

User’s Guide

Version 2.1a
November 2021

SuperMagnet CryoSoft

Multitasking code manager

2

© CryoSoft, 2021

DISCLAIMER

Even though CryoSoft has carefully reviewed this manual, CRYOSOFT MAKES
NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS PROVIDED “AS IS”, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if advised of the possibility of such
damages.

Copyright Ó 2007-2021 by CryoSoft

 3

© CryoSoft, 2021

Contents

ROADMAP 4	
Before you start 4	
How to use this manual 4	

INTRODUCTION 5	
What is SUPERMAGNET 5	
Details of the coupling procedure 7	

THEA-FLOWER coupling 8	
THEA-POWER coupling 9	
THEA-HEATER coupling 9	
FLOWER-HEATER coupling 11	
MrX coupling 13	
Staggered time steps and synchronization 13	
Coupling instabilities 14	

INSTALLING AND RUNNING SUPERMAGNET 15	
Platforms 15	
Installation 16	
How to run SUPERMAGNET 16	

CASE STUDIES 18	
Pressure oscillations in a pipe connecting two volumes 19	
Coil quench simulation 25	

INPUT REFERENCE 33	
Structure and syntax 33	
Input variables reference 34	

Child 34	
Connection 35	

TROUBLESHOOTING AND ERRORS 36	
Input parsing errors 36	
Data consistency errors 36	
Runtime errors 37	
Internal consistency errors 37	

REFERENCES 38	

4 Roadmap

© CryoSoft, 2021

Roadmap

Before you start
This manual is the reference user’s guide for SUPERMAGNET. It gives a user-end explanation
on the installation and working of the code, case studies to familiarize with the preparation of
the input, a complete list of input commands and parameters specifications, and a list of error
messages. SUPERMAGNET is a manager application that launches and administers
communication among other CryoSoft programs. We assume throughout the manual that you
are familiar with the specific applications coupled by SUPERMAGNET, and in particular THEA,
FLOWER, POWER, HEATER, and MrX for which we provide separate user’s manuals.

How to use this manual
This manual is structured as follows:

§ Chapter 1 gives a short description of the manager and communication functions of

SUPERMAGNET and how the codes are coupled in practice;

§ Chapter 2 gives basic information on the installation, explains how to start a

SUPERMAGNET run on a UNIX workstation.

§ Chapter 3 contains case studies that the reader should use to familiarize with the

operation and features of the program.

§ Chapter 4 contains additional information on the preparation of the input and the

meaning of the input variables;

§ Chapter 5 deals with troubleshooting and error messages;

§ Chapter 6 gives the references and a general bibliography for documentation.

Beginners to SUPERMAGNET should read chapters 1, 2 and 3 in sequence. They will make
occasional cross reference to chapters 4 and 5 for detailed information. Experienced users will
use chapter 4 for daily operation.

 Chapter 1 Introduction 5

© CryoSoft, 2021

CHAPTER 1

Introduction

What is SUPERMAGNET
SUPERMAGNET provides an answer to a basic need of superconducting magnet designers,
namely to consider in his daily work various and different configurations of superconductors
in a magnet, with disparate cooling modes and power supply connection, and for each of them
a spectrum of operating conditions. Each of these situations is analyzed using basic tools and
methods that are common to most configurations, but are sequenced differently according to
the analysis to be performed in a specific magnet system, and for a specific operating
condition.

The idea behind SUPERMAGNET reflects the designer’s approach, namely to use existing tools,
and join them in a customizable, flexible, and powerful environment for the analysis of
thermo-hydraulic and electrical transients in superconducting magnetic systems, including its
proximity cryogenics and power supply.

The CryoSoft suite of codes THEA (Thermal, Hydraulic and Electric Analysis of
Superconducting Cables) [1], FLOWER (Hydraulic Network Simulation) [2], POWER (Electric
Network Simulation of Magnetic Systems) [3], HEATER (Simulation of Heat Conduction) [4],
and MrX1 (Generic Data Exchange) provides a basis for well optimized and flexible tools for
the analysis of specific issues in superconducting magnet systems. SUPERMAGNET is the
manager application that launches two or more of the above codes, schedules their
communication and terminates execution as appropriate2. The codes communicate through a
data exchange mechanism (described later) that achieves the desired physical coupling and
makes it possible to describe a series of processes such as:

• effect of helium expulsion during thermal transients on the proximity cryogenics;
• regulation of cryogen flow and valving conditions, subject to transient response in

superconducting cables;
• evolution of the coil current during quench, including the effect of quench resistance,

and coupling within segments of the same magnetic system;
• cooling of a coil with thermally coupled parallel channels;

and others.

1 MrX is a generic data exchange application presently in conceptual design.
2 In the process of programming the modifications necessary for this functionality in each of the basis
codes, we have also minimized the impact on each of them, thus maintaining the full stand-alone
capability.

6 Chapter 1 Introduction

© CryoSoft, 2021

To achieve the above result, SUPERMAGNET makes use of UNIX specific features, namely the
possibility to launch and identify child processes from a father process that is running in the
OS, and to launch and retrieve signals through the OS. Because of the technology chosen,
SUPERMAGNET is a UNIX or UNIX-like specific applications, and only operates under UNIX,
UNIX emulators, LINUX and Mac-OSX (native).

The mechanism by which SUPERMAGNET couples processes is described schematically in Fig.
1. SUPERMAGNET is the father process of an arbitrary number of children processes. This
family of processes (father and children) shares direct read/write access of a series of files
constituting the shared family memory.

At start-up, the father reads from a user defined input file the sequence of coupled codes, the
children. For all children processes to be launched, the father starts the child process and
provides the following information:

• the father process-ID (PID);
• the input file name for the child process;
• the file name for the shared family memory.

After being started, the child confirms that the process is launched and identifies itself,
providing the child PID. At this point the child process starts the desired simulation based on
the child input file provided, and stores the results as in a stand-alone run.

The child process is in general a time stepping algorithm, progressing a simulation from one
time step to the next. At each time step, the child writes results to the shared family memory
file, to be used by the father, and, eventually, by other children processes. It then notifies the
father that results are available and waits for a receipt from the father.

Figure 1. Schematic view of the family formed by SUPERMAGNET (father process) and an

arbitrary number of children processes. Communication between processes takes
place through a file containing the shared family memory. Each process accesses a
single file record in read/write mode, and the father manages the exchange of
variables by reading/writing multiple records. Input and output of each child
process is on dedicated, private files to that process.

Father

Child 1 Child 2 Child n

Child 1 Shared Memory
Child 2 Shared Memory

…
Child n Shared Memory

…

Shared family memory file

input

output

input

output

input

output
Private files

 Chapter 1 Introduction 7

© CryoSoft, 2021

To proceed with the time stepping, in most common cases the child has to receive results from
other processes. The results to be exchanged are written on the shared family memory file,
upon which the father provides a ready status. The child then reads the results, notifies the
father of the receipt and proceeds with the time stepping.

