the run in the log file, indicating the event that has been recognized based on the decision-taking procedure given above. The possible events are:

```
"Transient still in process"
"The conductor has recovered"
"The conductor is quenching"
```

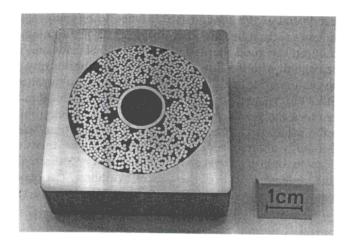



Figure 1. Typical geometry of a CICC with central cooling hole as modelled in GANDALF.

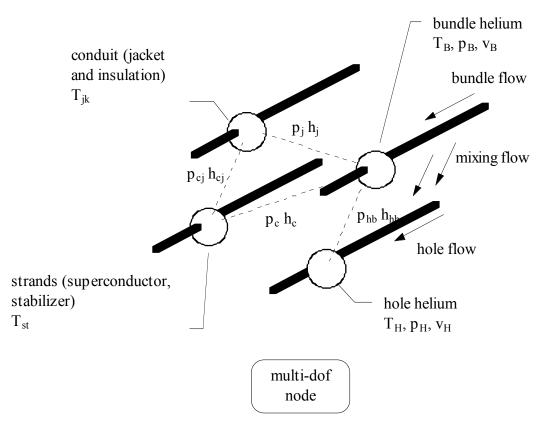



Figure 2. Basic finite element used in *GANDALF*, showing the degrees of freedom and the thermal and flow coupling among components.

# **Code Structure**

### Main solver

This is the portion performing the calculation and generating the results. The code performs input and output on the following units

| File Name         | Usage                                   |
|-------------------|-----------------------------------------|
| <i>input file</i> | Input of the data for the run           |
| gandalf.store     | Storage for restart and post-processing |
| gandalf.output    | Output of the results                   |

Units 5 and 6 are attached to the terminal and are used for debugging or monitoring purposes. Gandalf requires a single interactive input, the file name where the input data is located. The results are output in ASCII format and as binary storage, this last is used either for restarts (recovering the results up to the last time stored) or for post-processing (see later for a description).

Note: FORTRAN unit numbers above 50 are reserved for internal use

# Post processor

After a run it is possible to plot or print tables of the results stored on the binary file gandalf.store using the dedicated post-processor. The post-processor reads the binary data and a sequence of commands. Each command is executed in sequence and causes the generation of PostScript plots or tables of selected data. The post-processor performs input and output on the following units

| File Name     | Usage                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------|
| andalf store  | Data stored read in far past processing                                                                          |
| gandalf.store | Data stored, read-in for post-processing                                                                         |
| command file  | ASCII sequence of commands determining the generation of plots or tables.                                        |
| -             | The commands are read sequentially and executed                                                                  |
| gldp.tables   | ASCII file with table of results, generated by the post-processor following                                      |
|               | the commands read from <i>command.file</i>                                                                       |
| PostScript.ps | Plots in PostScript format, generated by the post-processor following the commands read from <i>command.file</i> |

Units 5 and 6 are attached to the terminal and are used for debugging or monitoring purposes.

Note: FORTRAN unit numbers above 50 are reserved for internal use

# Material properties

The main solver needs to be linked to a set of routines for the calculation of the material properties of solid materials and helium. As these routines are at the lowest level in the code execution, their efficiency is of paramount importance. A set of routines is provided by default with the program. These can be easily changed provided that the calling arguments are respected (and obviously units !) and keeping in mind the requirements on the code efficiency. For the complete list of the property functions, please refer to the manuals of the libraries Solid and He\_table of CryoSoft.

# **Input Variables**

The following table contains the input variables, their physical dimensions, default value and meaning for the *GANDALF* processor. The input of GANDALF is done using the FORTRAN instruction NAMELIST. The namelist is called INDATA. A sample input file is reported in the end of the manual. Note the first line in the input file, read-in as the problem title.

| Variable | Туре | Units             | Default | Meaning                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|------|-------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICBFUN   | Ι    | (-)               | 0       | <ul> <li>Flag used to set the geometry of the cable cross section as a function of position along the length</li> <li>(-1) user's defined through external function EXTCAB to be linked with the code</li> <li>(0) constant, as specified through input</li> </ul>                                                                                                                                   |
| ASC      | R    | (m <sup>2</sup> ) | 0.0     | Superconductor cross section                                                                                                                                                                                                                                                                                                                                                                         |
| AST      | R    | (m <sup>2</sup> ) | 0.0     | Stabilizer cross section                                                                                                                                                                                                                                                                                                                                                                             |
| AJK      | R    | (m <sup>2</sup> ) | 0.0     | Jacket (conduit) cross section                                                                                                                                                                                                                                                                                                                                                                       |
| AIN      | R    | (m <sup>2</sup> ) | 0.0     | Insulation cross section                                                                                                                                                                                                                                                                                                                                                                             |
| ISC      | Ι    | (-)               | 0       | Flag used to define the superconductor type:<br>(<0) user's defined. In this case all<br>thermophysical and electrical properties<br>are provided through external functions<br>UserDensity, UserSpecificHeat,<br>UserConductivity, UserCurrentSharing,<br>UserCriticalTemperature and<br>UserCriticalCurrent to be linked with<br>the code<br>(0) None<br>(31) standard NbTi<br>(32) standard Nb3Sn |
| IST      | Ι    | (-)               | 0       | <ul> <li>Flag used to define the stabilizer material:</li> <li>(&lt;0) user's defined. In this case all thermophysical and electrical properties are provided through external functions UserDensity, UserSpecificHeat, UserConductivity and UserResistivity to be linked with the code</li> <li>(1) Copper</li> <li>(2) Aluminium</li> </ul>                                                        |
| IJK      | Ι    | (-)               | 0       | Flag used to define the jacket material:                                                                                                                                                                                                                                                                                                                                                             |

|        |   |       |     | <ul> <li>(&lt;0) user's defined. In this case all thermophysical and electrical properties are provided through external functions UserDensity, UserSpecificHeat, UserConductivity and UserResistivity to be linked with the code</li> <li>(1) Copper</li> <li>(2) Aluminium</li> <li>(3) Titanium</li> <li>(11) Copper-Nickel</li> <li>(13) Stainless Steel</li> <li>(14) Inconel</li> <li>(15) Incoloy 908</li> </ul> |
|--------|---|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IIN    | Ι | (-)   | 0   | <ul> <li>Flag used to define the insulating material:</li> <li>(&lt;0) user's defined. In this case all thermophysical properties are provided through external functions UserDensity, UserSpecificHeat and UserConductivity to be linked with the code.</li> <li>(21) Epoxy Resin</li> <li>(22) Glass-Epoxy</li> <li>(23) Polyimide (Kapton)</li> </ul>                                                                |
| EPSLON | R | (-)   | 0.0 | Total longitudinal strain in the superconductor in<br>operating condition. Strain is assumed constant<br>during the transient                                                                                                                                                                                                                                                                                           |
| E0     | R | (V/m) | 0.0 | Electric field criterion for the definition of the resistive transition at the critical current. E0 is needed if the user chooses to model the electric field <i>E</i> in the superconductior by the power law: $E = E_0 \left(\frac{I}{I_c}\right)^n$ , where <i>I</i> is the current in the superconductor and $I_c$ is the critical current. This model is used for a choice of NPOWER below 250 (see below).        |
| NPOWER | Ι | (-)   | 0   | Exponent of the power-law used to model the longitudinal electric field in the superconductor (see above). The power law is used only for values of $0 < \text{NPOWER} \le 250$ . For NPOWER > 250 a sharp transition is assumed (zero resistance below $I_c$ , infinite resistance above $I_c$ ), which does not require the definition of E0.                                                                         |
| RRR    | R | (-)   | 0.0 | Residual resistivity ratio for stabilizer material                                                                                                                                                                                                                                                                                                                                                                      |
| ICHFUN | Ι | (-)   | 0   | Flag used to set the geometry of the helium channels as a function of position along the length                                                                                                                                                                                                                                                                                                                         |

|       |   |                   |     | <ul> <li>(-1) user's defined through external function<br/>EXTCHN, to be linked with the code.</li> <li>(0) constant</li> </ul>                                                                                                                                                                                                                                                                                                                     |
|-------|---|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AHEB  | R | (m <sup>2</sup> ) | 0.0 | Helium cross section in the <i>bundle</i> channel. This channel usually represents the helium flow in the intersticial space among the strands.                                                                                                                                                                                                                                                                                                     |
| АНЕН  | R | (m <sup>2</sup> ) | 0.0 | Helium cross section in the <i>hole</i> channel. This channel usually represents a low impedance cooling path in the cable. This cross section can be set to $0.0$ to eliminate the double flow features. In this case the <i>GANDALF</i> model is identical to that for a single flow channel CICC                                                                                                                                                 |
| DHB   | R | (m)               | 0.0 | Hydraulic diameter of the <i>bundle</i> channel (used<br>only for the calculation of the frictional pressure<br>drop and of the Reynolds number). This variable is<br>usually set as four times the ratio of the cross<br>section of the <i>bundle</i> channel $A_{HeB}$ to its wetted<br>perimeter $p_B$ , i.e. $D_{hB} = 4 \frac{A_{HeB}}{p_B}$                                                                                                   |
| DHH   | R | (m)               | 0.0 | Hydraulic diameter of the <i>hole</i> channel (used only<br>for the calculation of the frictional pressure drop<br>and of the Reynolds number). This variable is<br>usually set as four times the ratio of the cross<br>section of the <i>bundle</i> channel $A_{HeH}$ to its wetted<br>perimeter $p_{H}$ , i.e. $D_{hH} = 4 \frac{A_{HeH}}{p_{H}}$ . This variable is<br>not used in the case AHEH=0.0 (i.e. for a single<br>flow model)           |
| РНТС  | R | (m)               | 0.0 | Perimeter used for heat transfer calculation among<br>the strands and the <i>bundle</i> helium channel. This<br>perimeter is usually a fraction (e.g. 5/6) of the<br>total wetted perimeter $p_B$ of the strands in the<br>conductor. The correction factor takes into account<br>that the wetted surface can be reduced in a<br>compated conductor. The heat transfer coefficient<br>used over this perimeter is computed by the<br>routine EXTHCB |
| РНТСЈ | R | (m)               | 0.0 | Perimeter used for heat transfer calculation between<br>the conductor strands and the jacket. Although the<br>heat transfer between the strands and the jacket is<br>more likely to be governed by the contact heat<br>resistance, it is treated as a convective heat transfer<br>with <i>wetted</i> perimeter PHTCJ between the two<br>components. The heat transfer coefficient used over                                                         |

