
User’s Guide

Version 2.1a
November 2021

HEATER CryoSoft

Simulation of Heat Conduction

2

© CryoSoft, 2021

DISCLAIMER

Even though CryoSoft has carefully reviewed this manual, CRYOSOFT MAKES
NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS PROVIDED “AS IS”, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if advised of the possibility of such
damages.

Copyright Ó 1997-2021 by CryoSoft

 3

© CryoSoft, 2021

Contents

ROADMAP 5	
Before you start 5	
How to use this manual 5	

INTRODUCTION 6	
What is HEATER 6	
A HEATER model 6	
PDE Solution 7	
Post-processing 10	
User Flexibility and Further Extensions 10	

INSTALLING AND RUNNING HEATER 11	
Platforms 11	
Installation 12	
How to run HEATER 12	
How to run HEATERPOST 14	
Customization 15	

CASE STUDIES 16	
Heat flow in a composite bar 17	

INPUT REFERENCE 23	
Structure and syntax 23	
Input variables reference 24	

General 24	
Mesh 24	
Sets 26	
Initial 27	
Boundary 27	
Source 29	
Simulation 30	
Variables 32	

POST-PROCESSING LANGUAGE REFERENCE 34	
Structure and syntax 34	
Commands reference 34	

USER ROUTINES 38	
Linking user routines 38	
Calling protocol 38	

Properties of solid materials 39	
Heating waveform 40	
Initial conditions 40	
Boundary conditions 40	

4

© CryoSoft, 2021

TROUBLESHOOTING AND ERRORS 42	
Input parsing errors 42	
Data consistency errors 42	
Runtime errors 42	
Internal consistency errors 43	

REFERENCES 45	

 Roadmap 5

© CryoSoft, 2021

Roadmap

Before you start
This manual is the reference user’s guide for HEATER and its post-processor,
HEATERPOST. Throughout this manual we assume that the reader is familiar with the
physics and engineering issues that are associated with solid heat transfer at cryogenic
temperature conditions. We strongly suggest that the reader consults the relevant references
before using this manual.

How to use this manual
This manual is structured as follows:

§ Chapter 1 contains a brief and general introduction on the modeling principle and

solution methods available.

§ Chapter 2 gives basic information on the installation, explains how to start a HEATER

run and launch the post-processor HEATERPOST on a UNIX workstation.

§ Chapter 3 contains case studies that the reader should use to familiarize himself with the

operation and features of the program.

§ Chapter 4 contains additional information on the preparation of the input and the

meaning of the input variables

§ Chapter 5 describes the details of the post-processing command language.

§ Chapter 6 describes the User Routines that can be used for advanced use. These routines

can be linked to the standard code to provide powerful customization.

§ Chapter 7 deals with troubleshooting and error messages;

§ Chapter 8 gives the references and a general bibliography for documentation.

Beginners to HEATER should read chapters 1, 2 and 3 in sequence. They will make
occasional cross reference to chapters 4 and 5 for detailed information. Experienced users will
use chapters 4, 5 and 6 for daily operation. Chapter 7 is designed to be consulted as an indexed
glossary for error messages and associated actions.

6 Chapter 1 Introduction

© CryoSoft, 2021

CHAPTER 1

Introduction

What is HEATER
HEATER is a program for the analysis of transient and steady-state heat transfer by heat
conduction in three-dimensional solids. HEATER computes the evolution of an initial
distribution of temperature in solid materials subjected to volumetric heating/cooling, with
prescribed boundary conditions. It is based on a general 3-D finite element solver of Partial
Differential Equations (PDE). The use of finite elements allows optimal flexibility on the
modeled geometry, the heat sources and the boundary conditions considered.

A HEATER model
A HEATER model consists primarily of a mesh of solid finite elements in 3-D, assembled
according to the common criteria of element congruency. The elements implemented range
from 1-D line elements, which have only one significant dimension of heat flow, through 2-D
shells of triangular and quadrilateral shape, to 3-D solid tetrahedra, pyramids and hexagons.
The complete list of allowed elements and their properties is given below. A valid mesh can
contain any combination of the above elements. A schematic example of such a model is
shown in Fig. 1.

The transient heat conduction equation solved by the PDE routine is the following:

 (1)

where r is the material density, c its specific heat, k the thermal conductivity, is the
heating power per unit volume and, finally, p is an element property that represents either the
cross section transverse to the heat flow in the case of 1-D elements, or the thickness in the
plane normal to the heat flow in the case of 2-D elements. The element property is set to unity
in case of 3-D elements, and hence disappears from the above equation.

The volumetric source term, , is defined in volumes within the solid domain, as a function
of space and time if requested. The volumes, in turn, are defined as sets of elements, grouped
and indexed. This mechanism allows to define heat sources with different intensity,
distribution and waveforms across the solid domain analyzed.

For the solution of Eq. (1) requires a set of initial and boundary conditions. Initial conditions
are specified in the mesh at all nodes, i.e.

€

ρpc ∂T
∂t

−∇ pk∇T() = p ˙ & & & q

€

˙ " " " q

€

˙ " " " q

 Chapter 1 Introduction 7

© CryoSoft, 2021

 (2).

As for boundary conditions, HEATER allows to use different types of boundary conditions to
be used in the model, i.e.

• adiabatic (no heat leak outwards of an external surface)
• isothermal (constant temperature)
• external source (prescribed heat flux at an external surface)
• convective (heat exchange through a heat resistance to a constant temperature ambient)
• radiative (heat exchange through radiation to the outer surfaces) 1

The boundary conditions can be defined on different parts of the solid model, either at points,
lines or surfaces. Points are single nodes that are marked and indexed. Lines are ordered lists
of nodes, which typically (but not necessarily) lie on element edges. Surfaces are sets of single
faces that (must) match faces of 3-D elements. This mechanism allows to efficiently define
boundary conditions of different type, intensity and waveform in the domain analyzed.

Figure 1 Schematic representation of the HEATER model. The 3-D solid mesh is

composed of finite elements that can be of different type (e.g. hexahedra and
tetrahedral in the example above). Different heat sources are defined in volume
portions of the solid mesh. Boundary conditions are defined in specific points,
along lines, or on faces bounding the exterior domain (e.g. heat flux and
convection over a surface, and temperature along a line).

PDE Solution
The core solver of HEATER is a general-purpose PDE solver that we have developed in
house. The PDE solver applies a finite element algorithm on the user mesh for the
discretization of Eq. (1) in space. The PDE allows the use of Lagrangian finite elements with
linear or parabolic shape functions. The elements programmed in the present version of
HEATER are:

1 Radiative heat transfer is included in the solver capability, but not accessible to the end-user in the
present version.

€

T x,0() = T0 x()

8 Chapter 1 Introduction

© CryoSoft, 2021

• 1-D line elements (LINE), with 2 nodes and first order shape functions (linear), or 3

nodes and second order shape functions (parabolic);
• 2-D triangle elements (TRIA), with 3 nodes and first order shape functions (linear),

or 6 nodes and second order shape functions (parabolic)
• 2-D quadrilaterial elements (QUAD), with 4 nodes and first order shape functions

(linear), 8 nodes and second order shape functions (serendipity parabolic), or 9 nodes
and second order shape functions (lagrangian parabolic);

• 3-D tetrahedron elements (TETR), with 4 nodes and first order shape functions
(linear), or 10 nodes and second order shape functions (parabolic);

• 3-D pyramid elements (PYRA), with 6 nodes and first order shape functions (linear),
or 15 nodes and second order shape functions (parabolic);

• 3-D hexahedron elements (HEXA), with 8 nodes and first order shape functions
(linear), or 20 nodes and second order shape functions (parabolic).

The elements implemented are shown schematically in Fig. 2a (1-D elements), 2b (2-D
elements) and 2c (3-D elements)

Figure 2a Schematic representation of the 1-D finite element types implemented in
HEATER.

Figure 2b Schematic representation of the 2-D finite element types implemented in

HEATER.

