
User’s Guide

Version 2.1a
November 2021

 POWER CryoSoft

Electric Network Simulation of Magnetic Systems

2

© CryoSoft, 2021

DISCLAIMER

Even though CryoSoft has carefully reviewed this manual, CRYOSOFT MAKES
NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS PROVIDED “AS IS”, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if advised of the possibility of such
damages.

Copyright Ó 1997-2021 by CryoSoft

 3

© CryoSoft, 2021

Contents

ROADMAP 5	
Before you start 5	
How to use this manual 5	

INTRODUCTION 6	
What is POWER 6	
A POWER model 6	
Model Solution 7	
Post-processing 7	
User Flexibility and Further Extensions 7	

INSTALLING AND RUNNING POWER 9	
Platforms 9	
Installation 10	
How to run POWER 10	
How to run POWERPOST 12	
Customization 13	

CASE STUDIES 14	
A resistive network 15	
Current decay in a RL network 19	
Current driven RL network 23	

INPUT REFERENCE 29	
Structure and syntax 29	
Input variables reference 30	

Branch 30	
Mesh 32	
Simulation 33	
Variables 34	

POST-PROCESSING LANGUAGE REFERENCE 35	
Structure and syntax 35	
Commands reference 35	

EXTERNAL ROUTINES 38	
Linking external routines 38	
Calling protocol 38	

Branch resistance 39	
Branch current 39	
Branch voltage 39	

TROUBLESHOOTING AND ERRORS 41	
Input parsing errors 41	
Data consistency errors 41	

4

© CryoSoft, 2021

Runtime errors 41	
Internal consistency errors 42	

REFERENCES 43	

 Roadmap 5

© CryoSoft, 2021

Roadmap

Before you start
This manual is the reference user’s guide for POWER and its post-processor, POWERPOST.
Throughout this manual we assume that the reader is familiar with the physics and engineering
issues that are associated with the design and analysis of an electric network formed of
components that can be either passive (linear and non-linear resistors and inductors) or active
(linear and non-linear voltage and current sources). For the preparation of the input, running
and interpretation of the results of POWER it is mandatory that the user is familiar with the
network theorems (Kirchhoff voltage and current laws) as well as with the concepts of branch
and mesh, as standard practice in electrical engineering.

How to use this manual
This manual is structured as follows:

§ Chapter 1 contains a brief and general introduction on the modeling principle.

§ Chapter 2 gives basic information on the installation, explains how to start a POWER run

and launch the post-processor POWERPOST on a UNIX workstation.

§ Chapter 3 contains case studies that the reader should use to familiarise with the

operation and features of the program.

§ Chapter 4 contains additional information on the preparation of the input and the

meaning of the input variables

§ Chapter 5 describes the details of the post-processing command language.

§ Chapter 6 describes the External Routines that can be used for advanced use. These

routines can be linked to the standard code to provide powerful customization.

§ Chapter 7 deals with troubleshooting and error messages;

§ Chapter 8 gives the references and a general bibliography for documentation.

Beginners to POWER should read chapters 1, 2 and 3 in sequence. They will make occasional
cross reference to chapters 4 and 5 for detailed information. Experienced users will use
chapters 4, 5 and 6 for daily operation. Chapter 7 is designed to be consulted as an indexed
glossary for error messages and associated actions.

6 Chapter 1 Introduction

© CryoSoft, 2021

CHAPTER 1

Introduction

What is POWER
POWER is a program for the simulation of an electric network consisting of resistances,
inductances, current and voltage sources, with arbitrary interconnection and coupling. It is
specially tailored for the transient analysis of the evolution of current and voltage in a coil
connected to a power supply.

A POWER model
In a POWER model we consider a general electric network assembled from lumped
parameters components:

• resistances (constant or voltage/current dependent);
• inductances
• voltage sources (constant or current dependent);
• current sources (constant or voltage dependent);

With these hypotheses the network can be solved using a general equation written in the
meshes:

 (1)

where L and R are the inductance and resistance matrices of the network, I is the array of the
mesh currents and V are the mesh external voltages. Note that Eq. (1) is intended as written on
meshes assembled by the user using the basic components enumerated above, and specifying
the connection of the components (branches) in the mesh. Because POWER is not thought as a
general circuit analysis package, the mesh identification is left to the user (through input). An
example of an arbitrary assembly of branches (electrical components) in an electrical circuit
that can be simulated is shown in Fig. 1. Note that this is not the only circuit that can be
modeled with POWER and that the modeling capabilities can be much more extended than
this somewhat classical circuit used for the protection of a superconducting coil.

L dI
dt
+ RI = V

 Introduction 7

© CryoSoft, 2021

Figure 1 Schematic view of an electric network solved by the network solver POWER. In

this example the inductances could represent parts of a coil winding, inductively
coupled, and connected to a time-variable power supply. Non-linear resistances can
be included in the model, e.g. to represent the behavior during a quench.

Model Solution

The equation for the network of resistances, inductances and sources reported above (see Eq.
(1)) is solved in POWER using a fully implicit time stepping algorithm of first order accuracy
with fixed time step. This very simple choice has been taken because it produces stable results
for most conditions of practical use, and gives to the user direct control of the accuracy of the
solution through the specified time step. In case of non-linarites (e.g. if the resistance of a
branch is variable in time) the system matrix is built at each time step using the solution at the
time reached by the simulation to advance the following time step. No iteration is performed,
and again accuracy can be achieved reducing the time step.

Post-processing
The results produced by POWER are integrally stored and can be analyzed to produce plots
and reports by the post-processor POWERPOST. POWERPOST responds to a user-friendly
command language and allows selection of results in time or space, plot and print-out of
results vs. time or space, parametric plot of results at given time or space coordinate. See the
case studies in Chapter 3 for examples of post-processing sessions, and Chapter 5 for the
details on the syntax of the command language.

User Flexibility and Further Extensions
POWER has several features that allow to customize its modeling capability beyond the
allowable parameterization of the thermal/hydraulic/electric configuration that can be achieved
using the standard input file. Specifically, the user can:

• modify the dependence of geometry, waveforms and material properties on space, time

and solution variables, beyond the standard models implemented, using External Routines
that can be statically linked to the program segments through a compilation step that
produces a customized version of the code. See Chapter 6 for documentation on External
Routines;

• change parametrically the behavior of the External Routines by making use of Variables
that are read by the code input parser, and can be accessed at run-time using the Variables

Power supply

inductances
Non-linear
resistance

8 Introduction

© CryoSoft, 2021

library. See Chapter 4 for details on the syntax to be adopted for the Variables input
block;

• couple to other programs of the CryoSoft suite through the multi-tasking code manager
SUPERMAGNET. This allows augmenting the physics span of the simulation domain to
include thermal networks (e.g. heat exchange in a coil), hydraulic networks (e.g.
proximity cryogenics) or electrical circuits (e.g. magnet protection).