The handling of signals and the exchange of results is a bit more involved on the side of the
father. At each notification of available results, the father first identifies the child providing
results, and then reads and stores results to respond to subsequent requests from other children.
At each demand of results, the father identifies the demanding child and interpolates the
results at the demanded time. The results requested are then written on the shared family
memory file for the child process to retrieve and proceed.

At the end of the simulation, as specified in the child input file, each child notifies father that
the process is completed and waits for a receipt from the father. The father, in turn, at the
receipt of a notification of end of simulation notifies the receipt to the child, and responds to
all other processes until the maximum simulation time reached by the child who completed its
run is reached. At this point all other processes are killed.

The mechanism described above is fully parametric, meaning that the number and nature of
child processes managed by SUPERMAGNET is defined by the user. At the same time, however,
the user should take care that there is no conflict in the use of files, and that the single
simulation inputs are coherent and consistent for the desired coupled system simulation.

Details of the coupling procedure

The processes and coupling possibilities implemented in the present version of SUPERMAGNET
are shown in the following table. The entries are intended as the quantities provided by a given
code (row) to a coupled code (column). Future versions of SUPERMAGNET are planned to
complete and extend the above table, and in particular to make available the coupling through
the code MrX that is presently not available to the end user.

 THEA FLOWER POWER HEATER MrX
Thermal Hydraulic Junction Volume

THEA

Thermal Branch
resistance

Line
temperature

Hydraulic Junction
B.C.

Line
temperature
(and HTC)

FLOWER

Junction Hydraulic
B.C.

Line
temperature
(and HTC)

Volume
Point

temperature
(and HTC)

POWER Cable
current

HEATER
Thermal
heat flux

Hydraulic
heat flux
and wall

temperature

Junction
heat flux
and wall

temperature

Volume
heat flux
and wall

temperature

MrX

The following sections contain a detailed description of the couplings implemented.

8 Chapter 1 Introduction

© CryoSoft, 2021

THEA-FLOWER coupling
Hydraulic - junction boundary conditions. A THEA hydraulic component can be coupled
to a FLOWER hydraulic network, making the THEA hydraulic a part of the FLOWER network.
This is achieved by setting:

• boundary conditions of type external in the THEA hydraulic (see the reference
manual [1]). An external boundary conditions in THEA signals the need for
coupling;

• a junction of type external in FLOWER (see the reference manual [2]) which
provides a phantom representation of the THEA hydraulic component in the
FLOWER network, and signals to FLOWER the presence of a coupled component . As
for any other junction, this external junction connects two volume’s in the
hydraulic network of FLOWER.

The coupling algorithm is the following:

• the boundary conditions at the two ends of a THEA hydraulic component is set
equal to the pressure and temperature of two volume’s in the external junction
in FLOWER;

• the mass and enthalpy fluxes in or out of the two same volume’s in FLOWER are
augmented by those entering and exiting the coupled hydraulic in THEA.

The equations in FLOWER for the volume conservation of mass and energy, written in terms of
the volume pressure and temperature, are modified as follows:

 (1)

 (2)

where the modifications are the terms underlined in the above equations, and variables with
the subscript THEA indicate the inlet or outlet conditions from the THEA hydraulic3. In THEA
the modification corresponds to using the volume pressure and temperature to impose the
hydraulic boundary conditions:

 (3)

 (4)

where the variable with subscript boundary indicates inlet or outlet conditions, and the
variable with subscript FLOWER stands for the conditions in the volume connected to the
specific hydraulic boundary considered. Note that the treatment of boundary conditions in
THEA is otherwise standard, and depending on the direction of the flow either both p and T, or
only p can be imposed.

3 Note that the massflow is intended as positive when entering the FLOWER volume in question, i.e. when
exiting the corresponding pipe end in THEA

V ∂ p
∂t

+ mi c
2 +φ hi +

vi
2

2
− h

"

#
$

%

&
'

(

)
*

+

,
-∑ + mTHEA c2 +φ hTHEA +

vTHEA
2

2
− h

"

#
$

%

&
'

(

)
*

+

,
-= φ q

VρCv
∂T
∂t

+ mi φCvT + hi +
vi
2

2
− h

"

#
$

%

&
'∑ + mTHEA φCvT + hTHEA +

vTHEA
2

2
− h

"

#
$

%

&
'= q

pboundary = pFLOWER

Tboundary = TFLOWER

 Chapter 1 Introduction 9

© CryoSoft, 2021

THEA-POWER coupling
Cable - branch current. The total cable current used for simulation by THEA can be obtained
by a simulation of an electric network with POWER. This is achieved by setting:

• the model for the current in the THEA simulation to external (see the reference
manual [1]), which signals the external coupling;

• a resistance branch of type external in the input file of POWER . (see the
reference manual [3]) that represents the THEA cable. This branch provides a phantom
representation of the THEA cable in the POWER network, and signals to POWER the
presence of a coupled component. As for any other branch, this external branch
is listed in the connectivity of the network of POWER.

The coupling algorithm is the following:

• the cable current in THEA equal to the current in the resistance branch in POWER;
• the resistance of the same branch in POWER equals to the total resistance of the cable

length in THEA.

To achieve the coupling, the total cable current in THEA is set to:

 (5)

where the variable with subscript POWER stands for the result of the POWER simulation in the
branch identified. In POWER, the resistance of the branch is set to

 (6)

where the variable with subscript THEA stands for the total cable resistance computed by
THEA.

THEA-HEATER coupling
Thermal heat flux - line temperature. Thermal processes in THEA can be coupled to a
solution of heat conduction in HEATER. More specifically, it is possible to couple the
temperature of a THEA thermal component into a HEATER mesh through the boundary
condition along a line of the mesh. This is achieved by setting:

• the model for the heat flux in the coupled THEA component (thermal) to external
(see the reference manual [1]), which signals the external coupling;

• a line with a heat boundary condition of type external in the mesh used by
HEATER (see the reference manual [4]). This line represents the THEA component in
the HEATER mesh, and for consistency reasons should be of identical length as the
length of the component itself. Such a line signals to HEATER the presence of a
coupling.

The coupling algorithm is the following:

• the linear heat flux in the nodes of the THEA thermal component is equal to the heat
load in the nodes of the line in the HEATER mesh;

• the temperature in the nodes of the line in the HEATER mesh is set equal to the
temperature of the THEA thermal component.

Icable = IPOWER

Rbranch = RTHEA

10 Chapter 1 Introduction

© CryoSoft, 2021

Although the lengths of the HEATER line and of the THEA component should be equal, the
nodes in the two objects do not need to be coincident. At each coupling step the values are
interpolated in space to provide the desired values at the desire locations. The interpolation is
performed using piecewise linear functions.