|        |   |     |     | this perimeter is computed by the routine EXTHCJ                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|---|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| РНТЈ   | R | (m) | 0.0 | Perimeter used for heat transfer calculation between<br>the jacket and the <i>bundle</i> helium channel. The heat<br>transfer coefficient used over this perimeter is<br>computed by the routine EXTHJB                                                                                                                                                                                                                                                   |
| РНТНВ  | R | (m) | 0.0 | Perimeter used for heat transfer calculation between<br>the <i>bundle</i> and the <i>hole</i> helium channels. This<br>perimeter is typically the physical perimeter of the<br>pipe wall separating the two flows. In the case of<br>absence of physical wall the perimeter PHTHB is<br>an imaginary boundary that separates the two<br>parallel channels. The heat transfer coefficient used<br>over this perimeter is computed by the routine<br>EXTHHB |
| PERFOR | R | (-) | 0.0 | Percentage perforation of the separation perimeter<br>between the <i>bundle</i> and <i>hole</i> helium channels<br>PHTHB. This factor, between 0 and 1, describes<br>the transverse permeability of the hole-bundle<br>interface. A value of 1 implies that the whole<br>perimeter PHTHB is transparent to transverse flow<br>(i.e. no physical wall), a value of 0 means no<br>transverse flow (i.e. a continuous physical wall).                        |

| 1 | 3 |  |
|---|---|--|
|   | ~ |  |

| Variable | Туре | Units | Default | Meaning                                                                                                                                                                                                                                                                                      |
|----------|------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IOP0     | R    | (A)   | 0.0     | Initial operating current in the coil                                                                                                                                                                                                                                                        |
| IOPFUN   | Ι    | (-)   | 0       | <ul> <li>Flag used to specify the behaviour of the operating current in time:</li> <li>(-1) user's defined. through external function EXTI to be linked with the code</li> <li>(0) constant in time</li> <li>(1) exponential decay with time constant TAUDUM after a delay TAUDET</li> </ul> |
| TAUDET   | R    | (s)   | 0.0     | If IOPFUN=1 determines the delay between initiation of the transient anmd the sitching action to dump the coil. The current is constant for $0 < t < TAUDET$                                                                                                                                 |
| TAUDUM   | R    | (s)   | 0.0     | In the case IOPFUN=1 determines the time<br>constant of the dump of the current (starting after<br>TAUDET seconds with exponential law in time).<br>For t > TAUDET the current is given by:<br>IOP = IOP0 * $exp((t-TAUDET)/TAUDUM)$                                                         |

Operating current

| Variable | Туре | Units | Default | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|------|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IBIFUN   | I    | (-)   | 0       | <ul> <li>Flag used to specify the behaviour of the magnetic field in time and space</li> <li>(-1) user's defined, through external function EXTB to be linked with the code</li> <li>(0) constant in time and linear in space between the values BISS and BOSS at inlet and outlet respectively</li> <li>(1) Current related decay in time of a linear distribution in space. The linear distribution at any time is the sum of the steady state distribution determined as for IBIFUN=0 (between BISS and BOSS) and of a transient distribution proportional to the operating current between the values BITR and BOTR at inlet and outlet respectively</li> </ul> |
| BISS     | R    | (T)   | 0.0     | Value of the steady state component of the magnetic field at the coil inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BOSS     | R    | (T)   | 0.0     | Value of the steady state component of the magnetic field at the coil outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BITR     | R    | (T)   | 0.0     | Value of the transient component of the magnetic field at the coil inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BOTR     | R    | (T)   | 0.0     | Value of the transient component of the magnetic field at the coil outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Operating magnetic field

| Variable | Туре | Units | Default | Meaning                                              |
|----------|------|-------|---------|------------------------------------------------------|
| INTIAL   | Ι    | (-)   | 0       | Flag used to specify the initial and boundary        |
|          |      |       |         | conditions for the transient. An approximate initial |
|          |      |       |         | condition is computed in the case of initial flow.   |
|          |      |       |         | In the case of variable boundary conditions the      |
|          |      |       |         | external function EXTR is called to set the          |
|          |      |       |         | boundary pressure and temperature as a function of   |
|          |      |       |         | time. The type of boundary condition selected is     |
|          |      |       |         | indicated in the output file as input echo.          |
|          |      |       |         | (0) user's defined, through external function        |
|          |      |       |         | EXTA to be linked with the code                      |
|          |      |       |         | (1) inlet and outlet pressure and inlet              |
|          |      |       |         | temperature are given. The initial flow              |
|          |      |       |         |                                                      |
|          |      |       |         | and variable distribution are computed               |
|          |      |       |         | from the pressure drop. The boundaries               |
|          |      |       |         | for the flow are at constant pressure and            |
|          |      |       |         | temperature (as established from the                 |
|          |      |       |         | initial distribution)                                |
|          |      |       |         | (-1) as for (1) but boundary pressure and            |
|          |      |       |         | temperature can be variable in time at               |
|          |      |       |         | inlet and outlet through the user routine            |
|          |      |       |         | EXTR                                                 |
|          |      |       |         | (2) inlet pressure, temperature and                  |
|          |      |       |         | massflow are given. The initial flow                 |
|          |      |       |         | and variable distribution are computed               |
|          |      |       |         | from the inlet pressure and mass flow.               |
|          |      |       |         | The boundaries for the flow are at                   |
|          |      |       |         | constant pressure and temperature (as                |
|          |      |       |         | established from the initial distribution)           |
|          |      |       |         | (-2) as for (2) but boundary pressure and            |
|          |      |       |         | temperature can be variable in time at               |
|          |      |       |         | inlet and outlet through the user routine            |
|          |      |       |         | EXTR                                                 |
|          |      |       |         | (3) inlet pressure, and temperature are              |
|          |      |       |         | given, the outlet is closed. The initial             |
|          |      |       |         | distribution is of zero flow and con                 |
|          |      |       |         | stant p,T. The boundary conditions are               |
|          |      |       |         | constant pressure and temperature at the             |
|          |      |       |         | inlet and closed outlet. This choice                 |
|          |      |       |         | simulates a symmetry at the outlet                   |
|          |      |       |         | (-3) as for (3) but boundary pressure and            |
|          |      |       |         | temperature can be variable in time at               |
|          |      |       |         | inlet through the user routine EXTR                  |
|          |      |       |         | (4) initial pressure and temperature given,          |
|          |      |       |         | closed system assumed. The initial dis               |
|          |      |       |         | tribution is of zero flow and constant               |
|          |      |       |         | p,T along the flow path. The boundary                |
|          |      |       |         | conditions are of closed inlet and outlet            |
|          |      |       |         | conditions are of closed mict and outlet             |
|          |      |       |         |                                                      |

Initial and boundary conditions

| PREINL | R | (Pa)   | 0.0 | He pressure at the flow path inlet, used in the case INTIAL=1, INTIAL=2 and INTIAL=3                                                                                                                                                                                                                                                                   |
|--------|---|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PREOUT | R | (Pa)   | 0.0 | He pressure at the flow path outlet, used in the case INTIAL=1 only. Computed in the case INTIAL=2 (specified massflow).                                                                                                                                                                                                                               |
| TEMINL | R | (K)    | 0.0 | He temperature at the flow path inlet, used in the cases INTIAL=1, INTIAL=2 and INTIAL=3. Note that in the two cases INTIAL=1 and INTIAL=2 the inlet reservoir has a temperature equal to TEMINL only for positive massflow (inlet to outlet). In the case of negative massflow (outlet to inlet) the inlet reservoir has temperature equal to TEMOUT. |
| TEMOUT | R | (K)    | 0.0 | He temperature at the flow path outlet, used in the cases INTIAL=1 and INTIAL=2. Note that the outlet reservoir has a temperature equal to TEMOUT only for negative massflow (outlet to inlet). In the case of positive massflow (inlet to outlet) the outlet reservoir has temperature equal to TEMINL.                                               |
| MDTINL | R | (Kg/s) | 0.0 | He massflow at the flow path inlet, used in the case INTIAL=2. Computed in the case INTIAL=1 (specified pressure drop)                                                                                                                                                                                                                                 |
| PREINI | R | (Pa)   | 0.0 | He initial pressure in the flow path used in the case INTIAL=4                                                                                                                                                                                                                                                                                         |
| TEMINI | R | (K)    | 0.0 | He initial temperature in the flow path used in the case INTIAL=4                                                                                                                                                                                                                                                                                      |

| External he | туре Туре | Units | Default | Meaning                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IQFUN       | I         | (-)   | 0       | Flag used to specify the heating input<br>(-1) user's defined, through external function<br>EXTQ to be linked with the code<br>(0) square wave in space and time. The<br>power Q0 per unit length is input for a<br>time TAUQ in the region XQBEG < x<br>< XQEND                                                                                                                                   |
| Q0          | R         | (W/m) | 0.0     | Linear heat flux input in the conductor when IQFUN=0                                                                                                                                                                                                                                                                                                                                               |
| TAUQ        | R         | (s)   | 0.0     | Heating time when IQFUN=0. The power is applied for $0 < t < TAUQ$ . Note that TAUQ is used in any case for the decision on recovery or quench in a transient. Therefore if a meaningful decision is requiored, the user must set it even in the case that the ehating is defined through the external routine EXTQ. Its meaning in this case is the time after which all heating fluxes are zero. |
| XQBEG       | R         | (m)   | 0.0     | For IQFUN=0 beginning of the heated region                                                                                                                                                                                                                                                                                                                                                         |
| XQEND       | R         | (m)   | 0.0     | For IQFUN=0 end of the heated region                                                                                                                                                                                                                                                                                                                                                               |