 Chapter 2 Installing and Running POWER 9

© CryoSoft, 2021

CHAPTER 2

Installing and Running POWER

Platforms
POWER and its post-processor POWERPOST are provided as a package developed for
running under UNIX or UNIX-like (e.g. Linux) operating system. The reason is that they
require computer intensive calculations, orderly file management and little interactivity. At the
time when this manual is written, the platform where POWER is developed is:

§ Macintosh running MacOS-X (10.10.5 and higher) under XQuartz,(2.7.8) gcc (5.1) with

gfortran.

At different time of the development and production, the code has been installed and tested on
the following platforms:

• Mac-OS X (10.2 and higher) operating system;
• GNU/Linux operating system (most distributions).
• INTEL PC’s running RedHat Linux OS;
• IBM-RISC workstations running the AIX-V4 operating system and later;
• SUN-SPARC workstation running the Solaris OS operating system;
• DEC-ALPHA workstation running the OSF-1 operating system;
• HP workstations running HP-UX OS;
• Windows-2000 and Windows-XP operating system, with an installed CYGWIN

environment (the reference version tested is CYGWIN 1.5.24-2).

Although UNIX obeys strict standards, the architecture of the operating and file system may
vary from vendor to vendor. It is therefore possible that porting may require minor adaption of
code and libraries. Contact us for advice.

In the following sections we assume here that you are running under a UNIX or UNIX-like
operating system, and that you are familiar with UNIX commands, directory and file handling.
Contact your system administrator for matters regarding UNIX commands and file system.

Although versions of POWER and POWERPOST have been ported to PC’s running the
Windows OS, at the time when this manual is written this is not a platform directly supported
and part of the instructions provided below (i.e. how to run and post-process a case) may not
be directly applicable.

10 Chapter 2 Installing and Running POWER

© CryoSoft, 2021

Installation
POWER is one of the CryoSoft family of programs. You will have therefore received the
CryoSoft package containing POWER either as a tar-ball or in pre-installed form. Verify in the
CryoSoft installation manual [1] the procedure to be followed for the proper installation of the
complete package. The executable codes, power and powerpost are in the directory
~/CryoSoft/bin/. You will find the example inputs and post-processing command files in
the directory ~/CryoSoft/xample/power/code_x.x/ (the symbol ~/ stands for your
home directory, x.x is the version you received).

How to run POWER
Start-up To run POWER you will need to launch the executable code. In the standard
installation on a UNIX system described above POWER is launched typing the command:

~/CryoSoft/bin/power [-i InputFile] [-v/-s] [-h]

Note that command line options are not mandatory (enclosed in brackets, following UNIX
documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the run
-v, --verbose print simulation progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the input file name. POWER reads the problem definition from an ASCII file
whose structure and content are described in detail in Chapter 4 of this manual. Examples of
input files are given in Chapter 3. At this time you will enter the name of a file containing the
input for the case to be run (e.g. file.input):

POWER Enter input file name
file.input

POWER then parses the input file, performs checks on consistency, configures the case and
starts the simulation. A simulation starts from an initial condition at the starting time and
advances in time using the time step selected. At each time step POWER emits a message with
the real time reached in the simulation (in s) the time step taken (in s) and the ratio of real time
to the total time to be simulated:

....
Time : 4.980E-03 Step : 1.000E-05 Time/Tend : 0.98900
Time : 4.990E-03 Step : 1.000E-05 Time/Tend : 0.99900
....

until the end of the simulation. When the end time of the simulation is reached POWER prints
a message reporting the total CPU time used in the run:

Total Cpu [s]: 24.059998

Each run of POWER produces:

§ a binary storage file containing all results stored at user’s specified times. The user can

control the name of this file, the default file name is power.store;

 Chapter 2 Installing and Running POWER 11

© CryoSoft, 2021

§ a log file containing a report on the case run, run statistics and error messages. The user
can control the name of this file; the default file name is power.log.

Restart After a succesfull completion of a run it is possible to restart the simulation at
the last time stored in the binary storage file and proceed with the time integration. A restart
procedure is triggered if the input file read by POWER contains the Restart command (see
Chapter 3 and 4 for details). Assuming that this is the case for the input file file.restart,
and the program is launched with no command line options, a restart in our example is
obtained launching again POWER:

~/CryoSoft/bin/power
POWER Enter input file name
file.restart

in which case POWER reads the binary storage file and starts the simulation at the last time
stored:

Time : 5.000E-03 Step : 1.000E-05 Time/Tend : 0.00000

Until the final time specified in the input file file.restart is reached.

Note You can use an arbitrary sequence of restarts to simulate different time spans with
varying resolution and accuracy. There is no limit to the number of restarts that can be
executed for a single simulation.

We show below schematically the flow-diagram of a POWER run:

as compared to the flow-diagram of a POWER restart reported below. Data is read at the
beginning of the restart from the binary storage file, and is appended to the same file while the
simulation proceeds:

input file

power

run log file
(power.log)

binary storage
file (power.store)

binary storage file, containing
all results stored at user’s
specified times.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

12 Chapter 2 Installing and Running POWER

© CryoSoft, 2021

How to run POWERPOST
To produce any detailed result, both in the form of printed tables or plotted curves in
PostScript® format, it is necessary to run the POWER post-processor POWERPOST.
POWERPOST is launched under UNIX with the command:

~/CryoSoft/bin/powerpost [-i InputFile] [-v/-s] [-h]

Also in this case command line options are not mandatory (enclosed in brackets, following
UNIX documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the post-processor
-v, --verbose print post-processing progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the name of an ASCII file containing the series of commands that control the
generation of the printouts and plots. The structure and content of this file is described in detail
in Chapter 5 of this manual. Examples of command files are given in Chapter 3. At this time
you will enter the name of the file containing the commands (e.g. file.post):

Enter command file name
file.post

POWERPOST then parses, echoes and interprets the commands from the command file. The
commands cause retrieval of the results of a run from the binary storage file generated by
POWER (by default from the file power.store). As a result POWERPOST generates:

§ a file containing the formatted printouts of the results (by default powerpost.out), and
§ a file containing the plots requested in PostScript® format (by default powerpost.ps).

input file

power

run log file
(power.log)

binary storage
file (power.store)

binary storage file, read-in at
the beginning and used for
further storage of results.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

 Chapter 2 Installing and Running POWER 13

© CryoSoft, 2021

Customization
The method described earlier provides the standard manner to run a POWER simulation, and
post-process the results. POWER, however, as most other CryoSoft codes, gives the
possibility to customize the physical models by using User Routines, as described in Chapter 6
(see later for details). The user has the possibility to adapt and extend the physics contained in
the standard solver, at the additional complexity of writing FORTRAN routines that must obey
to the language syntax, and parameter call specification. The customized User Routines need
to be compiled and linked the program segments to generate the customized version of the
code. Template for the User Routines are given in the directory
~/CryoSoft/usr/power/code_x.x. Compilation and link-editing can be done using the
standard installation script CSmake, but we discourage users to modify the standard codes
provided, as this will replace the reference installation. As a safer alternative, we strongly
recommend copying the User Routines templates in a work directory, and generating in this
location the customized version of the code by using an adapted compilation script, or a
makefile. Consult the examples below, and contact us for guidelines on how to set-up one such
customized structure.

command
file

powerpost

binary storage
file (power.store)

PostScript plot file
(powerpost.ps) printout file

(powerpost.out)

Postscript® file, containing
plots as required by the user.

Formatted print-outs.

14 Chapter 3 Case Studies

© CryoSoft, 2021

CHAPTER 3

Case Studies

As discussed in Chapter 2, POWER requires an input file with all definitions necessary to
specify the assembly of components in the model structure, the characteristics of each
component, the initial conditions, and the solution controls. We refer to this file as the input
file. The input file is needed both for a start-up run and a restart run.

Similarly, post-processing of POWER results using the post-processor POWERPOST requires
an input file with a sequence of commands that select results, print and plot them. We refer to
this file as the post-processing command file.

In this Chapter we give examples of input files and post-processing command files to deal
with practical modeling situations. The case studies given here are intended to guide the user
from the formulation of a problem to its modeling, the creation of the input file for the case,
running the case, and finally the generation of the results. They are simple and are intended as
examples to illustrate minimum capability of the program. More complex situations can
obviously be modeled, taking the following case studies as starting points and evolving or
combining them. Refer to Chapter 2 on how to run the examples described here with POWER
and how to generate results and plots with POWERPOST.

Note All input files and post-processing command files for the case studies discussed in this
manual are provided with the standard installation. They are located in the directory:

~/CryoSoft/xample/power/code_x.x

(where x.x stands for the version you received). In the following sections we use the
Courier font to reproduce the content of those input files, while text in italic indicates our
comments to the input.

 Chapter 3 Case Studies 15

© CryoSoft, 2021

A resistive network
Physical definition of the problem This test illustrates steady state calculation of the
current splitting among a set of resistors connected in parallel and powered by a constant
voltage source, as shown below. The voltage source provides 1 V, and the resistors have
different resistances, 1, 10, 100 and 1000 W. The solution is sought at steady state. POWER is
a transient simulation, but in this case (with no inductance) the steady state is readily obtained
as the solution after a single time step.

The picture below shows the definition of the branches of the network (the single
components) and the meshes (the closed loops formed by the assembled branches). Branch
currents are indicated in lower case, mesh currents are indicated in upper case.

The way in which branches are assembled in meshes is defined by the connectivity matrix Ci,j,
a matrix whose rows correspond to the mesh index, and columns to the branch index. The
entries in the connectivity matrix Ci,j are:

• +1, if the branch j is part of the mesh i and the current direction of mesh and branch is
the same;

• -1, if the branch j is part of the mesh i, but the branch current has direction opposite to
the mesh current;

• 0 if the branch j is not part of the mesh i.
As an example, the connectivity matrix for the circuit above is given by:

Input file for the start-up run The step-by-step definition of the input file for the POWER
run corresponding to this problem is shown below.

RNet.input

Begin Simulation

Simulation starts at t=0 s and ends at t=1 s, time step is 1 s
 StartTime 0.0
 EndTime 1.0
 TimeStep 1.0

Output is stored (for plotting) at the end time
 OutputStep 1.0

The log and result files are are different from the default ones

1 V

1 Ω 10 Ω 100 Ω 1000 Ω

i1 i2 i3 i4 i5

I1 I2 I3
I4

€

C =

1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

$

%
%
%
%

&

'

(
(
(
(

16 Chapter 3 Case Studies

© CryoSoft, 2021

 LogFile RNet.log
 Storagefile RNet.store
 Title 'resistance network'

The test case has 4 meshes formed from 5 branches. This input is needed
before the definition of the single branches and meshes to size the
memory required
 Branches 5
 Meshes 4

End

Begin Branch 1

Constant voltage source. Entries are in [V]

 Type VoltageSupply Model constant Voltage 1.0

End

Begin Branch 2

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance Model constant Resistance 1.0

End

Begin Branch 3

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance Model constant Resistance 10.0

End

Begin Branch 4

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance Model constant Resistance 100.0

End

Begin Branch 5

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance Model constant Resistance 1000.0

End

Begin Mesh 1

Definition of the connectivity matrix for mesh 1. This input defines how
branches are connected in series to formed a closed mesh. Branches 1 and 2
are connected in series.

 Current 0.0 connectivity 1 1 0 0 0

End

Begin Mesh 2

Definition of the connectivity matrix for mesh 2. Branches 2 and 3 are
connected in series. The current in branch 2 flows in negative direction

 Current 0.0 connectivity 0 -1 1 0 0

End

 Chapter 3 Case Studies 17

© CryoSoft, 2021

Begin Mesh 3

Definition of the connectivity matrix for mesh 3. Branches 3 and 4 are
connected in series. The current in branch 3 flows in negative direction

 Current 0.0 connectivity 0 0 -1 1 0

End

Begin Mesh 4

Definition of the connectivity matrix for mesh 4. Branches 4 and 5 are
connected in series. The current in branch 4 flows in negative direction

 Current 0.0 connectivity 0 0 0 -1 1

End

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs using the post-processor POWERPOST.