 2 nodes, linear LINE 3 nodes, parabolic LINE

1

2
1

2 3

 3 nodes, linear TRIA 6 nodes, parabolic TRIA

1

3

2

1

6 5

3

2

4

1

4

2

3

1

8

5
3

2
4

7

6

4 nodes, linear QUAD 8 nodes, parabolic QUAD 9 nodes, parabolic QUAD

1

8

5
3

2
4

7

6 9

 Chapter 1 Introduction 9

© CryoSoft, 2021

Figure 2c Schematic representation of the 3-D finite element types implemented in

HEATER.

The time discretization is based on a multi-step finite difference algorithm of the Beam and
Warming family with at most third order accuracy. The time step is adapted automatically to
achieve a user-defined error, either using a predictive or an a-posteriori error estimate. The
user has control on the time integration accuracy through the choice of algorithm, while the
time adaptivity is controlled specifying the error estimator and the desired accuracy.

Results are produced at the times specified by the user, and output to binary storage for later
post-processing

 4 nodes, linear TETR 10 nodes, parabolic TETR

1

3

2

4

1

6 5

3

2

4

7
8

9

10

 6 nodes, linear PYRA 15 nodes, parabolic PYRA

1

3

2

5

6

4

1

6
5

3
2

4

7

8

9

10

15
14

13

12

11

 8 nodes, linear HEXA 20 nodes, parabolic HEXA

1
3

2

5

4
6

7

8

1
6

5

3

2 4

9

10

12

13

20
19

16
15

14

7 8

17

11

18

10 Chapter 1 Introduction

© CryoSoft, 2021

Post-processing
The results produced by HEATER are integrally stored and can be analysed to produce plots
and reports by the post-processor HEATERPOST. HEATERPOST responds to a user-friendly
command language and allows selection of results in time or space, plot and print-out of
results vs. time or space, parametric plot of results at given time or space coordinate. See the
case studies in Chapter 3 for examples of post-processing sessions, and Chapter 5 for the
details on the syntax of the command language.

User Flexibility and Further Extensions
HEATER has several features that allow customizing its modeling capability beyond the
allowable parameterization of the configuration that can be achieved using the standard input
file. Specifically, the user can:

• modify the dependence of geometry, waveforms and material properties on space, time

and solution variables, beyond the standard models implemented, using User Routines
that can be statically linked to the program segments through a compilation step that
produces a customized version of the code. See Chapter 6 for documentation on User
Routines;

• change parametrically the behavior of the User Routines by making use of Variables that
are read by the code input parser, and can be accessed at run-time using the Variables
library. See Chapter 4 for details on the syntax to be adopted for the Variables input
block;

• couple to other programs of the CryoSoft suite through the multi-tasking code manager
SUPERMAGNET. This allows to augment the physics span of the simulation domain to
include thermal networks (e.g. heat exchange in a coil), hydraulic networks (e.g.
proximity cryogenics) or electrical circuits (e.g. magnet protection).

 Chapter 2 Installing and Running HEATER 11

© CryoSoft, 2021

CHAPTER 2

Installing and Running HEATER

Platforms
HEATER and its post-processor HEATERPOST are provided as a package developed for
running under UNIX or UNIX-like (e.g. Linux) operating system. The reason is that they
require computer intensive calculations, orderly file management and little interactivity. At the
time when this manual is written, the platform where HEATER is developed is

§ Macintosh running MacOS-X (10.10.5 and higher) under XQuartz,(2.7.8) gcc (5.1) with

gfortran.

At different time of the development and production, the code has been installed and tested on
the following platforms:

• Mac-OS X (10.2 and higher) operating system;
• GNU/Linux operating system (most distributions).
• INTEL PC’s running RedHat Linux OS;
• IBM-RISC workstations running the AIX-V4 operating system and later;
• SUN-SPARC workstation running the Solaris OS operating system;
• DEC-ALPHA workstation running the OSF-1 operating system;
• HP workstations running HP-UX OS;
• Windows-2000 and Windows-XP operating system, with an installed CYGWIN

environment (the reference version tested is CYGWIN 1.5.24-2).

Although UNIX obeys strict standards, the architecture of the operating and file system may
vary from vendor to vendor. It is therefore possible that porting may require minor adaption of
code and libraries. Contact us for advice.

In the following sections we assume here that you are running under a UNIX or UNIX-like
operating system, and that you are familiar with UNIX commands, directory and file handling.
Contact your system administrator for matters regarding UNIX commands and file system.

Although versions of HEATER and HEATERPOST have been ported to PC’s running the
Windows OS, at the time when this manual is written this is not a platform directly supported
and part of the instructions provided below (i.e. how to run and post-process a case) may not
be directly applicable.

12 Chapter 2 Installing and Running HEATER

© CryoSoft, 2021

Installation
HEATER is one of the CryoSoft family of programs. You will have therefore received the
CryoSoft package containing HEATER either as a tar-ball or in pre-installed form. Verify in
the CryoSoft installation manual [1] the procedure to be followed for the proper installation of
the complete package. The executable codes, heater and heaterpost are in the directory
~/CryoSoft/bin/. You will find the example inputs and post-processing command files in
the directory ~/CryoSoft/xample/heater/code_x.x/ (the symbol ~/ stands for your
home directory, x.x for the version you received)

How to run HEATER
Start-up To run HEATER you will need to launch the executable code. In the standard
installation on a UNIX system described above HEATER is launched typing the command:

~/CryoSoft/bin/heater [-i InputFile] [-v/-s] [-h]

Note that command line options are not mandatory (enclosed in brackets, following UNIX
documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the run
-v, --verbose print simulation progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the input file name. HEATER reads the problem definition from an ASCII file
whose structure and content are described in detail in Chapter 4 of this manual. Examples of
input files are given in Chapter 3. At this time you will enter the name of a file containing the
input for the case to be run (e.g. file.input):

HEATER Enter input file name
file.input

HEATER then parses the input file, performs checks on consistency, configures the case and
starts the simulation. A simulation starts from an initial condition at the starting time and
advances in time using the time step selected. At each time step HEATER emits a message
with the real time reached in the simulation (in s) the time step taken (in s) and the ratio of real
time to the total time to be simulated:

....
Time : 4.949E-03 Step : 3.235E-05 Time/Tend : 0.98987
Time : 4.998E-03 Step : 4.852E-05 Time/Tend : 0.99957
....

until the end of the simulation. When the end time of the simulation is reached HEATER
prints a message reporting the total CPU time used in the run:

Total Cpu [s]: 244.059998

Each run of HEATER produces:

§ a binary storage file containing all results stored at user’s specified times. The user can

control the name of this file, the default file name is heater.store;

 Chapter 2 Installing and Running HEATER 13

© CryoSoft, 2021

§ a log file containing a report on the case run, run statistics and error messages. The user
can control the name of this file; the default file name is heater.log.

Restart After a succesfull completion of a run it is possible to restart the simulation at
the last time stored in the binary storage file and proceed with the time integration. A restart
procedure is triggered if the input file read by HEATER contains the Restart command (see
Chapter 3 and 4 for details). Assuming that this is the case for the input file file.restart,
and the program is launched with no command line options, a restart in our example is
obtained launching again HEATER:

~/CryoSoft/bin/heater
HEATER Enter input file name
file.restart

in which case HEATER reads the binary storage file and starts the simulation at the last time
stored:

Time : 5.000E-03 Step : 1.000E-05 Time/Tend : 0.00000

Until the final time specified in the input file file.restart is reached.

Note You can use an arbitrary sequence of restarts to simulate different time spans with
varying resolution and accuracy. There is no limit to the number of restarts that can be
executed for a single simulation.