In practice, the coupling is achieved as follows. The linear heat flux in node i of the THEA
component, indicated as is set to:

 (7)

where s indicates the curvilinear coordinate along the HEATER line at the points j-1 and j
bracketing xi (i.e. sj-1 ≤ xi ≤ sj). The heat flux along the HEATER line is

obtained by a projection of the nodal heat resultant at each node of the line. In HEATER, the
temperature at each node of a line, indicated as is obtained by interpolation of

the THEA temperatures:

 (8).

Hydraulic heat flux - line temperature. Hydraulic processes in THEA can be coupled to a
solution of heat conduction in HEATER. There are two ways that a THEA hydraulic
component can couple into a HEATER mesh, namely through direct coupling of temperature
and heat flux, as described earlier in the case of a THEA thermal component, or through
convective coupling. The first possibility is in essence identical to the procedure described
earlier. For the second one, convective coupling, this achieved by setting:

• the model for the convective heat flux in the coupled THEA component (hydraulic)
to external (see the reference manual [1]), which signals the external coupling;

• a line with a convection boundary condition of type external in the mesh used
by HEATER (see the reference manual [4]). This line represents the THEA
component in the HEATER mesh, and for consistency reasons should be of identical
length as the length of the component itself. Such a line signals to HEATER the
presence of a coupling.

The coupling algorithm is the following:

• the wall temperature (heat convection) in the nodes of the THEA hydraulic
component is equal to the temperature in the nodes of the line in the HEATER mesh;

• the temperature and heat transfer coefficient in the nodes of the line in the HEATER
mesh is set equal to those of the THEA hydraulic component.

Although the lengths of the HEATER line and of the THEA component should be equal, the
nodes in the two objects do not need to be coincident. At each coupling step the values are
interpolated in space to provide the desired values at the desire locations. The interpolation is
performed using piecewise linear functions.

In practice, the coupling is achieved as follows. The linear heat flux in node i of the THEA
component, indicated as is computed using the wall convection temperature

!qTHEA xi()

!qTHEA xi() = !qHEATER sj−1()+
!qHEATER sj()− !qHEATER sj−1()

sj − sj−1
xi − sj−1()

!qHEATER sj()

THEATER sj()

THEATER sj() = TTHEA xi−1()+
TTHEA xi()−TTHEA xi−1()

xi − xi−1
sj − xi−1()

!!qTHEA xi()

 Chapter 1 Introduction 11

© CryoSoft, 2021

 and the heat transfer coefficient of the flow . This requires the

calculation of the wall temperature for THEA at the location xi:

 (9)

where s indicates the curvilinear coordinate along the HEATER line at the points j-1 and j
bracketing xi (i.e. sj-1 ≤ xi ≤ sj). The heat flux in node i of the THEA component is then obtained
as follows:

 (10)

The heat flux along the HEATER line is obtained in a similar way, whereby the

heat transfer coefficient is the one computed in the THEA hydraulic component. In this case
wall temperature and the heat transfer coefficient for HEATER

at the location sj are obtained by interpolation of the THEA temperatures and heat transfer
coefficient:

 (11)

 (12).

FLOWER-HEATER coupling
Junction heat flux - line temperature. This is a way to couple flow processes in FLOWER to a
solution of heat conduction in HEATER. As for THEA (see earlier), there are two ways that a
FLOWER junction component can couple into a HEATER mesh, namely through direct
coupling of temperature and heat flux, or through convective coupling. Both possibilities are
obtained by coupling the heat source in the FLOWER junction to the boundary conditions in a
HEATER line.

Direct coupling of temperature and heat flux is achieved by setting:

• the model for the heat flux in the coupled FLOWER junction to external (see the
reference manual [2]), which signals the external coupling;

• a line with a heat boundary condition of type external in the mesh used by
HEATER (see the reference manual [4]). This line represents the FLOWER junction in
the HEATER mesh, and for consistency reasons should be of identical length as the
length of the component itself. Such a line signals to HEATER the presence of a
coupling.

The coupling algorithm is the following:

• the heat source in the nodes of the FLOWER junction is equal to the interpolated
values along the line in HEATER;

THEATER s() HTCTHEA xi()
TTHEA
wall xi()

TTHEA
wall xi() = THEATER sj−1()+

THEATER sj()−THEATER sj−1()
sj − sj−1

xi − sj−1()

!!qTHEA xi() = HTCTHEA xi() TTHEAwall xi()−TTHEA xi()()

!qHEATER sj()

THEATER
wall s j() HTCHEATER sj()

THEATER
wall s j() = TTHEA xi−1()+

TTHEA xi()−TTHEA xi−1()
xi − xi−1

sj − xi−1()

HTCHEATER sj() = HTCTHEA xi−1()+
HTCTHEA xi()−HTCTHEA xi−1()

xi − xi−1
sj − xi−1()

12 Chapter 1 Introduction

© CryoSoft, 2021

• the temperature in the nodes of the line in HEATER is equal to the interpolated
values along the FLOWER junction.

Convection coupling is achieved by setting:

• the model for the convective heat flux in the coupled FLOWER junction to
external (see the reference manual [2]), which signals the external coupling;

• a line with a convection boundary condition of type external in the mesh used
by HEATER (see the reference manual [4]). This line represents the FLOWER
component in the HEATER mesh, and for consistency reasons should be of identical
length as the length of the component itself. Such a line signals to HEATER the
presence of a coupling.

The coupling algorithm is the following:

• the wall temperature (heat convection) in the nodes of the FLOWER junction
component is equal to the temperature in the nodes of the line in the HEATER mesh;

• the temperature and heat transfer coefficient in the nodes of the line in the HEATER
mesh is set equal to those of the FLOWER junction component.

The lengths of the HEATER line and of the FLOWER junction should be equal, but the nodes in
the two objects do not need to be coincident. At each coupling step the values are interpolated
in space to provide the desired values at the desire locations. The interpolation is performed
using piecewise linear functions. (see earlier description of the THEA - HEATER coupling for
details).

Volume heat - point temperature. A second way to couple thermal processes in FLOWER to a
solution of heat conduction in HEATER is to link local heating from a HEATER point to a
FLOWER volume. Also in this case there are two ways that a FLOWER volume component can
couple into a HEATER mesh, namely through direct coupling of temperature and heat flux, or
through convective coupling.

Direct coupling of temperature and heat flux is achieved by setting:

• the model for the heat flux in the coupled FLOWER volume to external (see the
reference manual [2]), which signals the external coupling;

• a point of type external in the mesh used by HEATER (see the reference manual
[4]). This point represents the FLOWER volume in the HEATER mesh, and signals to
HEATER the presence of a coupling.

The coupling algorithm is the following:

• the heat source in the FLOWER volume is equal to the heat flux in the point in
HEATER;

• the temperature in the node identified as the point in HEATER is equal to the value in
the FLOWER volume.