RNet.post

Read data from the binary storage file

StorageFile RNet.store

Produce an output file with the name below

OutputFile RNet.out

Currents in each of the branches defined

print current branch 1 branch 2 branch 3 branch 4 branch 5

Currents in each of the meshes defined

print current mesh 1 mesh 2 mesh 3 mesh 4

stop

Results One ASCII output file, RNet.out, is generated running the post-processor
POWERPOST with the commands described abovein the file RNet.post. This file contains
the output requested. In our case the only output requested are the current in the branches and
in the meshes. We report here only an abridged version of the full file.

RNet.out

The following is the output of the results. In our case the currents in all branches and meshes
defined. The header of the output file, containing an echo of the input, has been removed.

POWER Version 2.1
 file created at 30/02/2004 9:58:47
 Storage file: RNet.store

 Title........................... resistance network

..... (lines omitted)

Simulation
 ==========
 number of branches............. 5
 number of meshes............... 4
 Start Time [s]................. 0.000E+00

18 Chapter 3 Case Studies

© CryoSoft, 2021

 End Time [s]................... 0.000E+00
 Time Step [s].................. 1.000E+00

 branch 1 branch 2 branch 3 branch 4 branch 5
Time Current Current Current Current Current
[s] [A] [A] [A] [A] [A]

--
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 1.0000E+00 1.1110E+00 1.0000E+00 1.0000E-01 1.0000E-02 1.0000E-03

 mesh 1 mesh 2 mesh 3 mesh 4
Time Current Current Current Current
[s] [A] [A] [A] [A]

--
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 1.0000E+00 1.1110E+00 1.1100E-01 1.1000E-02 1.0000E-03

 Chapter 3 Case Studies 19

© CryoSoft, 2021

Current decay in a RL network
Physical definition of the problem In this test we demonstrate a simulation of transient
current decay in a network composed of passive elements, resistances and inductances. Four
circuits are inductively coupled, such as in a superconducting system formed of independently
powered magnets. All circuits are initially powered by the same current, 10 A, and in one of
them a series resistance of 1 kW is suddenly inserted (e.g. a magnet quench). The schematic
representation of the circuit is shown below. The inductance matrix for the inductive branches
is given by:

which simulates stronger coupling among neighbouring inductances. All inductances are given
in [H]. The transient behaviour is simulated for a time long enough to show the current decay.

The picture below shows the definition of the branches of the network (the single
components) and the meshes (the closed loops formed by the assembled branches). Branch
currents are indicated in lower case, mesh currents are indicated in upper case.

The connectivity matrix for the circuit above is given by:

Input file for the start-up run The step-by-step definition of the input file for the POWER
run corresponding to this problem is shown below.

RLDecay.input

€

L =

1 0.4 0.1 0.4
0.4 1 0.4 0.1
0.1 0.4 1 0.4
0.4 0.1 0.4 1

"

$
$
$
$

%

&

'
'
'
'

1 Ω
i1 i4

I1

i3

I2

i5

I4

i2

I3

€

C =

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

20 Chapter 3 Case Studies

© CryoSoft, 2021

Begin Simulation

Simulation starts at t=0 s and ends at t=3 s, time step is 5 ms
 StartTime 0.0
 EndTime 3.0
 TimeStep 5.0e-3

Output is stored (for plotting) every 50 ms
 OutputStep 50.0e-3

The log and result files are are different from the default ones
 LogFile RLDecay.log
 Storagefile RLDecay.store
 Title 'current decay in coupled R-L circuit'

The test case has 4 meshes formed from 5 branches. This input is needed
before the definition of the single branches and meshes to size the
memory required
 Branches 5
 Meshes 4

End

Begin Branch 1

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance Model constant Resistance 1.0

End

Begin Branch 2

Inductance branch. Note the inductive coupling of branches 2,3,4 and 5 with
the following inductance matrix (compare to entries below and for the other
branches:

 | 1.0 0.4 0.1 0.4 |
 L = | 0.4 1.0 0.4 0.1 |
 | 0.1 0.4 1.0 0.4 |
 | 0.4 0.1 0.4 1.0 |

Entries are in [H]

 Type Inductance
 Inductance 0.0 1.0 0.4 0.1 0.4

End

Begin Branch 3

Inductance branch. See comments in branch 2

 Type Inductance
 Inductance 0.0 0.4 1.0 0.4 0.1

End

Begin Branch 4

Inductance branch. See comments in branch 2

 Type Inductance
 Inductance 0.0 0.1 0.4 1.0 0.4

 Chapter 3 Case Studies 21

© CryoSoft, 2021

End

Begin Branch 5

Inductance branch. See comments in branch 2

 Type Inductance
 Inductance 0.0 0.4 0.1 0.4 1.0

End

Begin Mesh 1

Definition of the connectivity matrix for mesh 1. This input defines how
branches are connected in series to formed a closed mesh. Branches 1 and 2
are connected in series. Initial current is 10 [A]

 Current 10.0 connectivity 1 1 0 0 0

End

Begin Mesh 2

Definition of the connectivity matrix for mesh 2, formed by branch 3 only

 Current 10.0 connectivity 0 0 1 0 0

End

Begin Mesh 3

Definition of the connectivity matrix for mesh 3, formed by branch 4 only

 Current 10.0 connectivity 0 0 0 1 0

End

Begin Mesh 4

Definition of the connectivity matrix for mesh 4, formed by branch 5 only

 Current 10.0 connectivity 0 0 0 0 1

End

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs using the post-processor POWERPOST.

RLDecay.post

Read data from the binary storage file

StorageFile RLDecay.store

Produce a PostScript file with the name below

PostScriptFile RLDecay.ps

Plot 4 figures on a page, landscape mode

set plotsperpage 4

Currents in each of the meshes defined

plot current mesh 1
plot current mesh 2
plot current mesh 3
plot current mesh 4

22 Chapter 3 Case Studies

© CryoSoft, 2021

Voltage in each of the branches defined
plot voltage branch 1
plot voltage branch 2
plot voltage branch 3
plot voltage branch 4
plot voltage branch 5

stop

Results A PostScript file, RLDecay.ps, is generated running the post-processor
POWERPOST with the commands described above. The first of the three plot pages
generated is shown below, reporting the current in the four meshes. The current in the first
mesh, the R-L circuit, decays, while the current in the strongly inductively coupled meshes 2
and 4 increases. Note that because of the choice of the inductances in the matrix , also the
current in mesh 3, weakly coupled with mesh 1, decreases as a result.