External heating

| Variable | Туре | Units | Default | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NELEMS   | Ι    | (-)   | 0       | Total number of elements in the mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XLENGT   | R    | (m)   | 0.0     | Total length of the cooling channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITYMSH   | Ι    | (-)   | 0       | <ul> <li>Flag used to specify the mesh type. Static (i.e non-adaptive) and dynamic (i.e. adaptive) meshe can be requested)</li> <li>(-1) user's defined, the mesh is set in the external function EXTM (to be linked with the code) at each time step. The user is requested to adapt the mesh (i desired and necessary)</li> <li>(0) stayic uniform spacing in the length XLENGT with NELEMS elements.</li> <li>(1) static locally refined in the region XBREFI &lt; x &lt; XEREFI. A total o NELEMS elements are generated in the cooling path of length XLENGT, o which NELREF are in the refined region.</li> <li>(2) dynamic (adaptive) with initial uniform spacing in the length XLENGT with minimum and maximum mesh sizes determined by the SIZMIN and SIZMAX parameters</li> <li>(3) dynamic (adaptive) with initial loca refinement in the region XBREFI &lt; x &lt; XEREFI. A total of NELEMS element are generated in the cooling path of NELEMS elements.</li> </ul> |
| XBREFI   | R    | (m)   | 0.0     | Beginning of the initial (t=0) refinement region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| XEREFI   | R    | (m)   | 0.0     | End of the initial (t=0) refinement region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NELREF   | Ι    | (-)   | 0       | Number of elements in the refined region. It is<br>limited by the total number of element in the flow<br>path as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |      |       |         | NELREF < NELEMS-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

NELREF < NELEMS-2

| SIZMIN | R | (m) | 0.0 | minimum allowed element size (this is the element size used in the vicinity of the normal fronts)                                                                                                                                                                                                                                                                                             |
|--------|---|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIZMAX | R | (m) | 0.0 | maximum allowed element size. Note hat any initial element longer than SIZMAX will be automatically refined during the time stepping                                                                                                                                                                                                                                                          |
| METHOD | Ι | (-) | 0   | <ul> <li>Flag used for the selection of the time integration method and space upwind <ul> <li>a globally first order accurate (in space and time) method is used (smooth but less accurate answers)</li> <li>a globally second order accurate (in space and time) method is used (sharper front resolution, but it is possible that wiggles are created at the fronts)</li> </ul> </li> </ul> |
| TEND   | R | (s) | 0.0 | Final time for the time integration                                                                                                                                                                                                                                                                                                                                                           |
| STPMIN | R | (s) | 0.0 | minimum allowed time step                                                                                                                                                                                                                                                                                                                                                                     |
| STPMAX | R | (s) | 0.0 | maximum allowed time step                                                                                                                                                                                                                                                                                                                                                                     |
| PSTEP  | R | (s) | 0.0 | print-out time step. The output to gandalf.output output every PSTEP seconds of real time                                                                                                                                                                                                                                                                                                     |
| GSTEP  | R | (s) | 0.0 | storage time step. The output to gandalf.store (storage for post-processing and restart) is output every GSTEP seconds of real time                                                                                                                                                                                                                                                           |
| IRESTA | Ι | (-) | 0   | <ul> <li>Flag used to indicate the run type</li> <li>(0) first run. All variables are set</li> <li>(1) restart run. The last time step stored is recovered from gandalf.store</li> </ul>                                                                                                                                                                                                      |
| ISTORP | Ι | (-) | 0   | <ul> <li>Flag to require the storage of the results each GSTEP seconds of real time</li> <li>(0) no storage performed. WARNING: in this case neither post-processing, nor restarting is possible</li> <li>(1) storage performed</li> </ul>                                                                                                                                                    |
| MONITR | Ι | (-) | 0   | Flag activating the interactive monitor for on-line<br>visualization of the dynamics (experimental<br>feature)<br>(0) no interactive monitor<br>(1) ineractive monitor                                                                                                                                                                                                                        |

# **External Routines**

The following sections describe routines that are provided as an interface for the user to improve the modelling capabilities of GANDALF. These routines are either provided as dummy (void) procedures, in the case that they are not needed for the standard execution of the code, or contain general purpose relations (such as the case for EXTF for the friction factor and the routines of the EXTHxx series for the heat transfer coefficients) in the case that they are used in the standard code execution.

Note: FORTRAN unit numbers above 50 are reserved for internal use

### **Cross sections**

| SUBROUTINE EXTCAB | (NOD  | , X     | ,ASC     | ,AST    | ,AJK   | ,AIN   | , |
|-------------------|-------|---------|----------|---------|--------|--------|---|
|                   | PHTC  | , PHTJ  | , PHTCJ  | ,ASC_X  | ,AST_X | ,AJK_X | , |
|                   | AIN_X | , PHTC_ | X,PHTJ_X | X,PHTCJ | _X)    |        |   |

Returns the cable cross sections and wetted perimeter as a function of the position along the cable

| Variable | Туре | I/O | Units             | Meaning                                                                                                                                 |
|----------|------|-----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| NOD      | Ι    | Ι   | (-)               | Node number                                                                                                                             |
| Х        | R    | Ι   | (m)               | Nodal coordinate                                                                                                                        |
| ASC      | R    | Ι   | (m <sup>2</sup> ) | Superconductor cross section (as from input)                                                                                            |
| AST      | R    | Ι   | (m <sup>2</sup> ) | Stabilizer cross section (as from input)                                                                                                |
| AJK      | R    | Ι   | (m <sup>2</sup> ) | Jacket cross section (as from input)                                                                                                    |
| AIN      | R    | Ι   | (m <sup>2</sup> ) | Insulation cross section (as from input)                                                                                                |
| PHTC     | R    | Ι   | (m)               | Heat transfer perimeter at the contact surface of the conductor and <i>bundle</i> helium channel (as from input)                        |
| PHTJ     | R    | Ι   | (m)               | Heat transfer perimeter at the contact surface of the jacket and <i>bundle</i> helium channel (as from input)                           |
| PHTCJ    | R    | Ι   | (m)               | Heat transfer perimeter at the contact surface of the<br>conductor and jacket (used to model the contact<br>resistance) (as from input) |
| ASC_X    | R    | 0   | (m <sup>2</sup> ) | Superconductor cross section at node NOD                                                                                                |
| AST_X    | R    | 0   | (m <sup>2</sup> ) | Stabilizer cross section at node NOD                                                                                                    |
| AJK_X    | R    | 0   | (m <sup>2</sup> ) | Jacket cross section at node NOD                                                                                                        |
| AIN_X    | R    | 0   | (m <sup>2</sup> ) | Insulation cross section at node NOD                                                                                                    |
| PHTC_X   | R    | 0   | (m)               | Heat transfer perimeter at the contact surface of the conductor and <i>bundle</i> helium channel at node NOD                            |
| PHTJ_X   | R    | 0   | (m)               | Heat transfer perimeter at the contact surface of the jacket and <i>bundle</i> helium channel at node NOD                               |
| PHTCJ_X  | R    | 0   | (m)               | Heat transfer perimeter at the contact surface of the<br>conductor and jacket (used to model the contact<br>resistance) at node NOD     |

| SUBROUTINE EXTCHN | (NOD  | <b>,</b> X | ,AHEH   | ,AHEB  | ,DHH     | ,DHB   | , |
|-------------------|-------|------------|---------|--------|----------|--------|---|
|                   | PHTHB | , PERFOR   | R,AHEH_ | X,AHEB | _X,DHH_X | ,DHB_X | , |
|                   | PHTHB | X, PERFO   | DR_X)   |        |          |        |   |

Returns the channel cross sections, hydraulic diameter, wetted perimeter between channels and perforation as a function of the position along the cable

| Variable | Туре | I/O | Units             | Meaning                                                                                                                    |
|----------|------|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------|
| NOD      | Ι    | Ι   | (-)               | Node number                                                                                                                |
| Х        | R    | Ι   | (m)               | Nodal coordinate                                                                                                           |
| AHEH     | R    | Ι   | (m <sup>2</sup> ) | Cross section of the <i>hole</i> helium channel (as from input)                                                            |
| AHEB     | R    | Ι   | (m <sup>2</sup> ) | Cross section of the <i>bundle</i> helium channel (as from input)                                                          |
| DHH      | R    | Ι   | (m)               | Hydraulic diameter of the <i>hole</i> helium channel (as from input)                                                       |
| DHB      | R    | Ι   | (m)               | Hydraulic diameter of the <i>bundle</i> helium channel (as from input)                                                     |
| PHTHB    | R    | Ι   | (m)               | Heat transfer perimeter at the contact surface of the <i>hole</i> and <i>bundle</i> helium channels (as from input)        |
| PERFOR   | R    | Ι   | (m)               | Percentage perforation of the wetted perimeter<br>between <i>hole</i> and <i>bundle</i> helium channels (as from<br>input) |
| AHEH_X   | R    | 0   | (m <sup>2</sup> ) | Cross section of the <i>hole</i> helium channel at node NOD                                                                |
| AHEB_X   | R    | 0   | (m <sup>2</sup> ) | Cross section of the <i>bundle</i> helium channel at node NOD                                                              |
| DHH_X    | R    | 0   | (m)               | Hydraulic diameter of the <i>hole</i> helium channel at node NOD                                                           |
| DHB_X    | R    | 0   | (m)               | Hydraulic diameter of the <i>bundle</i> helium channel at node NOD                                                         |
| PHTHB_X  | R    | 0   | (m)               | Heat transfer perimeter at the contact surface of the <i>hole</i> and <i>bundle</i> helium channels at node NOD            |
| PERFOR_X | R    | 0   | (m)               | Percentage perforation of the wetted perimeter<br>between <i>hole</i> and <i>bundle</i> helium channels at node<br>NOD     |