We show below schematically the flow-diagram of a HEATER run:

as compared to the flow-diagram of a HEATER restart reported below. Data is read at the
beginning of the restart from the binary storage file, and is appended to the same file while the
simulation proceeds:

input file

heater

run log file
(heater.log)

binary storage
file (heater.store)

binary storage file, containing
all results stored at user’s
specified times.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

14 Chapter 2 Installing and Running HEATER

© CryoSoft, 2021

How to run HEATERPOST
To produce any detailed result, both in the form of printed tables or plotted curves in
PostScript® format, it is necessary to run the HEATER post-processor HEATERPOST.
HEATERPOST is launched under UNIX with the command:

~/CryoSoft/bin/heaterpost [-i InputFile] [-v/-s] [-h]

Also in this case command line options are not mandatory (enclosed in brackets, following
UNIX documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the post-processor
-v, --verbose print post-processing progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the name of an ASCII file containing the series of commands that control the
generation of the printouts and plots. The structure and content of this file is described in detail
in Chapter 5 of this manual. Examples of command files are given in Chapter 3. At this time
you will enter the name of the file containing the commands (e.g. file.post):

Enter command file name
file.post

HEATERPOST then parses, echoes and interprets the commands from the command file. The
commands cause retrieval of the results of a run from the binary storage file generated by
HEATER (by default from the file heater.store). As a result HEATERPOST generates:

§ a file containing the formatted printouts of the results (by default heaterpost.out),

and
§ a file containing the plots requested in PostScript® format (by default heaterpost.ps).

input file

heater

run log file
(heater.log)

binary storage
file (heater.store)

binary storage file, read-in at
the beginning and used for
further storage of results.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

 Chapter 2 Installing and Running HEATER 15

© CryoSoft, 2021

Customization
The method described earlier provides the standard manner to run a HEATER simulation, and
post-process the results. HEATER, however, as most other CryoSoft codes, gives the
possibility to customize the physical models by using User Routines, as described in Chapter 6
(see later for details). The user has the possibility to adapt and extend the physics contained in
the standard solver, at the additional complexity of writing FORTRAN routines that must obey
to the language syntax, and parameter call specification. The customized User Routines need
to be compiled and linked the program segments to generate the customized version of the
code. Template for the User Routines are given in the directory
~/CryoSoft/usr/heater/code_x.x. Compilation and link-editing can be done using the
standard installation script CSmake, but we discourage users to modify the standard codes
provided, as this will replace the reference installation. As a safer alternative, we strongly
recommend copying the User Routines templates in a work directory, and generating in this
location the customized version of the code by using an adapted compilation script, or a
makefile. Consult the examples below, and contact us for guidelines on how to set-up one such
customized structure.

command
file

heaterpost

binary storage
file (heater.store)

PostScript plot file
(heaterpost.ps)

printout file
(heaterpost.out)

Postscript® file, containing
plots as required by the user.

Formatted print-outs.

16 Chapter 3 Case Studies

© CryoSoft, 2021

CHAPTER 3

Case Studies

As discussed in Chapter 2, HEATER requires an input file with all definitions necessary to
specify the assembly of components in the model structure, the characteristics of each
component, the initial conditions, and the solution controls. We refer to this file as the input
file. The input file is needed both for a start-up run and a restart run.

Similarly, post-processing of HEATER results using the post-processor HEATERPOST
requires an input file with a sequence of commands that select results, print and plot them. We
refer to this file as the post-processing command file.

In this Chapter we give examples of input files and post-processing command files to deal
with practical modeling situations. The case studies given here are intended to guide the user
from the formulation of a problem to its modeling, the creation of the input file for the case,
running the case, and finally the generation of the results. For obvious reasons, they are of
limited complexity and are intended as examples to illustrate minimum capability of the
program. More complex situations can obviously be modeled, taking the following case
studies as starting points and evolving or combining them. Refer to Chapter 2 on how to run
the examples described here with HEATER and how to generate results and plots with
HEATERPOST.

Note All input files and post-processing command files for the case studies discussed in this
manual are provided with the standard installation. They are located in the directory:

~/CryoSoft/xample/heater/code_x.x

where x.x stands for the version you received. In the following sections we use the Courier
font to reproduce the content of those input files, while text in italic indicates our comments to
the input.

 Chapter 3 Case Studies 17

© CryoSoft, 2021

Heat flow in a composite bar
Physical definition of the problem This test shows a calculation of the transient heat
flow along a composite bar, made of two equal parts of copper (lower end) and stainless steel
(upper end). The total length of the bar is 10 cm, and the cross section is 1 cm2 The steel
portion is subjected to a uniform volume heating source of 10 kW/m2, and has an adiabatic
surface. The lower surface of the copper part is kept at a fixed temperature of 4.2 K The
solution is computed from the initial state of uniform temperature, i.e. 4.2 K in the bar, to
steady state conditions.

The picture below shows schematically the geometry of the problem, with the main
dimensions. Material properties are non-linear with temperature, following the standard
definition ion the CryoSoft material properties database [2].

The solution of this problem requiires the definition of a mesh, containing the geometry, initial
and boundary condition. For this problem it is possible the use of several type of elements. In
this case we will show how to solve the same problem using 1-D LINE elements. Similar input
for 2-D QUAD elements and 3-D HEXA elements can be found among the sample files
provided in the standard installation. To ease post-processing, we will define a LINE on one of
the sides of the bar, which will allow easy plotting of the results.

Input file for the run with LINE elements The step-by-step definition of the input
file for the HEATER run corresponding to this problem is shown below.

bar_line.input

The General block contains the name of the model, used as a title of the problem

Begin General

 Name 'Composite Copper-Steel bar - LINE elements'

End

The mesh (nodes and elements) is defined in the Mesh block

Begin Mesh

stainless
steel

copper

T = 4.2 K

q’’’ = 10 kW/m3

0.05

0.05

0.01

0.01

18 Chapter 3 Case Studies

© CryoSoft, 2021

Nodes 101 ; number of nodes in the mesh. The definition of the nodes follows
 index x y z
Node 1 0 0 0
Node 2 0.001 0 0
Node 3 0.002 0 0
Node 4 0.003 0 0
Node 5 0.004 0 0

..... (lines omitted)

Node 95 0.094 0 0
Node 96 0.095 0 0
Node 97 0.096 0 0
Node 98 0.097 0 0
Node 99 0.098 0 0
Node 100 0.099 0 0
Node 101 0.1 0 0

Elements 100 ; number of elements in the mesh. The definition of the elements follows

 index type nodes order material properties n1 n2
Element 1 LINE 2 1 Cu Area 1.0e-4 1 2
Element 2 LINE 2 1 Cu Area 1.0e-4 2 3
Element 3 LINE 2 1 Cu Area 1.0e-4 3 4
Element 4 LINE 2 1 Cu Area 1.0e-4 4 5
Element 5 LINE 2 1 Cu Area 1.0e-4 5 6

..... (lines omitted)

Element 95 LINE 2 1 AISI-304 Area 1.0e-4 95 96
Element 96 LINE 2 1 AISI-304 Area 1.0e-4 96 97
Element 97 LINE 2 1 AISI-304 Area 1.0e-4 97 98
Element 98 LINE 2 1 AISI-304 Area 1.0e-4 98 99
Element 99 LINE 2 1 AISI-304 Area 1.0e-4 99 100
Element 100 LINE 2 1 AISI-304 Area 1.0e-4 100 101

End

Begin Sets

Points can be used to define boundary conditions in the mesh. The two points below
correspond to the lowest (point 1) and highest (point 2) in the mesh (see nodal coordinates)
 Point 1 Node 1
 Point 2 Node 101

The line below is defined along the bar, and used later for post-processing the results
 Line 1 Nodes 101 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100
 101

We define a volume as an arbitrary assembly of elements. In this case the elements are all
those of AISI304_Steel (see mesh befinition). The volume will be used later to define a heating
source
 Volume 1 Elements 50 51 52 53 54 55 56 57 58 59 60

 Chapter 3 Case Studies 19

© CryoSoft, 2021

 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100

End

Begin Initial

Initial conditions are of constant temperature, 4.2 K, throughout the mesh
 InitialCondition Temperature constant 4.2

End

Begin Boundary

Define boundary conditions, of prescribed temperature of 4.2 K at the first point, located at
the bottom of the mesh...
 Point 1 Temperature Constant 4.2

... and adiabatic at the second point, top of the mesh
 Point 2 Adiabatic

End

Begin Source

All elements belonging to the volume defined earlier have a constant volume source of 10
kW/m**3
 Volume 1 constant q0 10000.0

End

Begin Simulation

The simulation starts at t=0 s and proceeds till t=500 s, with a storage every 1 s
 StartTime 0.0
 EndTime 500.0
 OutputStep 1.0

The method selected for time integration is an implicit Euler-Backward (1st order in time)
 TimeMethod EulerBackward

The time step is automatically adapted in the range 10**-3 s to 1 s to achieve a step-by-step
tolerance of 0.03. No time step iteration is performed
 MinimumStep 1.0e-3
 MaximumStep 1.0
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl none
 Tolerance 1.0e-2

Results are stored in the file bar.store for later post-processing
 LogFile bar.log
 StorageFile bar.store

End

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs using the post-processor HEATERPOST.