 Chapter 3 Case Studies 23

© CryoSoft, 2021

Current driven RL network
Physical definition of the problem In this test we analyse the response of an R-L
circuit to an harmonic variation of the current. To this aim we need to define a time-variable
current supply, which we realise through a user’s defined routine. The network consists of two
circuits, inductively coupled, of which one has a current supply that produces a 50 Hz current
waveform, with amplitude 10 A, and the second has a series resistance of 1 kW. The schematic
representation of the circuit is shown below. The inductance matrix for the inductive branches
is given by:

All inductances are given in [H]. The transient behaviour is simulated for a time long enough
to reach the periodic regime.

The picture below shows the definition of the branches of the network (the single
components) and the meshes (the closed loops formed by the assembled branches). Branch
currents are indicated in lower case, mesh currents are indicated in upper case.

The connectivity matrix for the circuit above is given by:

Input file for the start-up run The step-by-step definition of the input file for the POWER
run corresponding to this problem is shown below.

RLNet.input

Begin Simulation

Simulation starts at t=0 s and ends at t=50 ms, time step is 0.1 ms
 StartTime 0.0
 EndTime 50.0e-3
 TimeStep 0.1e-3

Output is stored (for plotting) every 1 ms
 OutputStep 1.0e-3

The log and result files are are different from the default ones
 LogFile test3.log
 Storagefile test3.store
 Title 'coupled R-L circuit'

The test case has 2 meshes formed from 4 branches. This input is needed
before the definition of the single branches and meshes to size the

€

L =
1 0.8
0.8 1
"

$

%

&
'

1000 Ω

i4i3

I2

i2i1

I1

€

C =
1 −1 0 0
0 0 −1 1

$
%

&

'
(

24 Chapter 3 Case Studies

© CryoSoft, 2021

memory required
 Branches 4
 Meshes 2

End

Begin Branch 1

Current supply branch, providing a current given by the user defined
function UserBranchCurrent. The definition there is of sinusoidal
current excitation with 50 Hz frequency (see routine)

 Type CurrentSupply
 Model user

This value of the current is passed to the user routine as a scale factor
 Current 10.0

End

Begin Branch 2

Inductance branch. Note that the inductance matrix with all other branches
is required, although some of the other branches may have no inductance
(e.g. resistance or current supply branches). Entries are in [H]

 Type Inductance
 Inductance 0.0 1.0 0.8 0.0

End

Begin Branch 3

Inductance branch. Note the inductive coupling of branches 2 and 3, with
the following inductance matrix (compare to entries below and for branch 2):

 | 1.0 0.8 |
 L = | |
 | 0.8 1.0 |

 Type Inductance
 Inductance 0.0 0.8 1.0 0.0

End

Begin Branch 4

Resistance branch, with constant resistance value. Entry is in [Ohm]

 Type Resistance
 Model constant
 Resistance 1000.0

End

Begin Mesh 1

Definition of the connectivity matrix for mesh 1. This input defines how
branches are connected in series to formed a closed mesh. Branches 1 and 2
are connected in series. The current in branch 2 flows in negative direction

 Current 0.0
 connectivity 1 -1 0 0

End

 Chapter 3 Case Studies 25

© CryoSoft, 2021

Begin Mesh 2

Definition of the connectivity matrix for mesh 2. Branches 3 and 4 are
connected in series. The current in branch 3 flows in negative direction

 Current 0.0
 connectivity 0 0 -1 1

End

User’s defined routine As from the input file listed above, the current supply
waveform is provided by a user’s defined routine, userBranchCurrent (see Chapter 6 for the
calling convention). This routine shall be written by the user, using the prototype provided,
compiled and linked to produce a customized version of the POWER simulator. The run can
only be performed using with customized version, and it is mandatory that the user exerts a
maximum of controls on the routine provided as well as a careful management of compiled
objects. The listing below reports the routine for the case examined here.

userBranchCurrentRLNet.f
c ##
 real function UserBranchCurrent(id,c0,vtheta,cn,time)
c ##
c #
c # user's routine for non-linear current generator branch for the test
c # case as from file test3.input
c #
 implicit none
c *
 integer id
 real c0,vtheta,cn,time
c *
 real Omega

c * force the current as I(t) = c0 * sin (Omega * time), where c0 is
c * the generator current as read from input, and Omega is set in the
c * routine to a constant, so that the frequency of the generator is
c * f = 50 Hz

c * set the value of Omega
 Omega = 2.0 * 3.141592654 * 50.0

c * make sure the call to the user routines is for the first branch
c * as defined in input (see input file test3.input)
 if(id.eq.1) then

c * compute current
 UserBranchCurrent = c0 * sin (Omega*time)

 else

 write(6,*) 'userBranchCurrent called with wrong id:',id
 UserBranchCurrent = 0.0

 endif

c *
 return
 end

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs using the post-processor POWERPOST.

RLNet.post

26 Chapter 3 Case Studies

© CryoSoft, 2021

Read data from the binary storage file

StorageFile test3.store

Produce a PostScript file with the name below

PostScriptFile test3.ps

Produce an output file with the name below

OutputFile test3.out

Plot 4 figures on a page, landscape mode

set plotsperpage 4

Currents in each of the branches defined

plot current branch 1
plot current branch 2
plot current branch 3
plot current branch 4

Voltage in each of the branches defined

plot voltage branch 1
plot voltage branch 2
plot voltage branch 3
plot voltage branch 4

dI/dt in each of the branches defined

plot currentderivative branch 1
plot currentderivative branch 2
plot currentderivative branch 3
plot currentderivative branch 4

dV/dt in each of the branches defined

plot voltagederivative branch 1
plot voltagederivative branch 2
plot voltagederivative branch 3
plot voltagederivative branch 4

Ask for closing the present plot page, and open a new one

newpage

Plot 2 figures per page, landscape mode

set plotsperpage 2

Current in the two meshes

plot current mesh 1
plot current mesh 2

dI/dt in the two meshes

plot currentderivative mesh 1
plot currentderivative mesh 2

Print a table of currents in the two meshes

print current mesh 1 mesh 2

stop

Results A PostScript file, RLNet.ps, and an ASCII output file, RLNet.out are
generated running the post-processor POWERPOST with the commands described above. The
first of the plot pages generated is shown below, reporting the current in the four branches.