# **Coil current**

SUBROUTINE EXTI (TIME ,TSTEP ,IOP0 ,RSSTNC,IOP )

Compute the operating current as an arbitrary function of time and coil resistance.

| Variable | Туре | I/O | Units | Meaning                      |
|----------|------|-----|-------|------------------------------|
| TIME     | R    | Ι   | (s)   | Real time in the integration |
| TSTEP    | R    | Ι   | (s)   | Time step to be taken        |
| IOP0     | R    | Ι   | (A)   | Initial current (t=0)        |
| RSSTNC   | R    | Ι   | (Ohm) | Coil resistance              |
| IOP      | R    | 0   | (A)   | Coil current                 |

# Magnetic field

| SUBROUTINE EXTB | (TIME | <b>,</b> X | , NOD | ,IOP | <b>,</b> B | ) |
|-----------------|-------|------------|-------|------|------------|---|
|                 | •     | ,          |       | ,    | ,          | , |

Compute the magnetic field as an arbitrary function of time, space and current

| Variable | Туре | I/O | Units | Meaning                      |
|----------|------|-----|-------|------------------------------|
| TIME     | R    | Ι   | (s)   | Real time in the integration |
| Х        | R    | Ι   | (m)   | Nodal coordinate             |
| NOD      | Ι    | Ι   | (-)   | Node number                  |
| IOP      | R    | Ι   | (A)   | Coil current                 |
| В        | R    | 0   | (T)   | Magnetic field               |

# External heat input

| SUBROUTINE EXTQ | (TIME | ,TSTEP  | <b>,</b> X | ,NOD    | ,  |
|-----------------|-------|---------|------------|---------|----|
|                 | QO    | , XQBEG | ,XQEND     | , TAUQ  | ,  |
|                 | TCO   | ,TJK    | , QFLUX    | C,QFLUX | J) |

Compute the heat perturbation as an arbitrary function of time and space. The routine returns the value of the heating flux QFLUXC and QFLUXJ at the time TIME and position X (also identified by the node index NOD). Note that the parameters read-in from the input namelist (see input parameters list) are passed to the routine (as *trimming* set) although they are in effect not used in the main program (but can be used in principle in EXTQ).

| Variable | Туре | I/O | Units | Meaning                                    |
|----------|------|-----|-------|--------------------------------------------|
| TIME     | R    | Ι   | (s)   | Real time in the integration               |
| TSTEP    | R    | Ι   | (s)   | Time step to be taken                      |
| Х        | R    | Ι   | (m)   | Nodal coordinate                           |
| NOD      | Ι    | Ι   | (-)   | Node number                                |
| Q0       | R    | Ι   | (W/m) | Linear heat flux (as from input)           |
| XQBEG    | R    | Ι   | (m)   | Start of the heated region (as from input) |
| XQEND    | R    | Ι   | (m)   | End of the heated region (as from input)   |
| TAUQ     | R    | Ι   | (s)   | Heating time (as from input)               |
| TCO      | R    | Ι   | (K)   | Conductor temperature                      |
| TJK      | R    | Ι   | (K)   | Jacket temperature                         |
| QFLUXC   | R    | 0   | (W/m) | Heating linear flux in the conductor       |
| QFLUXJ   | R    | 0   | (W/m) | Heating linear flux in the jacket          |

# External boundary conditions

| SUBROUTINE EXTR | (TIME | , TSTEP          | , PREIN | L,TEMIN | NL,MDTI | NL, |
|-----------------|-------|------------------|---------|---------|---------|-----|
|                 | PREOU | t <b>,</b> temou | T,PREIN | I,TEMI  | NI,P    | ,   |
|                 | Т     | <b>,</b> R       | , MDOT  | ,PIN    | ,TIN    | ,   |
|                 | POUT  | , TOUT           | )       |         |         |     |

Set the boundary conditions for the flow calculation (pressure and temperature at inlet and outlet of the flow-path) as a function of time and of the flow conditions in the flow path. The routine returns the value of the inlet pressure and temperature PIN and TIN and the outlet values POUT and TOUT which are used as boundary conditions for the transient. Note that the parameters read-in from the input namelist (see input parameters list) are passed to the routine (as *trimming* set) although they are in effect not used in the main program (but can be used in principle in EXTR). Also passed are the computed parameters of outlet temperature or initial massflow.

| Variable | Туре | I/O | Units                | Meaning                                                                                                                                  |
|----------|------|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| TIME     | R    | Ι   | (s)                  | Real time in the integration                                                                                                             |
| TSTEP    | R    | Ι   | (s)                  | Time step to be taken                                                                                                                    |
| PREINL   | R    | Ι   | (Pa)                 | Initial inlet pressure (as from input)                                                                                                   |
| TEMINL   | R    | Ι   | (K)                  | Initial inlet temperature (as from input)                                                                                                |
| MDTINL   | R    | Ι   | (Kg/s)               | Initial inlet flow (as from input or computed)                                                                                           |
| PREOUT   | R    | Ι   | (Pa)                 | Initial outlet pressure (as from input or computed)                                                                                      |
| TEMOUT   | R    | Ι   | (K)                  | Initial outlet temperature (as computed)                                                                                                 |
| PREINI   | R    | Ι   | (Pa)                 | Initial pressure in case of zero flow (as from input)                                                                                    |
| TEMINI   | R    | Ι   | (K)                  | Initial temperature in case of zero flow (as from input)                                                                                 |
| Ρ        | R    | Ι   | (Pa)                 | array (of dimension 2) containing the pressure at<br>the previous step in the first (inlet) and last<br>(outlet) node of the flowpath    |
| Т        | R    | Ι   | (K)                  | array (of dimension 2) containing the temperature<br>at the previous step in the first (inlet) and last<br>(outlet) node of the flowpath |
| R        | R    | Ι   | (Kg/m <sup>3</sup> ) | array (of dimension 2) containing the density at the<br>previous step in the first (inlet) and last (outlet)<br>node of the flowpath     |
| MDOT     | R    | Ι   | (Kg/s)               | array (of dimension 2) containing the massflow at<br>the previous step in the first (inlet) and last<br>(outlet) node of the flowpath    |
| PIN      | R    | О   | (Pa)                 | Inlet pressure                                                                                                                           |
| TIN      | R    | О   | (K)                  | Inlet temperature                                                                                                                        |
| POUT     | R    | О   | (Pa)                 | Outlet pressure                                                                                                                          |
| TOUT     | R    | 0   | (K)                  | Outlet temperature                                                                                                                       |

# User's defined mesh

| SUBROUTINE EXTM | (NELEMS, NNODES, XLENGT, ITYMSH, XBREFI, |
|-----------------|------------------------------------------|
|                 | XEREFI, NELREF, XCOORD)                  |

Set the mesh in the array XCOORD, called when the flag ITYMSH is set to -1. Note that this mesh design routine is called at each time step to allow the user to perform adaptivity.

| Variable | Туре | I/O | Units | Meaning                                                                                                                                                 |
|----------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| NELEMS   | Ι    | I/O | (-)   | Number of elements at the last time step (at the initial call the value from input is given). The new number of elements must be returned from the call |
| NNODES   | Ι    | I/O | (-)   | Number of nodes at the last time step (at the initial call the value from input is given). The new number of nodes must be returned from the call       |
| XLENGT   | R    | Ι   | (m)   | Length of the cable (as from input)                                                                                                                     |
| ITYMSH   | Ι    | Ι   | (-)   | Mesh type (as from input)                                                                                                                               |
| XBREFI   | R    | Ι   | (m)   | Beginning of refinement (as from input)                                                                                                                 |
| XEREFI   | R    | Ι   | (m)   | End of refinement (as from input)                                                                                                                       |
| NELREF   | Ι    | Ι   | (-)   | Number of elements within the refined region (as from input)                                                                                            |
| XCOORD   | R    | 0   | (K)   | Array of dimension NNODES containing the coordinates of each node                                                                                       |

# Electrical and thermal properties of user's defined materials

These functions substitue the default material properties in case of negative material flags ISC, IST, IJK or IIN. They can be designed to provide an extension to the CryoSoft library Solids. For this purpose the material Material can be used as a univoque index referring to a specific material. The routines below can provide the appropriate switch between materials, and perform the necessary property calculation.