20 Chapter 3 Case Studies

© CryoSoft, 2021

bar.post

Read data from the binary storage file
StorageFile bar.store

Produce output and PostScript files with the names defined below
OutputFile bar.output
PostScriptFile bar.ps

Select specific times in the evolution
select time 0.0 10.0 20.0 50.0 100.0 200.0 500.0

Plot the temperature profile along the line defined in input
plot temperature line 1

Select specific locations in space
select X 0.0 0.025 0.05 0.075 0.1

Plot the evolution of the temperature at the selected locations along the line defined in input
plot temperature line 1

Plot the temperature evolution at point 2 (adiabatic boundary)
plot temperature point 2

Plot the heat flowing at point 1 (prescribed temperature)
plot heat point 1

Select the final time of the evolution
select time 500.0

Print the complete solution in the mesh, producing an output containing the node index, the
nodal coordinates (x,y,z), the nodal temperature and the net heat flow at the node
print X Y Z temperature heat mesh 1
print temperature line 1

stop

Results One PostScript file, bar.ps, and one ASCII output file, bar.output, are
generated running the post-processor HEATERPOST with the commands described above in
the file bar.post. The first file contains the plots requested, shown below.

 Chapter 3 Case Studies 21

© CryoSoft, 2021

The plots are in the order: the temperature profiles along the line defined (that spans the whole
bar), the evolution of temperature at selected locations along the same line, the temperature of
the adiabatic boundary, and the heat flow at the constant temperature boundary. Note how the
temperature gradient develops in the upper part of the bar, made of stainless steel, heated and
with much smaller thermal conductivity than copper. The temperature at the adiabatic end
reaches approximately 18 K, while the total heat flowing at the constant temperature node is
0.05 W. This corresponds to the total heat entering the bar.

The second file, bar.output, contains the output requested, to be used for inspecting detailed
numerical data or further post-processing. In our case the output requested are the nodal
coordinates, the temperature and heat flow at each node at the end of the simulation.

bar.output

The following is the output of the results. The requested output are the coordinates,
temperature and heat flow at all nodes. The header of the output file, containing an echo of the
input, has been removed.

 HEATER Version 2.0
 file created at 31/01/2010 22:23:55
 Storage file: bar.store

 Model
 =====
 Name........................... Composite Copper-Steel bar - LINE elements

 Mesh
 ====
 Nodes.......................... 101
 Node X Y Z T
 1 0.0000E+00 0.0000E+00 0.0000E+00 0.4200E+01
 2 0.1000E-02 0.0000E+00 0.0000E+00 0.4201E+01
 3 0.2000E-02 0.0000E+00 0.0000E+00 0.4202E+01

..... (lines omitted)

22 Chapter 3 Case Studies

© CryoSoft, 2021

Simulation
 ==========
 TimeMethod..................... EulerBackward
 Tolerance...................... 3.000E-02
 ErrorEstimate.................. change
 ErrorControl................... none
 StepEstimate................... smooth
 Start Time [s]................. 0.000E+00
 End Time [s]................... 5.000E+02
 Minimum Step [s]............... 1.000E-03
 Maximum Step [s]............... 1.000E+01
 Output Step [s]................ 1.000E+00

 mesh 1 mesh 1 mesh 1 mesh 1 mesh 1
X X Y Z Temperature Heat
[m] [m] [m] [m] [K] [W]
 5.00E+02 s 5.00E+02 s 5.00E+02 s 5.00E+02 s 5.00E+02 s
--
 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.2000E+00 5.0000E-02
 2.0000E+00 1.0000E-03 0.0000E+00 0.0000E+00 4.2008E+00 0.0000E+00
 3.0000E+00 2.0000E-03 0.0000E+00 0.0000E+00 4.2015E+00 0.0000E+00
 4.0000E+00 3.0000E-03 0.0000E+00 0.0000E+00 4.2023E+00 0.0000E+00

..... (lines omitted)

 9.7000E+01 9.6000E-02 0.0000E+00 0.0000E+00 1.7933E+01 0.0000E+00
 9.8000E+01 9.7000E-02 0.0000E+00 0.0000E+00 1.7954E+01 0.0000E+00
 9.9000E+01 9.8000E-02 0.0000E+00 0.0000E+00 1.7968E+01 0.0000E+00
 1.0000E+02 9.9000E-02 0.0000E+00 0.0000E+00 1.7977E+01 0.0000E+00
 1.0100E+02 1.0000E-01 0.0000E+00 0.0000E+00 1.7980E+01 0.0000E+00

 Chapter 4 Input Reference 23

© CryoSoft, 2021

CHAPTER 4

Input Reference

Structure and syntax
The input file is read by the input interpreter that parses and analyzes the syntax and the
grammar of the various entries. In general the file contains a series of blocks that are
structured as follows:

 Begin BlockName
 VariableName value(s)
 VariableName value(s)
 ………………..

 VariableName value(s)
 End

where BlockName is a keyword indicating the block type, and must be one of the following
valid choices:

 General define the general properties of the model
 Mesh define the mesh of nodes, solid elements and their faces
 Sets define sets of geometric entities (points, lines, surfaces, volumes)
 Initial define the initial conditions of the simulation
 Boundary define the boundary conditions of the simulation
 Source define the internal heat sources
 Simulation define the simulation parameters
 Variables define user variables for use in routines and functions

The content of a block is a series of assignations of a set of values to a generic variable
VariableName. VariableName must be chosen among the set of keywords described in the
following sections.

The structure and content of the input file must comply with the following rules and
conventions:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;

24 Chapter 4 Input Reference

© CryoSoft, 2021

§ a character ‘;’ in any position of the command line indicates that the remainder of the line
must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored;

§ the variables in the block are read sequentially and are checked at read-in time. For this
reason the order of precedence of the variables must be respected whenever a value is
needed to proceed with the interpretation of a block. The same BlockName can appear
more than once in a file;

§ repeated variable assignation overrides previous values and is not checked at read-in time;
§ the blocks in the file are read sequentially and are checked at read-in time. The same

BlockName can appear more than once in a file

Parsing of the input file is finished as soon as an end-of-file is found. At this point the
execution control is passed to the main program that executes checks on data consistency,
configures the run and launches the simulation. For sample input files see Chapter 3.

Input variables reference
The following table contains, in alphabetical order, the keywords defining the input variables,
their physical dimensions and meanings for each block type. Predefined possible values are
reported in Courier. The default value is indicated in the table and underlined.

Note In the tables below we use the following convention for the type of variables:

 C character (a string delimited by blanks, tabs or apices)
 R real (a number in floating point or engineering notation)
 I integer (an integer number)

Typing must be respect in the input file to avoid errors or mis-interpretation by the parser.

General
The general block describes general quantities that apply to the model being prepared. A title
can be defined to identify the case. The title appears in plots and print-outs generated by
HEATERPOST.

Variable Type Units Meaning

ModelName C (-) Model name, used for labeling plots and print-outs.

Mesh
The mesh block contains the definition of the mesh for the case analysed, and more
specifically, the number of nodes and nodal coordinates, the number of elements and element
connectivity, the number of element faces and face connectivity. The mesh block is structured
such that it can be easily generated from a general-purpose mesh generator, or obtained
formatting the output of such a program.

Variable Type Units Meaning

Elements I (-) Number of elements in the mesh. Limited to the

maximum memory allocation MaxElements.