Convection coupling is achieved by setting:

• the model for the convective heat flux in the coupled FLOWER volume to external
(see the reference manual [2]), which signals the external coupling;

• a point with a convection boundary condition of type external in the mesh used
by HEATER (see the reference manual [4]). This point represents the FLOWER
component in the HEATER mesh, and signals to HEATER the presence of a coupling.

 Chapter 1 Introduction 13

© CryoSoft, 2021

The coupling algorithm is the following:

• the wall temperature (heat convection) in the FLOWER volume is equal to the
temperature in the point in the HEATER mesh;

• the temperature and heat transfer coefficient in the point in the HEATER mesh is set
equal to those of the FLOWER volume.

MrX coupling
MrX provides a mechanism for generic data exchange from or to one of the codes coupled by
SUPERMAGNET. MrX does not perform calculations, but can substitute to any of the coupling
ends detailed earlier, to interface a data exchange to other codes that are running concurrently
to SUPERMAGNET. Launched by SUPERMAGNET, MrX receives data from one of the CryoSoft
codes, running a coupled simulation, and reformats it into an ASCII file with a given protocol
that can be read and used by a concurrent simulation code. The concurrent simulation is then
expected to produce coupling results that MrX reads and converts as appropriate to provide it to
the coupled CryoSoft code.

Note At the time of writing of this manual, MrX is in conceptual design and testing, and is
not yet available to the end user.

Staggered time steps and synchronization
In the general case, each child process of a global run advances the time integration on its own
time step, possibly adapted following the evolution of the transient. The exchange of
information between children processes needs hence to be synchronized so that each process
receives data to advance its time integration at the required time. This is done by
SUPERMAGNET interpolating linearly between the data made available by each child process.
We show schematically below how this is achieved by taking the case of two children
processes, C1 and C2, starting at the same initial time t0 and advancing from there on their
independent, and variable time steps.

C1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

C2

SM

f1

f2

P1
P2

P3
P5

P4

P6

P7 P8
P10 P11 P12

P9

P13

14 Chapter 1 Introduction

© CryoSoft, 2021

The two processes produce data that needs to be exchanged for the coupling, i.e. the two
functions drawn by points f1 and f2. At each time reached by process C1, the process itself
needs the value of f2 to continue the time stepping. Similarly, process C2 requires the value of
f1 at each time reached to continue with the stepping algorithm.

With reference to the scheme above, this is achieved by the following sequence of operations:

• process C1 performs a time step from time t0 to time t4 and requests the value of f2 at
time t4;

• process C2 performs a time step from time t0 to time t1 and requests the value of f1 at
time t1;

• SUPERMAGNET interpolates (linearly) the value of f1 at time t1 (point P1);
• process C2 performs a time step from time t1 to time t2 and requests the value of f1 at

time t2;
• SUPERMAGNET interpolates (linearly) the value of f1 at time t2 (point P2);
• process C2 performs a time step from time t2 to time t3 and requests the value of f1 at

time t3;
• SUPERMAGNET interpolates (linearly) the value of f1 at time t3 (point P3);
• process C2 performs a time step from time t3 to time t5 and requests the value of f1 at

time t5;
• SUPERMAGNET interpolates (linearly) the value of f2 at time t4 (point P4);
• process C1 performs a time step from time t4 to time t6 and requests the value of f2 at

time t6;
• SUPERMAGNET interpolates (linearly) the value of f1 at time t5 (point P5);
• process C2 performs a time step from time t5 to time t7 and requests the value of f1 at

time t7;
• …

In practice, each process is advancing by one step at a time, provide the required update on the
data for coupling and wait for new data. SUPERMAGNET takes care of putting the processes on
hold, interpolating results, and releasing data to processes to make them advance. We finally
remark that the scheme above does not require iterations, which simplifies greatly the
interactions among codes, as well as the structure of each coupled code. As remarked in the
next section, however, this demands care on the side of the user to avoid coupling instabilities.

Coupling instabilities
In accordance with the description above, the physical coupling of the parallel simulations
takes place at each time step, and is fully explicit. This is most practical as it reduces the
modifications of the single coupled codes to a minimum, and corresponds to the simplest
staggered partitioned field analysis described by Park and Felippa [5]. The drawback is that
this procedure can become numerically unstable if the exchange of information between the
domains takes place on a time scale much longer than the characteristic times of each domain.
Instability of this type, presently not detected, can be cured by the user decreasing the time
step of the single simulations coupled.

 Chapter 2 Installing and Running SUPERMAGNET 15

© CryoSoft, 2021

CHAPTER 2

Installing and Running SUPERMAGNET

Platforms
SUPERMAGNET is provided as a package developed for running under UNIX or UNIX-like
(e.g. Linux) operating system. The reason is that it requires messaging among processes as
standard in the above environment. At the time when this manual is written, the platform
where SUPERMAGNET is developed is

§ Macintosh running MacOS-X (10.10.5 and higher) under XQuartz,(2.7.8) gcc (5.1) with

gfortran.

At different time of the development and production, the code has been installed and tested on
the following platforms:

• Mac-OS X (10.2 and higher) operating system;
• GNU/Linux operating system (most distributions).
• INTEL PC’s running RedHat Linux OS;
• IBM-RISC workstations running the AIX-V4 operating system and later;
• SUN-SPARC workstation running the Solaris OS operating system;
• DEC-ALPHA workstation running the OSF-1 operating system;
• HP workstations running HP-UX OS;
• Windows-2000 and Windows-XP operating system, with an installed CYGWIN

environment (the reference version tested is CYGWIN 1.5.24-2).

Although UNIX obeys strict standards, the architecture of the operating and file system may
vary from vendor to vendor. It is therefore possible that porting may require minor adaption of
code and libraries. Contact us for advice.

In the following sections we assume here that you are running under a UNIX or UNIX-like
operating system, and that you are familiar with UNIX commands, directory and file handling.
Contact your system administrator for matters regarding UNIX commands and file system.

Although versions of SUPERMAGNET have been ported to PC’s running the Windows OS,
at the time when this manual is written this is not a platform directly supported and part of the
instructions provided below (i.e. how to run and post-process a case) may not be directly
applicable.

16 Chapter 2 Installing and Running SUPERMAGNET

© CryoSoft, 2021

Installation
SUPERMAGNET is one of the CryoSoft family of programs. You will have therefore
received the CryoSoft package containing SUPERMAGNET either as a tar-ball or in pre-
installed form. Verify in the CryoSoft installation manual [6] the procedure to be followed for
the proper installation of the complete package. The executable code is in the directory
~/CryoSoft/bin/. You will find the example inputs command files in the directory
~/CryoSoft/xample/supermagnet/code_x.x/ (the symbol ~/ stands for your home
directory, x.x for the version you received).