# Density

| FUNCTION UserDensity (Ma |
|--------------------------|
|--------------------------|

Used to compute the density of a user's defined material

List of variables:

| Variable    | Туре | I/O | Units      | Meaning                      |
|-------------|------|-----|------------|------------------------------|
| Material    | Ι    | Ι   | (-)        | Material flag, as from input |
| Т           | R    | Ι   | (K)        | temperature                  |
| UserDensity | R    | 0   | $(Kg/m^3)$ | density                      |

# Specific heat

| FUNCTION UserSpecificHeat (Material ,T ,B ,Tcs ,EPSLON) |
|---------------------------------------------------------|
|---------------------------------------------------------|

Used to compute the specific heat of a user's defined material

| Variable         | Туре | I/O | Units    | Meaning                      |
|------------------|------|-----|----------|------------------------------|
| Material         | Ι    | Ι   | (-)      | Material flag, as from input |
| Т                | R    | Ι   | (K)      | temperature                  |
| В                | R    | Ι   | (T)      | Magnetic field               |
| Tcs              | R    | Ι   | (K)      | current sharing temperature  |
| EPSLON           | R    | Ι   | (-)      | longitudinal strain          |
| UserSpecificHeat | R    | Ο   | (J/Kg K) | specific heat                |

# Thermal conductivity

Used to compute the thermal conductivity of a user's defined material

List of variables:

| Variable         | Туре | · I/O | Units   | Meaning                      |
|------------------|------|-------|---------|------------------------------|
| Material         | Ι    | Ι     | (-)     | Material flag, as from input |
| Т                | R    | Ι     | (K)     | temperature                  |
| В                | R    | Ι     | (T)     | Magnetic field               |
| RRR              | R    | Ι     | (-)     | residual resistivity ratio   |
| UserConductivity | R    | 0     | (W/m K) | thermal conductivity         |

# **Electrical resistivity**

| CON UserResistivity (Material ,T ,B ,RRR) |
|-------------------------------------------|
|-------------------------------------------|

Used to compute the electrical resistivity of a user's defined material

| Variable Type   | I/O | Units | Meaning                          | Meaning |
|-----------------|-----|-------|----------------------------------|---------|
| Material        | Ι   | Ι     | (-) Material flag, as from input | (-)     |
| Т               | R   | Ι     | (K) temperature                  | (K)     |
| В               | R   | Ι     | (T) Magnetic field               | (T)     |
| RRR             | R   | Ι     | (-) residual resistivity ratio   | (-)     |
| UserResistivity | R   | 0     | (Ohm m) electrical resistivity   | (Ohm m) |

# Critical current density

#### FUNCTION UserCriticalCurrent (Material ,T ,B ,EPSLON)

Used to compute the critical current density of a user's defined superconducting material

List of variables:

| Variable            | Туре | I/O | Units     | Meaning                      |
|---------------------|------|-----|-----------|------------------------------|
| Material            | Ι    | Ι   | (-)       | Material flag, as from input |
| Т                   | R    | Ι   | (K)       | temperature                  |
| В                   | R    | Ι   | (T)       | Magnetic field               |
| EPSLON              | R    | Ι   | (-)       | longitudinal strain          |
| UserCriticalCurrent | R    | 0   | $(A/m^2)$ | critical current density     |

### **Critical temperature**

| FUNCTION UserCriticalTemperature | (Material ,B ,EPSLON)   |
|----------------------------------|-------------------------|
| remerred obererreteuriemperdeure | (Indecide / D / Dibbon) |

Used to compute the critical temperature of a user's defined superconducting material

List of variables:

| Variable               | Туре | I/O | Units | Meaning                      |
|------------------------|------|-----|-------|------------------------------|
| Material               | Ι    | Ι   | (-)   | Material flag, as from input |
| В                      | R    | Ι   | (T)   | Magnetic field               |
| EPSLON                 | R    | Ι   | (-)   | longitudinal strain          |
| UserCriticalTemperatur | e R  | 0   | (K)   | critical temperature         |

### **Current sharing temperature**

| FUNCTION UserCurrentSharing | (Material ,B ,JOP | ,EPSLON) |  |
|-----------------------------|-------------------|----------|--|
|-----------------------------|-------------------|----------|--|

Used to compute the current sharing temperature of a user's defined superconducting material

| Variable           | Туре | I/O | Units     | Meaning                      |
|--------------------|------|-----|-----------|------------------------------|
| Material           | Ι    | Ι   | (-)       | Material flag, as from input |
| В                  | R    | Ι   | (T)       | Magnetic field               |
| JOP                | R    | Ι   | $(A/m^2)$ | operating current density    |
| EPSLON             | R    | Ι   | (-)       | longitudinal strain          |
| UserCurrentSharing | R    | 0   | (K)       | current sharing temperature  |

# Friction factor

Compute the friction factor of the flow for helium in the cooling hole or in the cable bundle. Must ALWAYS be present for the calculation of the flow

| Variable | Туре | I/O | Units | Meaning          |
|----------|------|-----|-------|------------------|
| CHNNEL   | Ι    | Ι   | (-)   | 1=bundle         |
|          |      |     |       | 2=hole           |
| Х        | R    | Ι   | (m)   | Nodal coordinate |
| NOD      | Ι    | Ι   | (-)   | Node number      |
| REYNOL   | R    | Ι   | (-)   | Reynolds number  |
| FRICTN   | R    | 0   | (-)   | Friction factor  |

### Heat transfer coefficient

These functions define the heat transfer coefficient of the flow in the channels, and the equivalent transfer coefficients corresponding to thermal resistances. These functions ALWAYS be present for the calculation of the energy exchange among components.

### Conductor-bundle heat transfer coefficient

| SUBROUTINE EXTHCB | (TIME ,X  | ,NOD ,T      | <b>,</b> P | ,D | , |
|-------------------|-----------|--------------|------------|----|---|
|                   | TWALL ,DH | ,REYNOL ,HTC | _CB)       |    |   |

Compute the conductor-bundle helium heat transfer coefficient (in W/m<sup>2</sup> K)

List of variables:

| Variable | Туре | I/O | Units                | Meaning                                    |
|----------|------|-----|----------------------|--------------------------------------------|
| TIME     | R    | Ι   | (s)                  | Real time in the integration               |
| Х        | R    | Ι   | (m)                  | Nodal coordinate                           |
| NOD      | Ι    | Ι   | (-)                  | Node number                                |
| т        | R    | Ι   | (K)                  | Helium temperature                         |
| Р        | R    | Ι   | (Pa)                 | Helium pressure                            |
| D        | R    | Ι   | (Kg/m <sup>3</sup> ) | Helium density                             |
| TWALL    | R    | Ι   | (K)                  | Wall (conductor) temperature               |
| DH       | R    | Ι   | (m)                  | Hydraulic diameter                         |
| REYNOL   | R    | Ι   | (-)                  | Reynolds number                            |
| HTC_CB   | R    | 0   | $(W/m^2K)$           | Conductor-bundle heat transfer coefficient |

### Conductor-jacket equivalent heat transfer coefficient

| SUBROUTINE EXTHCJ | (TIME | x  | , NOD | , TCO | , TJK | , HTC CJ) |
|-------------------|-------|----|-------|-------|-------|-----------|
| SUBROUTINE EVINCO | (TTWE | ,^ | , NOD | ,100  | , IUK | , птс_со) |

Compute the heat transfer coefficient (in  $W/m^2$  K) equivalent to the thermal resistance between the strands in the conductor and the jacket.

| Variable | Туре | I/O | Units       | Meaning                                    |
|----------|------|-----|-------------|--------------------------------------------|
| TIME     | R    | Ι   | (s)         | Real time in the integration               |
| Х        | R    | Ι   | (m)         | Nodal coordinate                           |
| NOD      | Ι    | Ι   | (-)         | Node number                                |
| TCO      | R    | Ι   | (K)         | Helium temperature in the conductor        |
| TJK      | R    | Ι   | (K)         | Helium temperature in the jacket           |
| HTC_CJ   | R    | 0   | $(W/m^2 K)$ | Conductor-jacket heat transfer coefficient |

# Jacket-bundle wall equivalent heat transfer coefficient

| SUBROUTINE EXTHJB | (TIME ,X   | ,NOD ,T     | , P   | <b>,</b> D | , |
|-------------------|------------|-------------|-------|------------|---|
|                   | TWALL , DH | ,REYNOL ,HT | C_JB) |            |   |

Compute the heat transfer coefficient (in  $W/m^2 K$ ) equivalent to the jacket-bundle wall thermal resistance.

| Variable | Туре | I/O | Units                | Meaning                                 |
|----------|------|-----|----------------------|-----------------------------------------|
| TIME     | R    | Ι   | (s)                  | Real time in the integration            |
| Х        | R    | Ι   | (m)                  | Nodal coordinate                        |
| NOD      | Ι    | Ι   | (-)                  | Node number                             |
| Т        | R    | Ι   | (K)                  | Helium temperature                      |
| Р        | R    | Ι   | (Pa)                 | Helium pressure                         |
| D        | R    | Ι   | (Kg/m <sup>3</sup> ) | Helium density                          |
| TWALL    | R    | Ι   | (K)                  | Wall (jacket) temperature               |
| DH       | R    | Ι   | (m)                  | Hydraulic diameter                      |
| REYNOL   | R    | Ι   | (-)                  | Reynolds number                         |
| HTC_JB   | R    | 0   | $(W/m^2K)$           | Jacket-bundle heat transfer coefficient |

List of variables:

# Hole-bundle mixing heat transfer coefficient

| SUBROUTINE EXTHHB | (TIME | <b>,</b> X | ,NOD       | ,THEH    | ,THEB   | ,PH     | ,   |
|-------------------|-------|------------|------------|----------|---------|---------|-----|
|                   | PB    | ,VH        | ,VB        | , DENH   | ,DENB   | ,DHH    | ,   |
|                   | DHB   | ,REYN      | IOH, REYNO | OB,FRICT | H,FRICT | B, PERF | OR, |
|                   | HTC_H | B)         |            |          |         |         |     |

Compute the mixing heat transfer coefficient (in W/m<sup>2</sup> K) between hole and bundle channels.