List:
Element E Type Nodes Order Material Property n1 ... nn

 Chapter 4 Input Reference 25

© CryoSoft, 2021

Composed of:
E I (-) Element index, with allowable values between 1 and

Elements.
Type C (-) Element type, with possible values:

line 1-D line;
tria 2-D triangle;
quad 2-D quadrilaterial;
tetr 3-D tetrahedron;
pyra 3-D pyramid;
hexa 3-D hexagon.

Nodes I (-) Number of nodes in the element, see Chapter 1 for the
nodes allowed for a given element type.

Order I (-) Order of shape functions, see Chapter 1 for the nodes
allowed for a given element type.

Material C (-) Element material, either selected from the list of
standard materials supported by the SOLIDS package
of CryoSoft (refer to the relative manual) In the case of
a user’s specified name the material properties and
types are computed by the functions
UserConductivity, UserDensity,
UserSpecificHeat, that must be provided by the
user (see Chapter 6).

Property C (?) Property associated with the element, giving either the
transverse cross section of a 1-D element, or the
thickness of a 2-D element:
Area property in (m2);
Thickness property in (m).

n1 ... nn I (-) connectivity array, reporting the number of the nodes at
the vertices of the element. The nodes must be defined,
and the numbering must be given in the positive
direction of the parent element.

Faces I (-) Number of faces in the mesh. Faces are only necessary
if they need to be composed in a set forming a surface
(see later the description in the Block Sets). Each face
defined must correspond to an element face. Limited to
the maximum memory allocation MaxFaces.

List:
Face F Type Nodes Order n1 ... nn

Composed of:
Face I (-) Face index, with allowable values between 1 and

Faces.
Type I (-) Face type, with possible values:

tria 2-D triangle;
quad 2-D quadrilaterial.

Nodes I (-) Number of nodes in the face, see Chapter 1 for the
nodes allowed for a given face element type.

Order I (-) Order of shape functions, see Chapter 1 for the nodes
allowed for a given face element type.

n1 ... nn I (-) Connectivity array, reporting the number of the nodes
at the vertices of the face. The nodes must be defined,
and the numbering must be given in the positive
direction of the parent face element.

26 Chapter 4 Input Reference

© CryoSoft, 2021

Nodes I (-) Number of nodes in the mesh. Limited to the maximum

memory allocation MaxNodes.

List:
Node N X Y Z

Composed of:
N I (-) node index, with allowable values between 1 and

Nodes.
X Y Z I (-) nodal coordinates.

Sets
The sets block describes groups of mesh objects that form either single points, lines of nodes,
surface of faces, or volumes of elements. Sets are used to imposed boundary conditions, and to
assign volume sources.

Variable Type Units Meaning

List:
Line L Nodes N n1nn

Composed of:
L I (-) Line index. Limited to the maximum memory

allocation MaxLines.
Nodes Keyword for the nodes list.
N I (-) Number of nodes along the line, defined by the

following connectivity array. Limited to the maximum
memory allocation MaxNodesPerLine.

n1 ... nn I (-) Connectivity array, reporting the index of the nodes
forming the line. The nodes must be defined. The line
is oriented from the first node to the last one.

List:
Point P Node N

Composed of:
P I (-) Point index. Limited to the maximum memory

allocation MaxPoints.
Node Keyword for the node index.
N I (-) Index of the node corresponding to the point.

List:
Surface S Faces F f1fn

Composed of:
S I (-) Surface index. Limited to the maximum memory

allocation MaxSurfaces.
Faces Keyword for the face list.
F I (-) Number of faces forming the surface, defined by the

following connectivity array. Limited to the maximum
memory allocation MaxFacesPerSurface.

f1 ... fn I (-) Connectivity array, reporting the index of the faces
forming the surface. The faces must be defined.

 Chapter 4 Input Reference 27

© CryoSoft, 2021

List:
Volume V Elements E e1en

Composed of:
V I (-) Volume index. Limited to the maximum memory

allocation MaxVolumes.
Elements Keyword for the element list.
E I (-) Number of elements forming the volume, defined by

the following connectivity array. Limited to the
maximum memory allocation
MaxElementsPerVolume.

e1 ... en I (-) Connectivity array, reporting the index of the elements
forming the volume. The elements must be defined.

Initial
The initial block is used to define the initial conditions of the simulation.

Variable Type Units Meaning

List:
InitialCondition ICvariable ICtype ICdata

Composed of:
ICvariable C (-) keyword indicating the variable to which the initial

condition applies. Possible values:
temperature the initial condition applies to the

temperature of all nodes.
ICtype C (-) keyword defining the type of initial condition. Possible

values:
constant the initial condition is constant

throughout the domain.
user user defined through the function

UserTInitial (see Chapter 6).
ICdata R (?) value to be used as initial condition, only parsed if

ICtype is constant, and depending on ICvariable:
Temperature in (K).

Boundary
The boundary block is used to define the boundary conditions of the simulation. Boundary
conditions can be defined in a similar manner at points, lines and surfaces, using the syntax
detailed below. The only exception to this general rule is the use of external boundary
conditions, used in the case of points and lines to couple HEATER to other codes of the
SUPERMAGNET suite. This is so far not allowed for surfaces. Boundary conditions have the
same physical units, independent on the type of geometric support. For this reason in case of
heat flux or heat convection boundary condition at a point, a reference surface needs to be
provided. In the case of a heat flux or heat convection boundary condition at a line, a reference
perimeter is requested. This is obviously not necessary in case the boundary condition is of
prescribed temperature.

Variable Type Units Meaning

List:
Set S BCvariable BCtype BCdata

28 Chapter 4 Input Reference

© CryoSoft, 2021

Composed of:
Set C (-) keyword indicating the set to which the boundary

condition applies. Possible values:
line the boundary condition applies to a line

of nodes.
point the boundary condition applies to a

nodal point.
surface the boundary condition applies to a

surface of element faces.
S I (-) index of the set to which the boundary condition

applies. Must be a defined set.
BCvariable C (-) keyword indicating the variable assigned at the

boundary. Possible values:
adiabatic the boundary condition is of zero heat

flux.
convection the boundary condition is of heat

convection to a surface at a given
temperature.

heat the boundary condition is of prescribed
heat inflow/outflow.

temperature the boundary condition is of prescribed
temperature.

BCtype C (-) keyword indicating the type of boundary condition,
depending on the value of BCvariable. Possible
values for convection, temperature, and heat:
constant the boundary condition is constant

throughout the domain.
user user defined through the functions

UserBoundaryT, UserBoundaryQ, or
UserBoundaryTh, depending on the
variable at the boundary BCvariable
(see Chapter 6).

external the boundary condition is obtained
from one of the other CryoSoft
simulators, through explicit coupling at
each time step. This coupling requires
execution under the SUPERMAGNET
environment, and leads to an error in
case it is used in stand-alone mode. See
the SUPERMAGNET manual for more
details. Only allowed for points and
lines, not allowed for surfaces.

BCdata set of keywords and data defined depending on the
boundary variable BCvariable and the boundary type
BCtype (see above), used to set numerical values for
the boundary conditions. The syntax depends on the
combination of Set, BCvariable and BCtype. The
possible combinations of values are reported in the
tables below. Note that the meaning of the quantities
and keywords in the set of entries BCData is the
following:
h heat transfer coefficient (W/m2K)
T temperature in (K)
q heat flux in (W/m2)
Area keyword for boundary surface

 Chapter 4 Input Reference 29

© CryoSoft, 2021

A boundary surface in (m2)
Perimeter keyword for boundary perimeter
A boundary perimeter in (m)

Set BCvariable BCtype BCData

point

convection
constant

h T Area A
heat q Area A
temperature T
convection

user
h T Area A

heat q Area A
temperature T
convection

external

heat
temperature

Set BCvariable BCtype BCData

line

convection
constant

h T Perimeter P
heat q Perimeter P
temperature T
convection

user
h T Perimeter P

heat q Perimeter P
temperature T
convection

external

heat
temperature

Set BCvariable BCtype BCData

surface

convection
constant

h T
heat q
temperature T
convection

user
h T

heat q
temperature T
convection

external

heat
temperature

Source
The source block is used to define the volumetric heat source in the elements. Volumetric heat
sources are given in W/m3, and are defined over sets of elements grouped in a given volume,
using the syntax detailed below.