How to run SUPERMAGNET
Start-up To run SUPERMAGNET you will need to launch the executable code. In the
standard installation on a UNIX system described above SUPERMAGNET is launched typing
the command:

~/CryoSoft/bin/supermagnet [-i InputFile] [-v/-s] [-h]

Note that command line options are not mandatory (enclosed in brackets, following UNIX
documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the run
-v, --verbose print simulation progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the input file name. SUPERMAGNET reads the run definition from an ASCII file
whose structure and content are described in detail in Chapter 4 of this manual. Examples of
input files are given in Chapter 3. At this time you will enter the name of a file containing the
input for the case to be run (e.g. file.input):

Enter input file name
file.input

SUPERMAGNET then parses the input file, checks consistency, configures the case and starts
execution. This begins by launching all children processes, in the same sequence as they are
defined in the input file. Note that the children processes are usually distributed among the
available processors in a multi-core CPU, which takes natural advantage of parallelism.

Each child process is assigned an input file (also defined in the SUPERMAGNET input),
which is parsed to define the specific simulation. Upon successful data input, all children start
execution, set initial conditions and begin the time integration. This is visible through the
usual status message as time advances. Because all children processes run concurrently, the
messages are interleaved, e.g. in the case of a THEA - HEATER coupled simulation:

....
HEATER Time : 5.819E-04 Step : 1.946E-04 Time/Tend : 0.00006
THEA Time : 7.589E-04 Step : 2.563E-04 Time/Tend : 0.00008
HEATER Time : 8.738E-04 Step : 2.919E-04 Time/Tend : 0.00009
THEA Time : 1.143E-03 Step : 3.844E-04 Time/Tend : 0.00011
....

As should be clear from the introduction, SUPERMAGNET only performs supervision
functions, and has, as such, no direct output or result. As a consequence, SUPERMAGNET

 Chapter 2 Installing and Running SUPERMAGNET 17

© CryoSoft, 2021

does not monitor advancement in time. The processes continue to execute until the simulation
is completed by each process, or a TERMINATE signal is launched by SUPERMAGNET in
case of an error. Messages of this type will be printed in case of normal end:

....
HEATER Time : 1.000E+01 Step : 1.888E-02 Time/Tend : 1.00000
HEATER Total Cpu [s]: 0.301997006
THEA Time : 1.000E+01 Step : 3.137E-03 Time/Tend : 1.00000
THEA Total Cpu [s]: 4.78279400

In case of abort from one of the processes (e.g. input file parsing error), and with the present
version of the CryoSoft codes, there may be situations where one or more processes remain
hanging. This is evident as a stall of the messages from time advancement. In this case the user
can kill the SUPERMAGNET run with a control-C (UNIX kill command) which in most
systems will kill all processes, and remove the temporary files created for data exchange. It is
good practice to check that no hanging processes are left (using the UNIX ps command), and
if required remove the temporary files from the directory (files with ending .PName, where
PName is the name of the process as defined in the input file of SUPERMAGNET).

Finally, results are provided by each of the simulation codes running under the management of
SUPERMAGNET, and are accessed using the standard post-processing facilities of each code.

Restart It is possible to profit from the restart features in the CryoSoft codes,
launching a simulation that restarts from the last time stored by each single code. This process
requires that all processes managed by SUPERMAGNET have stored their end time, and that
the end time is the same. A restart procedure is seen by SUPERMAGNET as a normal run
(previous section), but the input files provided to each single process trigger a restart.

18 Chapter 3 Case Studies

© CryoSoft, 2021

CHAPTER 3

Case Studies

As discussed in Chapter 2, SUPERMAGNET requires an input file that defines the family of
processes to start and couple. We refer to this file as the input file. Each child process
belonging to the family, in turn, also requires an appropriate input file to define the model, the
boundary and operating conditions, and the simulation parameters. Indeed, each child process
runs as if it performed a stand-alone simulation, and we refer to the manuals of each of the
codes coupled by SUPERMAGNET for details on these input files. It is the responsibility of the
user to insure that the input files of each child process are coherent.

Post-processing of the results from each child process is performed using the specific post-
processor of the code coupled (e.g., THEAPOST for THEA, FLOWERPOST for FLOWER, etc.). Post
processing the results of a simulation also requires an input file with a sequence of commands
that select results, print and plot them. We refer to this file as the post-processing command
file.

In this Chapter we give examples of input files and post-processing command files to deal
with practical modeling situations. The case studies given here are intended to guide the user
from the formulation of a problem to its modeling, the creation of the input file for the case,
running the case, and finally the generation of the results. For obvious reasons, they are of
limited complexity and are intended as examples to illustrate minimum capability of the
program. More complex situations can obviously be modeled, taking the following case
studies as starting points and evolving or combining them. Refer to Chapter 2 on how to run
the examples described here with SUPERMAGNET and to the specific manuals of the coupled
codes on how to generate results and plots with the appropriate post-processor.

Note All input files for the case studies discussed in this manual are provided with the
standard installation. They are located in the directory:

~/CryoSoft/xample/supermagnet/code_x.x

where x.x stands for the version you received. In the following sections we use the Courier
font to reproduce the content of those input files, while text in italic indicates our comments to
the input.

 Chapter 3 Case Studies 19

© CryoSoft, 2021

Pressure oscillations in a pipe connecting two volumes
Physical definition of the problem We consider a pipe of 5 mm diameter and 5 m
length filled with stagnant helium, initially at 4.5 k and 5 bar. The pipe is connected at the two
extremities to two large volumes, each 0.1 m3. The initial temperature of the volume is 4.5 K,
while the pressure is different, 5 bar at one end and 4.8 bar at the other end. The helium is
expected to flows through the pipe from the high pressure volume to the low pressure volume.
We assume for this demonstration that the friction factor of the pipe is very small (inviscid
flow). The situation is shown schematically below.

The pipe flow is simulated using an hydraulic component in THEA, while the volumes are
simulated using FLOWER. The coupling takes place between the volumes and the inlet/oulet
sections of the pipe.