List of variables:

| Variable | Туре | I/O | Units | Meaning                          |
|----------|------|-----|-------|----------------------------------|
| TIME     | R    | Ι   | (s)   | Real time in the integration     |
| Х        | R    | Ι   | (m)   | Nodal coordinate                 |
| NOD      | Ι    | Ι   | (-)   | Node number                      |
| THEH     | R    | Ι   | (K)   | Helium temperature in the hole   |
| THEB     | R    | Ι   | (K)   | Helium temperature in the bundle |
| PH       | R    | Ι   | (Pa)  | Helium pressure in the hole      |
| PB       | R    | Ι   | (Pa)  | Helium pressure in the bundle    |
| VH       | R    | Ι   | ()    | Helium velocity in the hole      |
| VB       | R    | Ι   | ()    | Helium velocity in the bundle    |
| DENH     | R    | Ι   | ()    | Helium density in the hole       |
| DENB     | R    | Ι   | ()    | Helium density in the bundle     |
| DHH      | R    | Ι   | (m)   | Hydraulic diameter of the hole   |

32

| DHB    | R | Ι | (m)         | Hydraulic diameter of the bundle        |
|--------|---|---|-------------|-----------------------------------------|
| REYNOH | R | Ι | (-)         | Reynolds number in the hole             |
| REYNOB | R | Ι | (-)         | Reynolds number in the bundle           |
| FRICTH | R | Ι | (-)         | Friction factor in the hole             |
| FRICTB | R | Ι | (-)         | Friction factor in the bundle           |
| PERFOR | R | Ι | (-)         | bundle-hole perforation (as from input) |
| HTC_HB | R | 0 | $[W/m^2 K]$ | Hole-bundle heat transfer coefficient   |
|        |   |   |             |                                         |

# Quality indicators and general guidelines for running

As mentioned in the introduction, a number of quality indicators is computed by *GANDALF* to judge the solution obtained. In general, a quench simulation can produce *wrong* results because of large diffusivity in the scheme chosen, and because the numerical approximations cause over-propagation of the quench front, thus triggering a non-linear process that makes the numerical solution diverge from the physical one. Therefore a check must be made on:

- a) the amount of numerical diffusion of the scheme used, and
- b) the amount of numerical propagation of the fronts.

Two solution schemes are available in *GANDALF*. They are either a first-order accurate Euler-Backward implicit integrator with upwinding (METHOD=0), or a second-order accurate Crank-Nicolson implicit integrator without upwinding (METHOD=1). The first has numerical diffusivity built in, used to stabilize the scheme, while the second has not. To clarify better the performance of the two schemes, while the first smear fronts and makes every solution smooth (sometimes unphysically), the second tries to represent as faithfully as possible discontinuities in the solution, thus suffering from oscillation paranoia at sharp fronts. Therefore if strong discontinuities are present in the solution (large temperature gradients moving along the cable) a good choice is to use the first order scheme in these situations. The draw-back is the lower accuracy, that requires a much finer mesh and smaller steps. Thus for efficiancy and accuracy, the user should try to use the second order scheme as soon (or as often) as possible.

The error and quality indicators computed try to quantify the considerations above. They are:

- a) the maximum numerical diffusion of the scheme, and
- b) the estimated numerical propagation at the fronts.

While the first can be computed exactly for both schemes (and is evidently zero for the second order scheme), for the second only an analytical approximation can be given. The two indicators above must be compared to the physical diffusivity and to the physical propagation speed diffusivity, checking that the ratio of numerical to physical quantity is smaller than 1. Again, while the first can be given exactly, based on the material properties, the second is not known (were it known, we would be in no trouble...). A good compromise is to compare the numerical estimated propagation speed to the total computed propagation speed. Note that we must require the ratio to be in this case MUCH smaller than 1 (for a small numerical perturbation can result in long term physical drifts). *GANDALF* computes the sum of the numerical front propagations (taken in absolute terms) and the ratio of this sum to the total propagation speed (the time derivative of the total normal length). Note that this is different from the front speed (typically by a factor given by the number of travelling fronts). This choice has been made because it is independent on the actual front position, on the number of fronts, and on their single speed.

Typically, an acceptable value for the ratio of numerical to total proagation speed is in the range of some 1 to 5 %. This ratio is the most valuable quality indicator provided. In fact, in case of adaptive meshing, some regions of the mesh can have large elements, and thus the ratio of numerical to physical diffusivity can be locally very large, but irrelevant to quench propagation. This last can be used to check the quality of the solution when a fixed mesh is used, as, e.g., in the analysis of cooling of a coil in pulsed mode. The acceptance limit in this case can be larger, typically up to 10 %.

The tolerance values given above result, for a generic cable with void fraction of the order of 50 %, Copper:Non-copper ratio in the range of 2 and operating cable space current density of the order of 50  $A/mm^2$  in typical mesh sizes below 1 mm and step below 1 ms for the first order scheme, below 1 cm and below 5 ms for the second order scheme. The cryticality of the first order scheme is evident, as CPU time and memory can become a factor 5 to 10 higher.

For future development, a last, additional error indicator is computed by GANDALF. It is based on an estimate of the interpolation error of a control variable U, in this case the conductor temperature. The second derivative of the control variable is computed at the nodes, and the rms interpolation error is estimated locally as:

$$\varepsilon = \frac{1}{11} \Delta x^2 \left| \frac{d^2 U}{dx^2} \right|$$

where  $\Delta x$  is the element size (averaged at the nodes). This gives a nodal indication of the error. The maximum error and the ratio of this maximum to the maximum of the control variable (i.e. the  $\infty$ -*norm*) are used as indications of the amount of error. Note that this error indicator cannot be used to identify numerical front propagation and numerical diffusivity, as the higher the numerical propagation and the diffusivity of the scheme, the smoother the solution becomes. The are intended for future use in the control of the mesh for transient problems wich do not involve quench propagation, or for areas of the cable far from the propagating fronts.

The error and quality indicators are output on the main listing (header of nodal results) and stored on the post-processing file. They can be accessed for plotting or table creation through the post-processing commands (see later). As said in the introduction, the control of the quality of the solution is left to the user, whose responsibility is to make sure that the indicators are below tolerable levels.

# **Error Codes**

A limited number of checks are performed in the input phase to insure that the data set is consistent and that the memory requirements for the solution of the problem do not exceed the availability. An error message is printed on the main output unit in case that one of these checks is not passed. The error message gives a numeric code which corresponds to the following table. Lists in braces indicate allowed values.

| Code | Error                            | Meaning and corrective action                                                                  |
|------|----------------------------------|------------------------------------------------------------------------------------------------|
| 1    | NNODES>MAXNOD                    | Number of nodes exceeds the maximum allowed.<br>Increase the MAXNOD parameter in the main code |
| 2    | NELEMS $\leq 0$                  | Wrong definition of the number of elements is given<br>in input. Correct input.                |
| 10   | ISC > 0                          | The flag for the superconductor type has a wrong                                               |
|      | and                              | value. Correct ISC in input                                                                    |
|      | ISC ≠{31,32)                     |                                                                                                |
| 11   | $IST \ge 0$                      | The flag for the stabilizer type has a wrong value.                                            |
|      | and                              | Correct IST in input                                                                           |
|      | $\text{IST} \neq \{1,2\}$        |                                                                                                |
| 12   | IJK ≥ 0                          | The flag for the jacket type has a wrong value. Correct                                        |
|      | and                              | IJK in input                                                                                   |
|      | IJK $\neq \{1,2,3,11,13,14,15\}$ |                                                                                                |
| 13   | IIN ≥ 0                          | The flag for the insulation type has a wrong value.                                            |
|      | and                              | Correct IIN in input                                                                           |
|      | $\text{IIN} \neq \{21, 22, 23\}$ |                                                                                                |
| 14   | IOPFUN $\neq$ {-1,0,1}           | The flag for the current behaviour has a wrong value.<br>Correct IOPFUN in input               |
| 15   | IBIFUN $\neq$ {-1,0,1}           | The flag for the field behaviour has a wrong value.<br>Correct IBIFUN in input                 |
| 16   | ITYMSH $\neq$ {-1,0,1,2,3}       | The flag for the mesh type has a wrong value. Correct ITYMSH in input                          |
| 17   | INTIAL $\neq$ {1,2,3,4}          | The flag for the initial condition has a wrong value.<br>Correct INTIAL in input               |
| 18   | $IQFUN \neq \{-1,0,1\}$          | The flag for the heating input has a wrong value.<br>Correct IQFUN in input                    |
| 19   | $\text{METHOD} \neq \{0,1\}$     | The flag for the integration method has a wrong value.<br>Correct METHOD in input              |

\_

| Code | Error                                             | Meaning and corrective action                                                                                                                               |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21   | ISTORP $\neq \{0,1\}$                             | The flag for the request of results storage has a wrong value. Correct ISTORP in input                                                                      |
| 23   | IRESTA $\neq \{0,1\}$                             | The flag for restart has a wrong value. Correc IRESTA in input                                                                                              |
| 24   | NELREF>NELEMS-2                                   | The number of elements in the refined region (in case<br>that ITYMSH=1 or ITYMSH=3) does not allow for<br>enough elements in the remaining of the flow path |
| 31   | XLENGT ≤ 0                                        | The length of the flow path is wrongly or not given<br>Correct XLENGT in input                                                                              |
| 32   | ASC<0 or AST<0                                    | A negative value for an area has been given in input                                                                                                        |
|      | or                                                | Correct the input value                                                                                                                                     |
|      | AJK<0 or AIN<0                                    |                                                                                                                                                             |
| 33   | ASC>0 and AST $\leq 0$                            | The conductor is not stabilized. Specify a non-negative stabilizer area AST in input                                                                        |
| 34   | $AHEH+AHEB \le 0$                                 | No helium present in the cable. Specify a non-negative helium area AHEB (and AHEH if required) in input                                                     |
| 35   | DHH $\leq 0$ or DHB $\leq 0$                      | Negative or zero hydraulic diameter. Specify a non negative hydraulic diameter DHH and DHB in input                                                         |
| 36   | PHTC < 0 or PHTJ < 0 or PHTCJ<br>< 0 or PHTHB < 0 | Negative wetted perimeter. Specify a non-negative wetted perimeter PHTC or PHTJ or PHTCJ or PHTHE in input                                                  |
| 37   | NPOWER ≤ 0                                        | Negative or zero exponent for electric field power law<br>Specify a positive exponent NPOWER in input                                                       |
| 38   | $E0 \leq 0$                                       | Negative or zero electric field limit for the electric field<br>power law. Specify a positive E0 in input                                                   |
| 40   | INTIAL  = 1                                       | Negative or zero pressure at inlet. Specify a non                                                                                                           |
|      | and                                               | negative helium pressure PREINL in input                                                                                                                    |
|      | PREINL ≤ 0                                        |                                                                                                                                                             |
| 41   | INTIAL  = 1                                       | Negative or zero pressure at outlet. Specify a non                                                                                                          |
|      | and                                               | negative helium pressure PREOUT in input                                                                                                                    |
|      | $PREOUT \le 0$                                    |                                                                                                                                                             |
| 42   | INTIAL  = 1                                       | Negative or zero temperature at inlet for an initial flow                                                                                                   |
|      | and                                               | from inlet to outlet. Specify a non-negative helium temperature TEMINL in input                                                                             |
|      | TEMINL ≤ 0                                        | . I                                                                                                                                                         |
|      | and                                               |                                                                                                                                                             |
|      | PREINL ≥ PREOUT                                   |                                                                                                                                                             |