Variable Type Units Meaning

List:
Volume V Stype Sdata

Composed of:
Volume C (-) keyword indicating that the heat source is in a volume.
V I (-) index of the volume to which the heat source applies.

Must be a defined volume.
Stype C (-) keyword indicating the type of heat source waveform

in time. Possible values:
constant constant heating power density in the

volume, equal to q.

30 Chapter 4 Input Reference

© CryoSoft, 2021

exponential the heating power density is defined as
exponentially decreasing from an initial
value, equal to q, with a time constant
Tauq.

linear the heating power density is defined as
linearly decreasing from an initial
value, equal to q, to zero over a time
Tauq, and remain zero after this time.

none no heating (default).
user user defined heating power density

through the function userQSource
(see Chapter 6).

window heating power density is defined as
constant, equal to q, in an interval 0 < t
< Tauq and zero outside this interval.

Sdata set of keywords and data defined depending on the type
of heat source Stype (see above), used to set numerical
values for the volumetric heat density. The syntax
depends on the selected type Stype. The possible
combinations of values are reported in the tables below.
Note that the meaning of the quantities and keywords
in the set of entries BCData is the following:
q heating power density in (W/m3)
Q0 keyword for heating power density
Tauq keyword for characteristic time
tq heating characteristic time in (s)

Stype Sdata
constant Q0 q
exponential

Q0 q Tauq tq linear
window
user

Simulation
The simulation block describes the numerical parameters for time integration, logging and
storage of results.

Variable Type Units Meaning

EndTime R (s) End time to be reached with the simulation.

ErrorControl C (-) Switch for iterative error control during time

integration. Possible values:
none the time step is not iterated.
on at each time step a check is performed to verify

that the integration error is below the specified
Tolerance. If this is not the case the time step
is changed and the integration is tried again,
iterating until the tolerance error is reached
(default). ErrorControl on requires that an
ErrorEstimate method is provided (change
or halving) and that a StepEstimate is
allowed (smooth or power). The iteration can
significantly increase CPU time.

 Chapter 4 Input Reference 31

© CryoSoft, 2021

ErrorEstimate C (-) Flag for the method used to estimate the time

integration error control during a time step. Possible
values:
none no error estimate is provided
change the error is estimated based on the change of

the system solution during a time step
(default).

halving the error is estimated comparing the result
obtained with a time step with the result
obtained using two subsequent time steps of
halved magnitude. This method can
significantly increase CPU time.

H0Extrapolate C (-) Switch for higher-order extrapolation of the results of a

time step. The order of accuracy of the time stepping
method chosen is used to extrapolate the solution to a
higher order. Possible values:
none no higher-order extrapolation applied (default).
on at each time step the solution is extrapolated

using the result of a time step and of two
subsequent time steps of halved magnitude. The
higher-order extrapolation can significantly
increase CPU time and in pathological situations
it leads to numerical instabilities.

LogFile C (-) Log file name. This file contains the echo of the input

and the log of the run, including error messages. If not
given the default log file name is heater.log.

MaximumStep R (s) Maximum time step allowed during adaptive time

integration.

MinimumStep R (s) Minimum time step allowed during adaptive time

integration.

OutputStep R (s) Time step for storage of the results. The results are

written to the output binary file every OutputStep
seconds of simulation.

Restart Flag triggering a restart. If this key is present in this

block HEATER reads the content of the specified
StorageFile until the last stored time is found. The
simulation begins then from this time. Storage of
results continues on StorageFile (appended). All
input will be ignored, except for EndTime,
ErrorControl, ErrorEstimate, LogFile,
MaximumStep, MinimumStep, OutputStep,
StepEstimate, TimeMethod and Tolerance.

StartTime R (s) Start time for the begin of the simulation.

StepEstimate I (-) Flag for the method used to estimate the time step

based on the time integration error and the requested
Tolerance. Possible values:

32 Chapter 4 Input Reference

© CryoSoft, 2021

none no estimate of the time step is performed. The
time step taken is equal to the MinimumStep
specified.

smooth the time step is increased/decreased smoothly
by means of fixed percentage change (default).
A StepEstimate smooth requires that an
ErrorEstimate method is provided
(change or halving).

power the time step is increased/decreased scaling
the ratio of the time integration error to the
required Tolerance using the order of
accuracy of the time integration method. A
StepEstimate power requires that an
ErrorEstimate method is provided
(change or halving).

StorageFile C (-) Binary storage file name. This file contains the results

stored at the user’s specified times, and is used for
restarts or post-processing. If not given the default file
name is heater.store.

TimeMethod I (-) Flag for the selection of the time integration method.

Possible values:
EulerBackward Euler-backward, or full

implicit, or q=1 method. 1st
order accurate (default).

Galerkin Galerkin, or q=2/3 method, 1st
order accurate.

CrankNicolson Crank-Nicolson, or
trapezoidal, or q=1/2 method,
2nd order accurate.

BackwardDifference Two-stage backward
differences method, 2nd order
accurate.

ImplicitDifference Two-stage, implicit third order
differencing method, 3rd order
accurate (mildly unstable).

AdamsMoulton Adams-Moulton method, 3rd
order accurate (mildly
unstable)

Milne Milne method, 4th order
accurate (strongly unstable).

Tolerance R (-) Relative error to be achieved at each time step during

time integration, used to control the time step.

Variables
The variables block is used to define user variables, with given name and type, stored
internally and shared among routines and procedures. The value of these user-defined
variables is accessible through a simple calling protocol in FORTRAN, which greatly
simplifies the preparation and parameterization of User Routines. Variables can be seen as an
extension of the standard input parameters, i.e. a facility for easy customization.

Variables are defined with the following syntax:

 Chapter 4 Input Reference 33

© CryoSoft, 2021

 VariableType VariableName Value

where VariableType is one of the types defined in the table below, VariableName is the name
assigned to the variable, and used later to retrieve its value, and Value is the value, of the
appropriate type, assigned to the variable.

Note We report below a short form of the variables syntax. For further reference, and for
explanations on how to access variables from customized User Routines, consult the Variables
manual [3]

VariableType Meaning

Character VariableName is a string, whose Value is read as a text,

delimited by apexes if the text contains a blank (not
recommended)

Integer VariableName is an integer, whose Value is read
according to FORTAN READ conventions

Real VariableName is a real, whose Value is read according
to FORTAN READ conventions (floating point or
scientific notation)

The variables defined in the variables block are accessed from the User Routines (and
elsewhere in subroutines and functions linked at run time) through calls to the function
getXVariable(VariableName,Value), where X stands for the variable type (i.e. C, I or R)
as described in [3].

34 Chapter 5 Post-processing Language Reference

© CryoSoft, 2021

CHAPTER 5

Post-processing Language Reference

Structure and syntax
The post-processing command file is read by the post-processor interpreter of HEATERPOST.
This parses and analyzes the syntax and the grammar of the various entries. In general the file
contains a series of commands that are executed in sequence during a post-processing session.

The structure and content of the post-processing command file is similar to that of the input
file already described in Chapter 4. In particular the following rules and conventions apply:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;
§ a character ‘;’ in any position of the command line indicates that the remainder of the line

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored.

Parsing of the input file is finished as soon as an end-of-file or the stop command are found.
At this point the post-processor completes all pending print-outs and plots and closes the
session. For sample input files see Chapter 3.

Commands reference
Post-processing commands In this section we report the list of the postprocessing
commands and their meaning in alphabetical order. The keywords identifying commands and
options are given in Courier. Parameters and values for the commands are given in italic.

Note The selection of the items to plot or to print is done identifying first the target, i.e.
quantity to be plotted/printed, and then the support, i.e. the component over which the quantity
is defined. Each support must be followed by its identification number, coherent with the input
simulation file (e.g. Line 2 for the second line component defined in the input for the
simulation with HEATER).