Input file for the THEA simulation The model requires the definition of a single
hydraulic component, with inlet and outlet boundary conditions set to external to achieve
the coupling. The input file for the THEA run is shown below. Refer to [1] for details on the
input syntax.

thea.input

Begin Model

 ModelName 'test of coupling thea-flower'

 Length 5.0
 CurrentModel none
 MagneticFieldModel none
 StrainModel none

end

Begin Hydraulics

 Components 1
 Fluid Helium
 Model constant
 Area 19.6e-6
 Dh 5.0e-3

 fModel constant
 frictionfactor 1.0e-9
 hModel DB

 InitialCondition constant
 TInitial 4.5
 pInitial 5.0e5
 mdotInitial 0.0

 QModel none

 Tin = 4.5 K
pin = 5 bar

Tout = 4.5 K
pout = 4.8 bar

Lpipe = 5 m
Dpipe = 5 mm

V = 0.1 m3

V = 0.1 m3

20 Chapter 3 Case Studies

© CryoSoft, 2021

;
; the boundary conditions for the hydraulic are of type reservoir, as the connection
; to FLOWER happens through two volumes. The boundary conditions are imposed as
; external, triggering the connection to a coupled simulation.
;
 BoundaryType reservoir reservoir
 BoundaryConditions external external

end

Begin Simulation

 MeshType uniform
 NrElements 100
 ElementOrder 1
 ElementNodes 2

 StartTime 0.0
 EndTime 1.0
 OutputStep 0.01

 TimeMethod EulerBackward
 MinimumStep 1.0e-6
;
; Note that the maximum step should be kept sufficiently small to avoid coupling
; instabilities and achieve accurate simulation results. The time steps of the THEA
; and FLOWER simulations do not need to be the same.
;
 MaximumStep 5.0e-3
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl on
 Tolerance 1.0e-3

 LogFile thea.log
 StorageFile thea.store

end

Input file for the FLOWER simulation The model for FLOWER consists of the two large
inlet and outlet volumes, and a junction that phantoms the THEA hydraulic and specifies the
link between the two volumes. The input file for the FLOWER run is shown below. Refer to [2]
for details on the input syntax.

flower.input

Begin Simulation
 title 'test of coupling flower-thea'

 Volumes 2
 Junctions 1

 StartTime 0.0
 EndTime 1.0
 OutputStep 5.e-2
;
; Note that the maximum step should be kept sufficiently small to avoid coupling
; instabilities and achieve accurate simulation results. The time steps of the THEA
; and FLOWER simulations do not need to be the same.
;

 Chapter 3 Case Studies 21

© CryoSoft, 2021

 TimeMethod EulerBackward
 MinimumStep 1.0e-6
 MaximumStep 2.0e-3
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl none
 Tolerance 1.0e-3

 StorageFile flower.store
 LogFile flower.log

End

Begin Volume 1 ; inlet volume node
 V 1.0e-1 P 5e5 T 4.5
End

Begin Volume 2 ; outlet volume node
 V 1.0e-1 P 4.8e5 T 4.5
End

;
; This is the phantom junction, of type external, that mimics the THEA hydraulic
; and achieves the coupling between inlet and outlet of the pipe and the two volumes
; defined above
;

Begin Junction 1
 type external
 connection 1 2
End

Input file for SUPERMAGNET The two simulations above are launched and
supervised by SUPERMAGNET., whose input is reported below. The input file is based on a
standard installation, and the use of the standard version of THEA and FLOWER. Two child
processes are defined, and they are linked by associating the first hydraulic of the THEA
model to the first junction of the FLOWER model.

SM.input

; SUPERMAGNET input file for the THEA-FLOWER demo coupling of inviscid pipe flow
; between two large volumes (oscillating system)

Begin Child

; The first child defined is the FLOWER run. Below is the name of the child, used later
; to define the coupling indices between children processes
 Name F1

; The type of process is "flower" (a FLOWER run)
 ProcessType flower

; The input for this run is in the file flower.input
 Inputfile flower.input

End

Begin Child

22 Chapter 3 Case Studies

© CryoSoft, 2021

; The second child defined is the THEA run. Below is the name of the child, used later
; to define the coupling indices between children processes
 Name T1

; The type of process is "thea" (a THEA run)
 ProcessType thea

; The input for this run is in the file thea.input
 Inputfile thea.input

End

; Below is the definition of which specific part of the two children processes are
; coupled. In particular, the first hydraulic component of the THEA model corresponds
; to the first junction in the FLOWER model. The numbering refers to the order of
; definition in the models for each child (can be implicit)

Begin Connection
; THEA FLOWER
 Children T1 F1 ; children ID's
 Link hboundary 1 jboundary 1 ; component ID's
End

Post-processing command files Post-processing of the results from the coupled
simulation is done using the specific post-processors of each child process, in this case
THEAPOST and FLOWERPOST. Following is an example of the sequence of commands
necessary to generate plots using the post-processor THEAPOST. Refer to [1] for details on the
input syntax.

thea.post

StorageFile thea.store
PostScriptFile thea.ps
OutputFile thea.out

set plotsperpage 4

select x 0 2.5 5.0
plot pressure hydraulic 1
plot temperature hydraulic 1
plot velocity hydraulic 1
plot massflow hydraulic 1

select time 0.00 0.75 1.50 2.25 3.00
plot pressure hydraulic 1
plot temperature hydraulic 1
plot velocity hydraulic 1
plot massflow hydraulic 1

select time 6.25 7.00 7.75 8.50 9.25
plot pressure hydraulic 1
plot temperature hydraulic 1
plot velocity hydraulic 1
plot massflow hydraulic 1

stop

 Chapter 3 Case Studies 23

© CryoSoft, 2021

Similar to above, we report below an example of the sequence of commands necessary to
generate plots using the post-processor FLOWERPOST. Refer to [2] for details on the input
syntax.

flower.post

StorageFile flower.store
PostScriptFile flower.ps
OutputFile flower.out

set plotsperpage 4

plot temperature volume 1
plot temperature volume 2

plot pressure volume 1
plot pressure volume 2

stop

Results Two files are generated running the post-processors THEAPOST and
FLOWERPOST with the commands described above: the PostScript output thea.ps, containing
the plot for the THEA run, and PostScript output flower.ps, for the FLOWER run.

Note You will need a PostScript viewer to look at the plots in the PostScript file. The
standard viewer, usually installed on UNIX systems, is gs. Try to launch the viewer with the
commands:

gs thea.ps
gs flower.ps

The plots below show the first page in the PostScript output thea.ps. As requested in the
commands file, the first four plots are the pressure, temperature, velocity and massflow
waveforms at three selected positions along the pipe, inlet, middle and outlet. Note the
oscillation of the pressure at the two ends, corresponding to an oscillating flow in the pipe.
With negligible friction, as considered here, the system behaves as an harmonic oscillator.

24 Chapter 3 Case Studies

© CryoSoft, 2021

The corresponding output from the post-processing of the FLOWER run is shown below, which
is the PostScript output flower.ps. In this case we requested the temperature and pressure
of the two volumes. These oscillate, as observed from the previous plot. In particular the
pressures in the two volumes 1 and 2 are equal to the inlet and outlet conditions of the pipe, as
desired.