| Code | Error                                   | Meaning and corrective action                                                        |
|------|-----------------------------------------|--------------------------------------------------------------------------------------|
| 43   | INTIAL  = 1                             | Negative or zero temperature at outlet for an initial                                |
|      | and                                     | flow from outlet to inlet. Specify a non-negative helium temperature TEMOUT in input |
|      | TEMOUT $\leq 0$                         | 1 1                                                                                  |
|      | and                                     |                                                                                      |
|      | PREINL < PREOUT                         |                                                                                      |
| 44   | INTIAL  = 2                             | Negative or zero temperature at inlet. Specify a non-                                |
|      | and                                     | negative helium temperature TEMINL in input                                          |
|      | TEMINL $\leq 0$ and MDTINL >=0          |                                                                                      |
| 45   | INTIAL  = 2                             | Negative or zero pressure at inlet. Specify a non-                                   |
|      | and                                     | negative helium pressure PREINL in input                                             |
|      | PREINL $\leq 0$ and MDTINL >=0          |                                                                                      |
| 46   | INTIAL  = 2                             | Negative or zero temperature at outlet. Specify a non-                               |
|      | and                                     | negative helium temperature TEMOUT in input                                          |
|      | TEMOUT $\leq$ 0 and MDTINL <0           |                                                                                      |
| 47   | INTIAL  = 2                             | Negative or zero pressure at outlet. Specify a non-                                  |
|      | and                                     | negative helium pressure PREOUT in input                                             |
|      | PREOUT $\leq 0$ and MDTINL $<0$         |                                                                                      |
| 48   | INTIAL  = 3                             | Negative or zero pressure at inlet. Specify a non-                                   |
|      | and                                     | negative helium pressure PREINL in input                                             |
|      | PREINL ≤ 0                              |                                                                                      |
| 49   | INTIAL  = 3                             | Negative or zero temperature at inlet. Specify a non-                                |
|      | and                                     | negative helium temperature TEMINL in input                                          |
|      | TEMINL ≤ 0                              |                                                                                      |
| 50   | INTIAL = 4                              | Negative or zero initial pressure. Specify a non-                                    |
|      | and                                     | negative helium pressure PREINI in input                                             |
|      | PREINI ≤ 0                              |                                                                                      |
| 51   | INTIAL = 4                              | Negative or zero initial temperature. Specify a non-                                 |
|      | and                                     | negative helium temperature TEMINI in input                                          |
|      | TEMINI ≤ 0                              |                                                                                      |
| 52   | $PREINL \le 0 \text{ or } PREOUT \le 0$ | Negative or zero pressure owing to a large specified mass flow                       |

\_\_\_\_

| Code | Error                          | Meaning and corrective action                                                                 |
|------|--------------------------------|-----------------------------------------------------------------------------------------------|
| 61   | End-of-file                    | The storage file has not been found or cannot be read                                         |
|      | or                             | during a restart run                                                                          |
|      | Read-in error                  |                                                                                               |
| 62   | Input file does not exist      | The input file has not been found or cannot be read                                           |
|      | or                             |                                                                                               |
|      | Read-in error                  |                                                                                               |
| 63   | Write error                    | The storage file cannot be written                                                            |
|      | or                             |                                                                                               |
|      | storage file                   |                                                                                               |
| 71   | Matrix scaling error           | The system matrix is singular and cannot be scaled                                            |
| 72   | Matrix factorization error     | The system matrix is singular and cannot be factorized during the inversion process           |
| 73   | Matrix back-substitution error | The system matrix is singular and cannot be back-<br>substituted during the inversion process |

# **Post Processing**

The post processing of the results of GANDALF is possible using the results stored on the storage. The actual format of the storage unit can be deduced from the routines STOROP and STORER of GANDALF (see the main code).

A dedicated program has been written for generation of plots and writing of report files (in order to have the possibility to store and successively generate plots). The program, GANDALF\_POST, is based on a PostScript<sup>™</sup> graphic library and can generated Adobe-PostScript<sup>™</sup> ASCII files for plotting.

The input for the program is the storage file generated by the solver GANDALF on gandalf.store, and a terminal sequence or a command file.

Outputs are generated as plots and an ASCII report (with tables of distributions and evolutions) can be written to g1dp.tables. In addition, two scratch files are used for read, storage and write operations.

# Command language for the post processors

Here follows the list of the commands of GANDALF\_POST. Note that for all keywords only the first 4 characters are necessary (indicated in upper case). A ';' character in any position of a command line indicates a comment or end-of-line (the remaining of the line is ignored). Commands can be entered both in upper- and lowercase.

| Command  | Options | Meaning                                                                                                                                                                                                                                             |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STOP     |         | Stop execution and close the session                                                                                                                                                                                                                |
| LIST     |         | List the times stored on the storage unit                                                                                                                                                                                                           |
| POST     | ON/OFF  | Switch ON or OFF (default) the writing of the post processing ASCII tables on file gldp.tables                                                                                                                                                      |
| PLOT     | ON/OFF  | Switch ON (default) or OFF the PostScript <sup>™</sup> output (plots)                                                                                                                                                                               |
| TABLe    |         | Start table definition. The post-processing<br>commands following the TABLe command<br>generate a packed table of data if POST is ON. The<br>table is completed (and output) as soon as the<br>ENDTable command is found. Ignored if POST is<br>OFF |
| ENDTable |         | End table definition                                                                                                                                                                                                                                |

| Command | Options       | Meaning                                                |
|---------|---------------|--------------------------------------------------------|
| ECHO    | ON            |                                                        |
| Leno    | OFF           | Turn the echo of commands ON or OFF                    |
| HISTory |               | Plot/output the history as f(t) of:                    |
|         | T_COnductor   | conductor temperature                                  |
|         | T_JAcket      | jacket temperature                                     |
|         | T_HElium      | helium temperature                                     |
|         | T_HBundle     | helium temperature in the bundle                       |
|         | T_HHole       | helium temperature in the hole                         |
|         | PRESssure     | helium pressure                                        |
|         | PR_Bundle     | helium pressure in the bundle                          |
|         | PR_Hole       | helium pressure in the hole                            |
|         | DENSity       | helium density                                         |
|         | DENBundle     | helium density in the bundle                           |
|         | DENHole       | helium density in the hole                             |
|         | V_Hole        | helium velocity in the hole                            |
|         | V_BUndle      | helium velocity in the bundle                          |
|         | VELOcity      | averaged helium velocity                               |
|         | M_HOle        | helium mass flow in the hole                           |
|         | M_BUndle      | helium mass flow in the bundle                         |
|         | MASS_flow     | total helium mass flow                                 |
|         | RE_Hole       | helium reynolds number in the hole                     |
|         | <br>RE_Bundle | helium reynolds number in the bundle                   |
|         | H_CHole       | heat transfer coefficient conductor-hole               |
|         | H_CBundle     | heat transfer coefficient conductor-bundle             |
|         | H_JHole       | heat transfer coefficient jacket- hole                 |
|         | H_JBundle     | heat transfer coefficient jacket-bundle                |
|         | H_CJacket     | heat transfer coefficient conductor-jacket             |
|         | H_HBundle     | heat transfer coefficient hole-bundle                  |
|         | B             | magnetic field                                         |
|         | Q_EConductor  | external linear heat flux in the strands               |
|         | Q_EJacket     | external linear heat flux in the jacket                |
|         | Q_JConductor  | joule heat flux in the conductor                       |
|         | Q_JJacket     | joule heat flux in the jacket                          |
|         | Q_CConductor  | cooling flux from the conductor to the helium          |
|         | Q_CJacket     | cooling flux from the jacket to the helium             |
|         | J_CRitical    | critical current                                       |
|         | T_CRitical    | critical temperature                                   |
|         | T_CS          | current sharing temperature                            |
|         | T_MArgin      | temperature margin                                     |
|         | F_OPeration   | operating fraction of the critical current             |
|         | NODE n        | at the node number <i>n</i>                            |
|         | X x           | at a length $x$ from inlet (interpolation is performed |
|         |               | between the closest nodes)                             |

| Command | Options       | Meaning                                                                                     |
|---------|---------------|---------------------------------------------------------------------------------------------|
| HISTory |               | Plot/output the history of:                                                                 |
|         | CURRent       | current                                                                                     |
|         | RESIstance    | resistance                                                                                  |
|         | VOLTage       | voltage                                                                                     |
|         | NORMal        | normal zone length                                                                          |
|         | PROPagation   | computed instantaneous total propagation speed (time derivative of the TOTAL normal length) |
|         | P_JOule       | total Joule heat power in the mesh (integrated over<br>the length)                          |
|         | P_EXternal    | total external power in the mesh (integrated over<br>the length)                            |
|         | E_JOule       | total Joule energy deposited in the mesh (integral<br>in time of the Joule power)           |
|         | E_EXternal    | total external energy deposited in the mesh (integral in time of the external power)        |
|         | DIFFusivity   | Maximum numerical diffusivity                                                               |
|         | DIFRelative   | Maximum ratio of numerical to physical diffusivity                                          |
|         | PNUMerical    | Estimated numerical total propagation speed                                                 |
|         | PNURelative   | Ratio of numerical to computed total propagation speed                                      |
|         | INTErpolation | Estimated interpolation error on the conductor temperature                                  |
|         | INTRelative   | Estimated relative interpolation error on the conductor temperature                         |