 Chapter 3 Case Studies 27

© CryoSoft, 2021

Note that as defined by the Connectivity matrix the currents are equal and opposite in each
couple of branches of a mesh. After an initial transient the current reaches periodic regime.

The file RLNet.out contains the output requested. In our case the only output requested are
the current in the meshes as a function of time. We report here only an abridged version of the
full file.

RNet.out

The following is the output of the results. In our case the currents in the two meshes. The
header of the output file, containing an echo of the input, has been removed.

POWER Version 2.1
 file created at 9/05/2004 10:18:23
 Storage file: test3.store

 Title........................... coupled R-L circuit

..... (lines omitted)

Simulation
 ==========
 number of branches............. 4
 number of meshes............... 2
 Start Time [s]................. 0.000E+00
 End Time [s]................... 0.000E+00
 Time Step [s].................. 1.000E-04

 mesh 1 mesh 2
Time Current Current

28 Chapter 3 Case Studies

© CryoSoft, 2021

[s] [A] [A]

--
 0.0000E+00 0.0000E+00 0.0000E+00
 1.0000E-03 2.7899E+00 -1.4241E+00
 2.0000E-03 5.6208E+00 -1.9245E+00
 3.0000E-03 7.9015E+00 -1.8373E+00
 4.0000E-03 9.4088E+00 -1.4163E+00
 5.0000E-03 9.9951E+00 -7.9739E-01

..... (lines omitted)

 4.9000E-02 3.3875E+00 1.8795E+00
 5.0000E-02 3.1335E-01 2.2428E+00

 Chapter 4 Input Reference 29

© CryoSoft, 2021

CHAPTER 4

Input Reference

Structure and syntax
The input file is read by the input interpreter that parses and analyzes the syntax and the
grammar of the various entries. In general the file contains a series of blocks that are
structured as follows:

 Begin BlockName
 VariableName value(s)
 VariableName value(s)
 ………………..

 VariableName value(s)
 End

where BlockName is a keyword indicating the block type, and must be one of the following
valid choices:

 Branch define the general properties of the branches
 Mesh define the general properties of the meshes
 Simulation define the simulation parameters
 Variables define user variables for use in routines and functions

The content of a block is a series of assignations of a set of values to a generic variable
VariableName. VariableName must be chosen among the set of keywords described in the
following sections.

The structure and content of the input file must comply with the following rules and
conventions:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;
§ a character ‘;’ in any position of the command line indicates that the remainder of the line

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored;

§ the variables in the block are read sequentially and are checked at read-in time. For this
reason the order of precedence of the variables must be respected whenever a value is
needed to proceed with the interpretation of a block (i.e. the total number of branches or

30 Chapter 4 Input Reference

© CryoSoft, 2021

meshes must be available before reading the single branch/mesh blocks) . The same
BlockName can appear more than once in a file;

§ repeated variable assignation overrides previous values and is not checked at read-in time;
§ the blocks in the file are read sequentially and are checked at read-in time. The same

BlockName can appear more than once in a file

Parsing of the input file is finished as soon as an end-of-file is found. At this point the
execution control is passed to the main program that executes checks on data consistency,
configures the run and launches the simulation. For sample input files see Chapter 3.

Input variables reference
The following table contains, in alphabetical order, the keywords defining the input variables,
their physical dimensions and meanings for each block type. Predefined possible values are
reported in Courier. The default value is indicated in the table and underlined.

Note In the tables below we use the following convention for the type of variables:

 C character (a string delimited by blanks, tabs or apices)
 R real (a number in floating point or engineering notation)
 I integer (an integer number)

Typing must be respect in the input file to avoid errors or mis-interpretation by the parser.

Branch
The Branch block defines the characteristic of an electrical branch, i.e. an elementary
component of the circuit to be analysed. The branch number must follow the keyword
Branch.

Variable Type Units Meaning

Type C (-) Branch type. Possible values:

CurrentSupply
Inductance
Resistance
VoltageSupply

Current R (A) Current in the branch.

Inductance R (-) Vector of Branches elements containing the

inductance matrix of this branch with all the others.

Model C (-) If Type is CurrentSupply describes the current

model. Possible values:
Constant constant in time, equal to Current.
Window equal to Current from time 0 to Tau,

zero otherwise.
User user defined through the function

UserBranchCurrent.
 If Type is VoltageSupply describes the voltage

model. Possible values:
Constant constant in time, equal to Voltage.
Window equal to Voltage from time 0 to Tau,

zero otherwise.

 Chapter 4 Input Reference 31

© CryoSoft, 2021

User user defined through the function
UserBranchVoltage.

 If Type is Resistance describes the resistance model.
Possible values:
Constant constant in time, equal to Resistance.
User user defined through the function

UserBranchResistance.
External the branch resistance is obtained from

one of the other CryoSoft simulators,
through explicit coupling at each time
step. This coupling requires execution
under the SuperMagnet environment, and
leads to an error in case it is used in
stand-alone mode. See the SuperMagnet
manual for more details.

Resistance R (Ω) Resistance in the branch.

Tau R (s) Voltage or current time constant, used if Model is

Window.

Voltage R (V) Voltage in the branch.

32 Chapter 4 Input Reference

© CryoSoft, 2021

Mesh
The Mesh block is used to define the connectivity matrix, specifying how branches are
connected in series (or anti-series) to formed closed loops of currents (or meshes) The mesh
number must follow the keyword Mesh.

Variable Type Units Meaning

Connectivity I (-) Vector of Branches elements containing the

connection matrix of the mesh with all the branches;
either 0, 1 or –1. The three values correspond to the
following cases:
(1) the branch is in the mesh and the current

is in the same direction as the mesh
current;

(-1) the branch is in the mesh and the current
is in the opposite direction as the mesh
current;

 (0) the branch is not in the mesh.

Current R (A) Initial current in the mesh.

 Chapter 4 Input Reference 33

© CryoSoft, 2021

Simulation
The simulation block describes the numerical parameters for time integration, logging and
storage of results.

Variable Type Units Meaning

Branches I (-) Total number of branches.

EndTime R (s) End time to be reached with the simulation.

LogFile C (-) Log file name. This file contains the echo of the input

and the log of the run, including error messages. If not
given the default log file name is power.log.

Meshes I (-) Total number of meshes.

OutputStep R (s) Time step for storage of the results. The results are

written to the output binary file every OutputStep
seconds of simulation.