 Chapter 3 Case Studies 25

© CryoSoft, 2021

Coil quench simulation

Physical definition of the problem This case study deals with the calculation
of the evolution of temperature and current in a quenching coil wound with a NbTi strand that
we assume to be perfectly adiabatic. The total strand length in the coil is 5 m and is operated at
4.2 K, 300 A in a background field of 5 T. The strand itself has a diameter of 1 mm, is
composed of Copper, with RRR of 100, and standard NbTi in a Cu:NbTi ratio of 1.5:1. The V-
I resistive transition at the critical current is modeled using the power law approximation with
a reference electric field of 1 µV/cm (10-4 V/m) and an exponent n of 20. The quench is
initiated by a short heating pulse of 10 W/m with 1 ms duration and deposited over 2 cm
length located at 1 m from one coil end,corresponding to a total energy deposited of 0.2 mJ.
Below is a schematic of the strand developed length.

The coil is connected to a power supply that provides a constant current, and is protected by a
resistance of 0.3 mH connected in parallel to the coil. The coil itself is assumed to have an
inductance of 0.1 mH, while the resistance follows from the temperature and normal zone
evolution during the quench. A schematic representation of the electrical circuit is shown
below. The variable resistance branch represents the coupling to the resistance obtained from
the solution of the coil quench.

Below we demonstrate how to run a coupled simulation followed by a restart run.

Input file for THEA For this case we define a single thermal component, consisting of the
two materials of the strand: Cu and NbTi. The total current in the cable is set to external to
achieve the coupling. The input file for the THEA run is shown below. The simulation runs up
to a time of 100 ms. Refer to [1] for details on the input syntax.

thea.input

Begin Model

 ModelName 'test coupling thea-power'

 Length 5.0
;
; the current of the cable modelled by THEA is imposed as being external, triggering

I = 300 A
T = 4.2 K
B = 5 T

Lheater = 2 cm
q’ = 10 W/m

Lstrand = 5 m

D = 1 mm
Cu:NbTi = 1.5

0.3 mΩ i4

i1 I2

i2

i3

0.1 mH
I1

26 Chapter 3 Case Studies

© CryoSoft, 2021

; the connection to a coupled simulation, with the cable current computed by POWER
;
 CurrentModel external
 InitialCurrent 300.0

 MagneticFieldModel constant
 MagneticFieldSS 5.0 5.0
 StrainModel none

end

Begin Thermals

;
; The thermal models a quenching NbTi-Cu strands
;
 Components 1

 Model constant

 NrMaterials 2
 Materials Cu Nb-Ti

 Area 0.4712e-6 0.3142e-6
 RRR 100.0 0.0
 E0 1.0e-4
 nPower 20

 QModel window
 Q 100.0
 Q_Tau 1.0e-3
 Q_XBegin 0.9
 Q_XEnd 1.1

 InitialCondition constant
 TInitial 4.2

 BoundaryType heat heat
 BoundaryConditions constant constant
 qBoundary 0.0 0.0

end

Begin Simulation

 MeshType uniform
 NrElements 200
 ElementOrder 1
 ElementNodes 2

 StartTime 0.0
 EndTime 100.0e-3
 OutputStep 1.0e-3

;
; THEA will adapt the time step to the evolution of the temperature in the quenching
; strand between the minimum and maximum allowed steps. Note that the maximum step
; should be kept sufficiently small to avoid coupling instabilities and achieve
; accurate simulation results. The time steps of the THEA and POWER simulations
; do not need to be the same.
;
 TimeMethod CrankNicolson
 MinimumStep 1.0e-6

 Chapter 3 Case Studies 27

© CryoSoft, 2021

 MaximumStep 100.0e-3
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl on
 Tolerance 1.0e-2

 LogFile thea.log
 StorageFile thea.store

end

Input file for the POWER simulation The model for POWER consists of the four current
branches connected in two meshes. In particular, the third branch phantoms the THEA
thermal and provides the coupling to the electrical circuit. Also in this case the simulation
runs up to a time of 100 ms, consistent with the input of THEA (see above). The input file for
the POWER run is shown below. Refer to [3] for details on the input syntax.

power.input

Begin Simulation

 Title 'test coupling power-thea'

 StartTime 0.0
 EndTime 100.0e-3
;
; POWER runs a simulation with fixed time step, that should be kept sufficiently
; small to avoid coupling instabilities and achieve accurate simulation results.
; The time steps of the THEA and POWER simulations do not need to be the same.
;
 TimeStep 0.1e-3
 OutputStep 1.0e-3

 LogFile power.log
 Storagefile power.store

 Branches 4
 Meshes 2

End

Begin Branch 1
 Type CurrentSupply
 Model constant
 Current 300.0
End

Begin Branch 2
 Type Inductance
 Inductance 0.0 0.1e-3 0.0 0.0
End

;
; The following branch mimics the THEA cable, and triggers the connection to a coupled
; simulation, with the branch resistance computed by THEA
;
Begin Branch 3
 Type Resistance
 Model external
End

28 Chapter 3 Case Studies

© CryoSoft, 2021

Begin Branch 4
 Type Resistance
 Model constant
 Resistance 0.3e-3
End

;
; The first current mesh is the normal powering connection to the power supply
;
Begin Mesh 1
 Current 300.0
 connectivity 1 1 1 0
End

;
; The second current mesh is the connection to the protection resistor
;
Begin Mesh 2
 Current 0.0
 connectivity 0 1 1 1
End

Input file for SUPERMAGNET The two simulations above are launched and
supervised by SUPERMAGNET., whose input is reported below. The input file is based on a
standard installation, and the use of the standard version of THEA and POWER. Two child
processes are defined, and they are linked by associating the cable current of the THEA model
to the third branch of the POWER model.

SM.input

; SUPERMAGNET input file for the THEA-POWER demo coupling of a strand quench
; to an external power supply discharge on a protection resistance

Begin Child

; The first child defined is the POWER run. Below is the name of the child, used later
; to define the coupling indices between children processes
 Name P1

; The type of process is "power" (a POWER run)
 ProcessType power

; The input for this run is in the file power.input
 Inputfile power.input
End

Begin Child

; The second child defined is the THEA run. Below is the name of the child, used later
; to define the coupling indices between children processes
 Name T1

; The type of process is "thea" (a THEA run)
 ProcessType thea

; The input for this run is in the file thea.input
 Inputfile thea.input

 Chapter 3 Case Studies 29

© CryoSoft, 2021

End

; Below is the definition of which specific part of the two children processes are
; coupled. In particular, the cable current of the THEA model is obtained from the
; to the third branch in the POWER model. Remember that in general the numbering
; refers to the order of definition in the models for each child

Begin Connection
; THEA POWER
 Children T1 P1 ; children ID's
 Link cable branch 3 ; component ID's
End

Restart run SUPERMAGNET can manage restart runs of all codes supervised, once more
provided that the user has taken care of maintaining consistency among the coupled runs. It is
possible to run restarts, a restart file is needed for each of the coupled processes. Below is the
example of the restart files for THEA and POWER.

thea.restart

Begin Simulation

 restart

 EndTime 2.0
 OutputStep 10.0e-3

 LogFile thea.log
 StorageFile thea.store

end

power.restart

Begin Simulation

 restart

 EndTime 2.0
 TimeStep 1.0e-3
 OutputStep 10.0e-3

 LogFile power.log
 Storagefile power.store

End

The input file of SUPERMAGNET that launches the restart run is nearly identical to that of a
normal run, reflecting the fact that SUPERMAGNET only supervises applications. To launch the
restart, the user runs SUPERMAGNET in the same way as detailed in Chapter 2.