| Command      | Options      | Meaning                                       |
|--------------|--------------|-----------------------------------------------|
| DISTribution |              | Plot/output the distribution as $f(x)$ of     |
|              | T_COnductor  | conductor temperature                         |
|              | T_JAcket     | jacket temperature                            |
|              | T_HElium     | averaged helium temperature                   |
|              | T_HBundle    | helium temperature in the bundle              |
|              | T_HHole      | helium temperature in the hole                |
|              | PRESssure    | averaged helium pressure                      |
|              | PR_Bundle    | helium pressure in the bundle                 |
|              | PR_Hole      | helium pressure in the hole                   |
|              | DENSity      | helium density                                |
|              | DENBundle    | helium density in the bundle                  |
|              | DENHole      | helium density in the hole                    |
|              | V_Hole       | helium velocity in the hole                   |
|              | V_BUndle     | helium velocity in the bundle                 |
|              | VELOcity     | averaged helium velocity                      |
|              | M_HOle       | helium mass flow in the hole                  |
|              | M_BUndle     | helium mass flow in the bundle                |
|              | MASS_flow    | total helium mass flow                        |
|              | RE_Hole      | helium reynolds number in the hole            |
|              | RE_Bundle    | helium reynolds number in the bundle          |
|              | H_CHole      | heat transfer coefficient conductor-hole      |
|              | H_CBundle    | heat transfer coefficient conductor-bundle    |
|              | H_JHole      | heat transfer coefficient jacket- hole        |
|              | H_JBundle    | heat transfer coefficient jacket-bundle       |
|              | H_CJacket    | heat transfer coefficient conductor-jacket    |
|              | H_HBundle    | heat transfer coefficient hole-bundle         |
|              | В            | magnetic field                                |
|              | Q_EConductor | external linear heat flux in the strands      |
|              | Q_EJacket    | external linear heat flux in the jacket       |
|              | Q_JConductor | joule heat flux in the conductor              |
|              | Q_JJacket    | joule heat flux in the jacket                 |
|              | Q_CConductor | cooling flux from the conductor to the helium |
|              | Q_CJacket    | cooling flux from the jacket to the helium    |
|              | J_CRitical   | critical current                              |
|              | T_CRitical   | critical temperature                          |
|              | T_CS         | current sharing temperature                   |
|              | T_MArgin     | temperature margin                            |
|              | F_OPeration  | operating fraction of the critical current    |
|              | MESH_density | mesh density (inverse of the element length)  |
|              | TIMEs n      |                                               |

 $t_1, t_2...t_n$  at *n* times in sequence given by  $t_1, t_2, ...t_n$  (the closest time stored is found and plotted)

> The distribution curves are marked by an identifier and a legend is plotted with the recovered times

| Command | Options      | Meaning                                            |
|---------|--------------|----------------------------------------------------|
| 3_D     |              | Plot a pseudo-3D $f(x,t)$ distribution of:         |
|         | T_COnductor  | conductor temperature                              |
|         | T_JAcket     | jacket temperature                                 |
|         | T_HElium     | averaged helium temperature                        |
|         | T_HBundle    | helium temperature in the bundle                   |
|         | T_HHole      | helium temperature in the hole                     |
|         | PRESssure    | averaged helium pressure                           |
|         | PR_Bundle    | helium pressure in the bundle                      |
|         | PR_Hole      | helium pressure in the hole                        |
|         | DENSity      | helium density                                     |
|         | DENBundle    | helium density in the bundle                       |
|         | DENHole      | helium density in the hole                         |
|         | V_HOle       | helium velocity in the hole                        |
|         | V_BUndle     | helium velocity in the bundle                      |
|         | VELOcity     | averaged helium velocity                           |
|         | M_HOle       | helium mass flow in the hole                       |
|         | M_BUndle     | helium mass flow in the bundle                     |
|         | MASS_flow    | total helium mass flow                             |
|         | RE_Hole      | helium reynolds number in the hole                 |
|         | RE_Bundle    | helium reynolds number in the bundle               |
|         | H_CHole      | heat transfer coefficient conductor-hole           |
|         | H_CBundle    | heat transfer coefficient conductor-bundle         |
|         | H_JHole      | heat transfer coefficient jacket- hole             |
|         | H_JBundle    | heat transfer coefficient jacket-bundle            |
|         | H_CJacket    | heat transfer coefficient conductor-jacket         |
|         | H_HBundle    | heat transfer coefficient hole-bundle              |
|         | В            | magnetic field                                     |
|         | Q_EConductor | external linear heat flux in the strands           |
|         | Q_EJacket    | external linear heat flux in the jacket            |
|         | Q_JConductor | joule heat flux in the conductor                   |
|         | Q_JJacket    | joule heat flux in the jacket                      |
|         | Q_CConductor | cooling flux from the conductor to the helium      |
|         | Q_CJacket    | cooling flux from the jacket to the helium         |
|         | J_CRitical   | critical current                                   |
|         | T_CRitical   | critical temperature                               |
|         | T_CS         | current sharing temperature                        |
|         | T_MArgin     | temperature margin                                 |
|         | F_OPeration  | operating fraction of the critical current         |
|         | MESH_density | mesh density (inverse of the element length)       |
|         |              | The 3-D plot is done over the whole length and for |

The 3-D plot is done over the whole length and for all store times. No table output (post-processing report) is possible as the amount of data generated can be considerable

# References

- [1] L.Bottura, A Numerical Model for the Simulation of Quench in the ITER Magnets, Jour. Comp. Phys., **124**, (1), 1996.
- [2] L. Bottura, *Modelling Stability in Superconducting Cables*, Physica C, **310**, 316-326, 1998.

Additional information on generalities of quench modelling and numerical techniques can be found in:

- [3] L.Bottura, Quench Analysis of Superconducting Magnets. A Numerical Study, EC Report No. 102, EUR-FU/XII/185/93, 1993
- [4] L. Bottura, C. Rosso, *Finite Element Simulation of Steady State and Transient Forced Convection in Superfluid Helium*, Int. J. Num. Meth. Fluids, **30**, 1091-1108, 1999.

# **Examples**

Here are reported the input data for a sample run and restart performed with the basic GANDALF for a fixed, non adaptive mesh and the input file for the post-processor GANDALF\_POST. Note that these inputs are intended as verifications, and do not necessarily satisfy the convergence requirements.

### Input for the first run with GANDALF

```
Test Run for the manual, version 2.2 &INDATA
```

```
NELEMS=
              200, XLENGT=
                                100.0, ITYMSH=
                                                        1,
                                 40.0, XEREFI=
NELREF=
              100, XBREFI=
                                                       60,
ICHFUN=
                0,
AHEH
      =
          19.6E-6, AHEB
                          =
                             71.4E-6,
           5.0E-3, DHB
                          = 0.865E-3,
DHH
      =
          15.7E-3, PERFOR=
                                 0.01,
PHTHB =
                Ο,
ICBFUN=
                             40.6E-6,
ISC
      =
               32, ASC
                          =
EPSLON=-0.250E-2, NPOWER=
                                                   1.0E-4,
                                   30, EO
                                              =
IST
      =
                1, AST
                          =
                             60.8E-6, RRR
                                                   100.0,
                                              =
IJK
      =
               13, AJK
                          =
                             73.5E-6,
      =
               22, AIN
                          =
                             61.0E-6,
IIN
PHTC
      =
            0.330, PHTJ
                          =
                               5.1E-2, PHTCJ =
                                                   0.0E+0,
INTIAL=
                2,
PREINL=
         8.00E+5, TEMINL=
                                  4.5, MDTINL=
                                                  5.0E-3,
IOPFUN=
                0, IOP0
                          =
                             8.00E+3,
IBIFUN=
                0, BISS
                          =
                                 10.0, BOSS
                                             =
                                                     10.0,
IQFUN =
                Ο,
         5.00E+4, XQBEG =
                                 45.0, XQEND =
Q0
      =
                                                     55.0,
TAUQ
      =
         0.01000,
      = 500.0e-3, PSTEP =
                                  0.1, \text{GSTEP} = 25.0E-3,
TEND
           1.0E-7, STPMAX=
STPMIN=
                              1.0E-3,
METHOD=
                0,
ISTORP=
                1, IRESTA=
                                    0, MONITR =
                                                        1,
```

# Input for the restart with GANDALF

```
Test Restart for the manual, version 2.2
&INDATA
TEND = 100.0, PSTEP = 10.0, GSTEP = 1.0,
STPMIN= 1.0E-5, STPMAX= 1000.0E-3,
METHOD= 0,
ISTORP= 1, IRESTA= 1, MONITR = 1,
&END
```

### Input for the post processor GANDALF\_POST

```
;
; post-processing commands for test run
;
; distributions of some variables
  DIST T CO TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
  DIST T HH TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
  DIST T_HB TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
  DIST PR H TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
  DIST PR B TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
 DIST VELO TIME 10 .1 .2 .3 .4 .5 1 2 3 4 5
; hystories
 HIST T CO X 50 HIST PRES X 50
  HIST MASS X 0 HIST MASS X 100
; pseudo 3-D plots
  3 D T CO 3 D PRES 3 D VELO
; some quality control and errors
  HIST PROP HIST PNUM
  HIST DIFF HIST DIFR
; end of the run
 STOP
```