NewPage

Force a new plot page to be generated

 Chapter 5 Post-processing Language Reference 35

© CryoSoft, 2021

OutputFile name

Set the name of the file for printed output (generated with the command Print). The
default file name for printed output is heaterpost.out. The file name can be
changed only before the first printed output is generated. The command is ignored if a
printed output has already been generated on another file or on the default file.

Plot target support1 support2 … supportn

Generate n plot frames of target for the specified support(s) as a function of time or
space according to the selection done (see the Select command).
Example: plot temperature mesh 1

Plot target1 support1 vs target2 support2

Plot target1 of support1 versus target2 of support2 at all times or space positions
selected (see the Select command).
Example: plot heat mesh 1 vs temperature mesh 1

PostScriptFile name

Set the name of the file containing Postscript® output. The default file name for printed
output is heaterpost.ps. The file name can be changed only before the first plot is
generated. The command is ignored if a PostScript® output has already been generated
on another file or on the default file.

Print target1 target2 … targetn support1 support2 … supportm

Generate a table of n x m columns of the target(s) in the support(s) for every time or
space coordinate selected (see the Select command). Note that several targets and
supports can be printed simultaneously.
Example: print heat temperature mesh 1

Query query option

List to standard output the input setting of query option, this can be one of the
BlockName identifiers as for the input simulation file (Model, Mesh, Sets, Initial,
Boundary, Source, Simulation) or All to list the complete input set.

Reset EndTime

Reset the end time for plots and listings to the last simulation time stored in the binary
storage file.

Reset EndX

Reset the final space coordinate to be used for plots and listings. The effect is different
depending on the support. In the case of a support of type Mesh, EndX is set to the last
node (index NrNodes) as specified in the simulation input. In the case of a support of
type Line, EndX is set to the length of the line. This option has no effect on a Point.

Reset StartTime

Reset the start time for plots and listings to the first simulation time stored in the binary
storage file.

36 Chapter 5 Post-processing Language Reference

© CryoSoft, 2021

Reset StartX

Reset the initial space coordinate to be used for plots and listings. The effect is different
depending on the support. In the case of a support of type Mesh, StartX is set to the
first node (index 1). In the case of a support of type Line, StartX is set to zero. This
option has no effect on a Point.

Select Time t1 t2 … tn

Select from the binary storage file the results at times closest to the specified times. The
following Plot and Print commands will report the results as function of the spatial
coordinate at the n requested times. The selection is overridden by a following Select
command.

Select X x1 x2 … xn

Select from the binary storage file the results at the specified locations. The following
Plot and Print commands will report the results as function of the time at the the
requested locations. The effect is different depending on the support. In the case of a
support of type Mesh, the locations are node indices. In the case of a support of type
Line, the location is intended as the coordinate along the length of the line. This option
has no effect on a Point.The selection is overridden by a following Select command.

Set Color on/off

Switch among color coding and dashed-line coding (B/W) for curves plotted for
different supports in the same plot frame, default is off (i.e. dashed-line coding).

Set EndTime t

Set the end time for plots and listings, default is the last time stored in the binary
storage file.

Set EndX x

Set the final space coordinate to be used for plots and listings. The effect is different
depending on the support. In the case of a support of type Mesh, the EndX is set to a
specific node. In the case of a support of type Line, EndX is set to the coordinate along
the line. This option has no effect on a Point.

Set PlotsPerPage n

Set the number of plots per page. The number n must be an integer equal to 1, 2, 3, 4 or
6, 6 being the default. Changing the number of plots per page will automatically
generate the plots to a new page

Set StartTime t

Set the start time for plots and listings, default is the first time stored in the binary
storage file.

Set StartX x

Set the initial space coordinate to be used for plots and listings. The effect is different
depending on the support. In the case of a support of type Mesh, the StartX is set to a

 Chapter 5 Post-processing Language Reference 37

© CryoSoft, 2021

specific node. In the case of a support of type Line, StartX is set to the coordinate
along the line. This option has no effect on a Point.

Stop

Stop execution and close the session. An end-of-file during parsing of the command
file results in the same effect.

StorageFile name

Set the name of the file containing the binary stored results from HEATER. The default
file name for printed output is heater.store. Opening and reading of the binary
storage file is automatic after parsing the first command. Therefore this command, if
present, must be the first in the post-processing command file.

Supports and targets All plotting and print-out actions of the post-processor
HEATERPOST need the selection of a target to be plotted/printed and the relative support. A
target is a variables or an auxiliary quantity computed in the simulation (e.g. temperature). A
support is the component on which the quantity is defined (e.g. line number 2). Target and
support must be selected from a valid combination (e.g. temperature of line number 2). In the
following table we report the keys for the valid combinations of targets and supports. Any
invalid selection or combination of target and support results in a syntax error during parsing.

Support Target Units Meaning

Mesh X (m) X-coordinate of a node in the mesh
 Y (m) Y-coordinate of a node in the mesh
 Z (m) Z-coordinate of a node in the mesh
 Temperature (K) Temperature at a node in the mesh
 Heat (W) Heat flux at a node in the mesh

Point X (m) X-coordinate of a point
 Y (m) Y-coordinate of a point
 Z (m) Z-coordinate of a point
 Temperature (K) Temperature at a point
 Heat (W) Point heat flux at the point
 IntegratedHeat (W) Integral heat flux at the point (identical to

Heat at the given point)

Line X (m) X-coordinate of a location along a line
 Y (m) Y-coordinate of a location along a line
 Z (m) Z-coordinate of a location along a line
 Temperature (K) Temperature at a a location along a line t
 Heat (W/m) Linear heat flux at a location along a line
 IntegratedHeat (W) Integral heat flux along the line

Surface IntegratedHeat (W) Integral heat flux over the surface

Volume IntegratedHeat (W) Integral heat flux over the volume

38 Chapter 5 User Routines

© CryoSoft, 2021

Chapter 6

User Routines

Warning User Routines give unlimited access to the data structure used by the main
program. Improper programming of User Routines can therefore corrupt operation and lead to
evident or concealed malfunctions and generate manifest or hidden errors in the computed
results. IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF
THIS FEATURE, even if advised of the possibility of such damages.

Linking user routines

The User Routines for HEATER are FORTRAN functions packaged in a series of files
contained in the directory:

~/CryoSoft/usr/heater/code_x.x

(where x.x stands for the version you received) which you will have received with the
standard installation. In order to customize the code you will need to write modified version of
these files. We strongly suggest to create your own directory tree within the above directory,
and to modify only copies of the User Routines in order to be able to safely retrieve the
standard version at your wish. Once the modified routines are ready, you will need to compile
them and link them to the standard part of the code, to produce a customized version of the
executable of HEATER. For this purpose you can use the standard makefile

~/CryoSoft/etc/heater.make

that can be copied and modified. Once more we strongly suggest that you modify only a copy
of the standard makefile. Refer to the installation guide [1] for more details on the use of the
makefiles, compilation and link-editing of the program.

Calling protocol

The following sections describe the calling protocol for the User Routines. For clarity we have
subdivided the description in sections that are either associated with the type of function or
with the type of component involved. The convention followed for the definition of the
FORTRAN type of variables is the same as described in Chapter 4.

 Chapter 5 User Routines 39

© CryoSoft, 2021

The User Routines for HEATER are defined as FORTRAN functions. The function
returns a single real or integer value that must be computed by the user within the routine.
All parameters passed to the function must be regarded as input parameters and cannot be
modified.

Note FORTRAN unit numbers above 50 are reserved by the CryoSoft library for internal
use, and should not be allocated for read/write operations. Any allocation or use of units above
50 can result in I/O errors or malfunctions.

Properties of solid materials

The material properties can be defined by the user. The properties needed for the simulation
are the material density (Kg/m3), the thermal conductivity (W/m K) and the heat capacity
(J/Kg K).