Restart Flag triggering a restart. If this key is present in this

block POWER reads the content of the specified
StorageFile until the last stored time is found. The
simulation begins then from this time. Storage of
results continues on StorageFile (appended). All
input will be ignored, except for EndTime, LogFile,
OutputStep and TimeStep.

StartTime R (s) Start time for the beginning of the simulation.

StorageFile C (-) Binary storage file name. This file contains the results

stored at the user’s specified times, and is used for
restarts or post-processing. If not given the default file
name is power.store.

TimeStep R (s) Time step for the time integration of the set of partial

differential equations describing the evolution of the
network. A POWER run takes place at a constant time
step. The integration is performed with a full implicit
(Euler-Backward), first order algorithm that insures
best robustness properties

Title C (-) Problem title.

34 Chapter 4 Input Reference

© CryoSoft, 2021

Variables
The variables block is used to define user variables, with given name and type, stored
internally and shared among routines and procedures. The value of these user-defined
variables is accessible through a simple calling protocol in FORTRAN, which greatly
simplifies the preparation and parameterization of External Routines. Variables can be seen as
an extension of the standard input parameters, i.e. a facility for easy customization.

Variables are defined with the following syntax:

 VariableType VariableName Value

where VariableType is one of the types defined in the table below, VariableName is the name
assigned to the variable, and used later to retrieve its value, and Value is the value, of the
appropriate type, assigned to the variable.

Note We report below a short form of the variables syntax. For further reference, and for
explanations on how to access variables from customized External Routines, consult the
Variables manual [2]

VariableType Meaning

Character VariableName is a string, whose Value is read as a text,

delimited by apexes if the text contains a blank (not
recommended)

Integer VariableName is an integer, whose Value is read
according to FORTAN READ conventions

Real VariableName is a real, whose Value is read according
to FORTAN READ conventions (floating point or
scientific notation)

The variables defined in the variables block are accessed from the External Routines (and
elsewhere in subroutines and functions linked at run time) through calls to the function
getXVariable(VariableName,Value), where X stands for the variable type (i.e. C, I or R)
as described in [2].

 Chapter 5 Post-processing Language Reference 35

© CryoSoft, 2021

CHAPTER 5

Post-processing Language Reference

Structure and syntax
The post-processing command file is read by the post-processor interpreter of POWERPOST.
This parses and analyzes the syntax and the grammar of the various entries. In general the file
contains a series of commands that are executed in sequence during a post-processing session.

The structure and content of the post-processing command file is similar to that of the input
file already described in Chapter 4. In particular the following rules and conventions apply:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;
§ a character ‘;’ in any position of the command line indicates that the remainder of the line

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored.

Parsing of the input file is finished as soon as an end-of-file or the stop command are found.
At this point the post-processor completes all pending print-outs and plots and closes the
session. For sample input files see Chapter 3.

Commands reference
Post-processing commands In this section we report the list of the postprocessing
commands and their meaning in alphabetical order. The keywords identifying commands and
options are given in Courier. Parameters and values for the commands are given in italic.

Note The selection of the items to plot or to print is done identifying first the target, i.e.
quantity to be plotted/printed, and then the support, i.e. the component over which the quantity
is defined. Each support must be followed by its identification number, coherent with the input
simulation file (e.g. Mesh 2 for the second mesh component defined in the input for the
simulation with POWER).

NewPage

Force a new plot page to be generated

36 Chapter 5 Post-processing Language Reference

© CryoSoft, 2021

OutputFile name

Set the name of the file for printed output (generated with the command Print). The
default file name for printed output is powerpost.out. The file name can be changed
only before the first printed output is generated. The command is ignored if a printed
output has already been generated on another file or on the default file.

Plot target support1 support2 … supportn

Generate n plot frames of target for the specified support(s) as a function of time or
space according to the selection done (see the Select command).
Example: plot current branch 1 branch 2

Plot target1 support1 vs target2 support2

Plot target1 of support1 versus target2 of support2 at all times or space positions
selected (see the Select command).
Example: plot voltage branch 1 vs voltage branch 2

PostScriptFile name

Set the name of the file containing Postscript® output. The default file name for printed
output is powerpost.ps. The file name can be changed only before the first plot is
generated. The command is ignored if a PostScript® output has already been generated
on another file or on the default file.

Print target1 target2 … targetn support1 support2 … supportm

Generate a table of n x m columns of the target(s) in the support(s) for every time or
space coordinate selected (see the Select command). Note that several targets and
supports can be printed simultaneously.
Example: print current voltage branch 1 branch 2

Query query option

List to standard output the input setting of query option, this can be one of the
BlockName identifiers as for the input simulation file (Branch, Meshs, Simulation)
or All to list the complete input set.

Reset EndTime

Reset the end time for plots and listings to the last simulation time stored in the binary
storage file.

Reset StartTime

Reset the start time for plots and listings to the first simulation time stored in the binary
storage file.

Set Color on/off

Switch among color coding and dashed-line coding (B/W) for curves plotted for
different supports in the same plot frame, default is off (i.e. dashed-line coding).

Set EndTime t

 Chapter 5 Post-processing Language Reference 37

© CryoSoft, 2021

Set the end time for plots and listings, default is the last time stored in the binary
storage file.

Set PlotsPerPage n

Set the number of plots per page. The number n must be an integer equal to 1, 2, 3, 4 or
6, 6 being the default. Changing the number of plots per page will automatically
generate the plots to a new page

Set StartTime t

Set the start time for plots and listings, default is the first time stored in the binary
storage file.

Stop

Stop execution and close the session. An end-of-file during parsing of the command
file results in the same effect.

StorageFile name

Set the name of the file containing the binary stored results from POWER. The default
file name for printed output is power.store. Opening and reading of the binary
storage file is automatic after parsing the first command. Therefore this command, if
present, must be the first in the post-processing command file.

Supports and targets All plotting and print-out actions of the post-processor
POWERPOST need the selection of a target to be plotted/printed and the relative support. A
target is a variables or an auxiliary quantity computed in the simulation (e.g. current). A
support is the component on which the quantity is defined (e.g. branch component number 2).
Target and support must be selected from a valid combination (e.g. current of branch
component number 2). In the following table we report the keys for the valid combinations of
targets and supports. Any invalid selection or combination of target and support results in a
syntax error during parsing.

Support Target Units Meaning

Branch Current (A) Current in the branch
 CurrentDerivative (-) Current derivative in the branch
 Voltage (V) Voltage in the branch
 VoltageDerivative (-) Voltage derivative in the branch

Mesh Current (A) Current in the mesh
 CurrentDerivative (-) Current derivative in the mesh

38 Chapter 6 External Routines

© CryoSoft, 2021

CHAPTER 6

External Routines

Warning External Routines give unlimited access to the data structure used by the main
program. Improper programming of External Routines can therefore corrupt operation and
lead to evident or concealed malfunctions and generate manifest or hidden errors in the
computed results. IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR
UNAUTHORISED USE OF THIS FEATURE, even if advised of the possibility of such damages.

Linking external routines

The External Routines for POWER are FORTRAN functions packaged in a series of files
contained in the directory:

~/CryoSoft/usr/power/code_x.x

(where x.x stands for the version you received) which you will have received with the
standard installation. In order to customize the code you will need to write modified version of
these files. We strongly suggest to create your own directory tree within the above directory,
and to modify only copies of the External Routines in order to be able to safely retrieve the
standard version at your wish. Once the modified routines are ready, you will need to compile
them and link them to the standard part of the code, to produce a customized version of the
executable of POWER. For this purpose you can use the standard makefile

~/CryoSoft/etc/power.make

that can be copied and modified. Once more we strongly suggest that you modify only a copy
of the standard makefile. Refer to the installation guide [1] for more details on the use of the
makefiles, compilation and link-editing of the program.

Calling protocol

The following sections describe the calling protocol for the External Routines. For clarity we
have subdivided the description in sections that are either associated with the type of function
or with the type of component involved. The convention followed for the definition of the
FORTRAN type of variables is the same as described in Chapter 4.

 Chapter 6 External Routines 39

© CryoSoft, 2021

The External Routines for POWER are defined as FORTRAN functions. The function
returns a single real or integer value that must be computed by the user within the routine.
All parameters passed to the function must be regarded as input parameters and cannot be
modified.

Note FORTRAN unit numbers above 50 are reserved by the CryoSoft library for internal
use, and should not be allocated for read/write operations. Any allocation or use of units above
50 can result in I/O errors or malfunctions.

Branch resistance

real function userBranchResistance (Branch, RInitial, Voltage,

Current, Time)

Returns the resistance (W) of a branch. Called if Model=user for a branch of type
Resistance.

Parameter Type Units Meaning

Branch I (-) Branch number
RInitial R (W) Initial resistance, as from input
Voltage R (V) Voltage in the branch
Current R (C) Current in the branch
Time R (s) Simulation time

Branch current

real function userBranchCurrent (Branch, IInitial, Voltage,

PreviousCurrent, Time)

Returns the current (A) of a branch. Called if Model=user for a branch of type
CurrentSupply.

Parameter Type Units Meaning

Branch I (-) Branch number
IInitial R (�) Initial current, as from input
Voltage R (V) Voltage in the branch
PreviousCurrent R (A) Current in the branch at the previous time step
Time R (s) Simulation time

Branch voltage

real function userBranchVoltage (Branch, VInitial, PreviousVoltage,

Current, Time)

40 Chapter 6 External Routines

© CryoSoft, 2021

Returns the voltage (V) of a branch. Called if Model=user for a branch of type
VoltageSupply.

Parameter Type Units Meaning

Branch I (-) Branch number
VInitial R (V) Initial voltage, as from input
PreviousVoltage R (V) Voltage in the branch at the previous time step
Current R (A) Current in the branch
Time R (s) Simulation time

 Chapter 7 Troubleshooting and Errors 41

© CryoSoft, 2021

CHAPTER 7

Troubleshooting and Errors

Error messages are reported to the output ASCII log file and to the standard output. The form
of a typical error report is the following

ERROR in procedure <procedure name>: <error message>
called by <calling procure> at position <n>
called by <calling procure> at position <m>
......

where <procedure name> is the name of the routine where the error occurred and <error
message> reports a short description of the error situation. This line is followed by the trace of
the <calling procedure> up to the main program. In case of queries about error conditions,
please take care to report error messages completely, including the calling trace.

Errors can be generated at four different levels in the code:

• input parsing and syntax errors;
• data consistency errors;
• runtime errors;
• internal consistency errors.

Input parsing errors
Input parsing and syntax errors are detected during the interpretation of the input file. They
indicate that the variable naming, the command syntax or the type and number of numerical
data in the input file are incorrect. Verify syntax in the input file in this case.

Data consistency errors
Data consistency errors are detected when input data are not coherent among themselves and
would result in a model that cannot be analyzed. Typical cases are selection of incompatible
options, or input data out-of-range. Verify the consistency of the input data in this case.

Runtime errors
Runtime errors are detected either when the solver enters a physical or numerical instability, or
when the size of the problem exceeds the maximum allowed. Physical instabilities can be
triggered by improper setting of physical conditions (e.g. initial conditions or boundary
conditions), or excessive transient loads in case of non-linear network simulations (e.g. very
large voltages or current transients). Verify input conditions in this case.

42 Chapter 7 Troubleshooting and Errors

© CryoSoft, 2021

Numerical instabilities can be triggered by the use of very large time steps. In case of
numerical instability, attempt at reducing the maximum time step.

The maximum size of the network that can be solved is determined by the requested memory
allocation in the FORTRAN include file:

~/CryoSoft/src/power/code_x.x/includes/parameters.inc

where parameters are set statically. The parameters affecting memory allocation are the
following, with the associated meaning:

Parameter Meaning

MaxBrc maximum number of branches
MaxMsh maximum number of meshes

The version of the code you received can be modified by adjusting these parameters as
desired. The code then needs to be compiled and link-edited as explained in the installation
manual you received [1].

Warning Modifying the code dimensioning parameters requires understanding of the
memory allocation for the system variables, and of the internal structure of the code. IN NO
EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF THIS
FEATURE, even if advised of the possibility of such damages.

Internal consistency errors
Internal consistency errors indicate corruption of the internal data structure of the program. An
internal consistency error cannot be generated using the standard program and reading data
from input only. However, they can be detected in case that customized External Routines
with improper data handling are used. They diagnose a severe fault within the code. If you are
using External Routines, verify their consistency with the calling protocol. In case you are not
using External Routines, report internal consistency errors to us.

 Chapter 8 References 43

© CryoSoft, 2021

CHAPTER 8

References

[1] CryoSoft Installation Manual, Version 8.1, 2016.

[2] CryoSoft Variables Manual, Version 1.0, 2016.