The routines and functions contained in file userMaterials.f.

real function UserDensity (MaterialName, XYZ, Temperature)

Returns the density (Kg/m3) of the material. Called for user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
XYZ R (m) array of nodal coordinates (x,y,z)
Temperature R (K) temperature

real function UserConductivity (MaterialName, XYZ, Temperature)

Returns the thermal conductivity (W/m K) of the material. Called for user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
XYZ R (m) array of nodal coordinates (x,y,z)
Temperature R (K) temperature

real function UserSpecificHeat (MaterialName, XYZ, Temperature)

Returns the specific heat (J/Kg K) of the material. Called for user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
XYZ R (m) array of nodal coordinates (x,y,z)
Temperature R (K) temperature

40 Chapter 5 User Routines

© CryoSoft, 2021

Heating waveform

The heating of the volume sets can be defined using the routine described in this section. The
heating power density (in W/m3) is defined as a function of space and time for all volumes
components independently.

The routines and functions contained in file userSource.f.

real function UserQSource (Time, Volume, Q, Q_Tau)

Returns the heat flux (W/m3). Called if QModel=user.

Parameter Type Units Meaning

Time R (s) time
Volume I (-) volume
Q R (W/m3) volumetric heat flux density as from input
Q_Tau R (s) end heating time, as from input

Initial conditions

The initial conditions in the mesh can be defined based on the node number and its
coordinates.

The routines and functions contained in file userInitial.f.

real function UserTInitial (Node, XYZCoord, TInitial)

Returns the initial temperature (K). Called if InitialCondition=user.

Parameter Type Units Meaning

Node I (-) node index
XYZCoord R (m) array of nodal coordinates (x,y,z)
TInitial R (K) initial temperature, as from input

Boundary conditions

The boundary conditions can be defined in mesh points, along lines or on surfaces. The
routines return values of heat flux, temperature or heat transfer coefficient and bulk
temperature as defined from the boundary condition input. The same routines are used for
boundaries on different geometric objects: point, line, and surface. The geometric boundary
object is identified by its type and its index. The Object can only have the following values:

Object = ‘point’ boundary condition at a point
Object = ‘line’ boundary condition along a line
Object = ‘surface’ boundary condition over a surface

The routines and functions contained in file userBoundary.f.

 Chapter 5 User Routines 41

© CryoSoft, 2021

subroutine userBoundaryQ (Time, Object, Index, BCQ, Boundary,
 Nodes, Q)

Returns the heat flux (W/m2) at a boundary. Called if BCvariable=heat and BCtype=user.

Parameter Type Units Meaning

Time R (s) simulation time
Object C (-) type of boundary object (point, line or surface)
Index I (-) index of the boundary object
BCQ R (W/m2) boundary heat flux, as from input
Boundary I (-) index of the boundary condition
Nodes I (-) number of nodes on the boundary
Q R (W/m2) array of Nodes entries containing boundary heat flux

subroutine userBoundaryT (Time, Object, Index, BCT, Boundary,
 Nodes, T)

Returns the temperature (K) at a boundary. Called if BCvariable=temperature and
BCtype=user.

Parameter Type Units Meaning

Time R (s) simulation time
Object C (-) type of boundary object (point, line or surface)
Index I (-) index of the boundary object
BCT R (T) boundary temperature, as from input
Boundary I (-) index of the boundary condition
Nodes I (-) number of nodes on the boundary
T R (K) array of Nodes entries containing boundary
 temperature

subroutine userBoundaryTh (Time, Object, Index, BCT, BCh, Boundary,
 Nodes, T)

Returns the bulk temperature (K) and the heat transfer coefficient (W/m2 K) at a boundary.
Called if BCvariable=convection and BCtype=user.

Parameter Type Units Meaning

Time R (s) simulation time
Object C (-) type of boundary object (point, line or surface)
Index I (-) index of the boundary object
BCT R (T) boundary bulk temperature, as from input
BCh R (W/m2K) boundary heat transfer coefficient, as from input
Boundary I (-) index of the boundary condition
Nodes I (-) number of nodes on the boundary
T R (K) array of Nodes entries containing boundary
 bulk temperature
BCh R (W/m2K) array of Nodes entries containing boundary
 heat transfer coefficient

42 Chapter 7 Troubleshooting and Errors

© CryoSoft, 2021

CHAPTER 7

Troubleshooting and Errors

Error messages are reported to the output ASCII log file and to the standard output. The form
of a typical error report is the following

ERROR in procedure <procedure name>: <error message>
called by <calling procure> at position <n>
called by <calling procure> at position <m>
......

where <procedure name> is the name of the routine where the error occurred and <error
message> reports a short description of the error situation. This line is followed by the trace of
the <calling procedure> up to the main program. In case of queries about error conditions,
please take care to report error messages completely, including the calling trace.

Errors can be generated at four different levels in the code:

• input parsing and syntax errors;
• data consistency errors;
• runtime errors;
• internal consistency errors.

Input parsing errors

Input parsing and syntax errors are detected during the interpretation of the input file. They
indicate that the variable naming, the command syntax or the type and number of numerical
data in the input file are incorrect. Verify syntax in the input file in this case.

Data consistency errors

Data consistency errors are detected when input data are not coherent among themselves and
would result in a model that cannot be analyzed. Typical cases are selection of incompatible
options, or input data out-of-range. Verify the consistency of the input data in this case.

Runtime errors

Runtime errors are detected either when the solver enters a physical or numerical instability, or
when the size of the problem exceeds the maximum allowed. Physical instabilities can be
triggered by improper setting of physical conditions (e.g. initial conditions or boundary

 Chapter 7 Troubleshooting and Errors 43

© CryoSoft, 2021

conditions), excessive transient conditions (e.g. very large heating powers), or because of
incorrect values from solid properties. Verify input conditions in this case.

Numerical instabilities can be triggered by the use of very large time steps, coarse mesh, and
algorithms with little to no damping. In case of numerical instability, attempt at reducing the
maximum time step (value of MaximumStep in input), reducing the allowed integrator
tolerance (value of Tolerance in input), or choosing a time integration method that is more
robust (choose EulerBackward as TimeMethod).

The maximum size of the network that can be solved is determined by the requested memory
allocation in the FORTRAN include file:

~/CryoSoft/src/heater/code_x.x/includes/parameters.inc

where a number of parameters are set statically. The main parameters affecting memory
allocation are the following, with the associated meaning:

Parameter Meaning

MaxElements maximum number of elements
MaxFaces maximum number of mesh faces (used to constitute a surface)
MaxEdges maximum number of mesh edges (used to constitute a line)
MaxPoints maximum number of points
MaxLines maximum number of lines
MaxEdgesPerLine maximum number of edges forming a single line
MaxSurfaces maximum number of surfaces
MaxFacesPerSurface maximum number of faces forming a single surface
MaxVolumes maximum number of volumes
MaxElementsPerVolume maximum number of elements forming a single volume
MaxBCs maximum number of boundary conditions
MaxBoundaries maximum number of boundary elements

The additional parameters MaxWork4 and MaxWork8 are set to accommodate the sparse
system matrix in the equation solver, and need adjustment depending on the problem
dimension. Contact us should the solver require more workspace memory.

The version of the code you received can be modified by adjusting these parameters as
desired. The code then needs to be compiled and link-edited as explained in the installation
manual you received [3].

Warning Modification of dimensioning parameters affects memory allocation.
Improper programming of parameters can therefore corrupt operation and lead to evident or
concealed malfunctions and generate manifest or hidden errors in the computed results. IN NO
EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF THIS
FEATURE, even if advised of the possibility of such damages.

Internal consistency errors

Internal consistency errors indicate corruption of the internal data structure of the program. An
internal consistency error cannot be generated using the standard program and reading data
from input only. However, they can be detected in case that customized User Routines with
improper data handling are used. They diagnose a severe fault within the code. If you are

44 Chapter 7 Troubleshooting and Errors

© CryoSoft, 2021

using User Routines, verify their consistency with the calling protocol. In case you are not
using User Routines, report internal consistency errors to us.

 Chapter 8 References 45

© CryoSoft, 2021

CHAPTER 8

References

[1] CryoSoft Installation Manual, Version 8.2, 2021.

[2] CryoSoft, Solids - Properties of solid materials, Version 4.0, January 2021.

[3] CryoSoft Variables Manual, Version 1.0, 2016.