SM.restart

; SUPERMAGNET input file for the THEA-POWER demo coupling of a strand quench
; to an external power supply discharge on a protection resistance. This demo
; launches a restrat run

30 Chapter 3 Case Studies

© CryoSoft, 2021

Begin Child
 Name P1
 ProcessType power
 Inputfile power.restart
End

Begin Child
 Name T1
 ProcessType thea
 Inputfile thea.restart
End

Begin Connection
; THEA POWER
 Children T1 P1 ; children ID's
 Link cable branch 3 ; component ID's
End

Post-processing command files Post-processing of the results from the coupled
simulation is done using the specific post-processors of each child process, in this case
THEAPOST and POWERPOST. Following is an example of the sequence of commands necessary
to generate plots using the post-processor THEAPOST. Refer to [1] for details on the input
syntax.

thea.post

StorageFile thea.store
PostScriptFile thea.ps

set plotsperpage 6

plot Current
plot Resistance
plot TotalQJoule

select time 0.0 0.001 0.002 0.005 0.010 0.020 0.050 0.100
plot temperature thermal 1

select time 0.1 0.2 0.5 1.0 2.0
plot temperature thermal 1

stop

Similar to above, we report below an example of the sequence of commands necessary to
generate plots using the post-processor POWERPOST. Refer to [3] for details on the input
syntax.

power.post

StorageFile power.store
PostScriptFile power.ps

set plotsperpage 4

plot current branch 1
plot current branch 2
plot current branch 3
plot current branch 4

plot voltage branch 1

 Chapter 3 Case Studies 31

© CryoSoft, 2021

plot voltage branch 2
plot voltage branch 3
plot voltage branch 4

plot currentderivative branch 1
plot currentderivative branch 2
plot currentderivative branch 3
plot currentderivative branch 4

plot voltagederivative branch 1
plot voltagederivative branch 2
plot voltagederivative branch 3
plot voltagederivative branch 4

newpage

set plotsperpage 2

plot current mesh 1
plot current mesh 2

plot currentderivative mesh 1
plot currentderivative mesh 2

Results Two files are generated running the post-processors THEAPOST and
POWERPOST with the commands described above: the PostScript output thea.ps, containing
the plot for the THEA run, and PostScript output power.ps, for the POWER run.

Note You will need a PostScript viewer to look at the plots in the PostScript file. The
standard viewer, usually installed on UNIX systems, is gs. Try to launch the viewer with the
commands:

gs thea.ps
gs power.ps

The plots below show the first page in the PostScript output thea.ps. The first three plots
are the cable current, the resistance and the total Joule heat, while the following two are
temperature profiles at selected times during the simulation. We note the current decay in the
coil, initially very fast, with a quasi-exponential decay, followed by a slower discharge due to
the steady rise of the cable resistance. The maximum temperature reached in the strand is of
the order of 40 K after 2 s, which is fairly safe.

32 Chapter 3 Case Studies

© CryoSoft, 2021

The first page of the corresponding output from the post-processing of the POWER run is shown
below, from the PostScript output flower.ps. In this case we see the current in the four
circuit branches. The power supply (branch 1) delivers a constant current. The current in
branches 2 and 3 is identical and decays (this is the cable current in the previous output from
THEA). At the same time the current in the protection resistance, branch 4, rises in amplitude
from an initial value of 0, corresponding to the power supply current diverted from the coil.

 Chapter 4 Input Reference 33

© CryoSoft, 2021

CHAPTER 4

Input Reference

Structure and syntax
The input file is read by the input interpreter that parses and analyzes the syntax and the
grammar of the various entries. In general the file contains a series of blocks that are
structured as follows:

 Begin BlockName
 VariableName value(s)
 VariableName value(s)
 ………………..

 VariableName value(s)
 End

where BlockName is a keyword indicating the block type, and must be one of the following
valid choices:

 Child define the general properties of a child process
 Connection define the links between two children

The content of a block is a series of assignations of a set of values to a generic variable
VariableName. VariableName must be chosen among the set of keywords described in the
following sections.

The structure and content of the input file must comply with the following rules and
conventions:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;
§ a character ‘;’ in any position of the command line indicates that the remainder of the line

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored;

§ the variables in the block are read sequentially and are checked at read-in time. For this
reason the order of precedence of the variables must be respected whenever a value is
needed to proceed with the interpretation of a block (i.e. a child must be available before
reading its connections) . The same BlockName can appear more than once in a file;

§ repeated variable assignation overrides previous values and is not checked at read-in time;

34 Chapter 4 Input Reference

© CryoSoft, 2021

Parsing of the input file is finished as soon as an end-of-file is found. At this point the
execution control is passed to the main program that executes checks on data consistency,
configures the run and launches the simulation. For sample input files see Chapter 3.

Input variables reference
The following table contains, in alphabetical order, the keywords defining the input variables
and meanings for each block type. Predefined possible values are reported in Courier. The
default value is indicated in the table and underlined.

Note In the tables below we use the following convention for the type of variables:

 C character (a string delimited by blanks, tabs or apices)
 R real (a number in floating point or engineering notation)
 I integer (an integer number)

Typing must be respect in the input file to avoid errors or mis-interpretation by the parser.

Child
The Child block defines a child process.

Variable Type Units Meaning

Executable C (-) Name of the executable to run. If missing the standard

Cryosoft executable for ProcessType is taken, as
located in ~/CryoSoft/bin/.

InputFile C (-) Name of the input file to be passed to the child. See the
manuals of the corresponding programs for details.

Name C (-) Nickname of the process, used in the block

Connection to identify a child uniquelly in case of
more processes of the same type running at the same
time.

ProcessType C (-) This variable defines the kind of the child process.

Possible values:
Flower version 4.2 or higher
Power version 2.0 or higher
Thea version 1.5 or higher

 Chapter 4 Input Reference 35

© CryoSoft, 2021

Connection
The Connection block defines the interconnection of two children.

Variable Type Units Meaning

Children C (-) Array of 2 elements containing the nicknames of the

children to be connected.

Link C/I (-) Array of (2,2) elements specifying the type

(LinkType) and ID (LinkID) of the components that
are linked between children processes and produce the
desired coupling. The entries must be in the following
order:

 LinkType(1) LinkID(1)
 LinkType(2) LinkID(2)
 The order of the indices is important, LinkType(1) and

LinkID(1) is a valid component type and ID in the
process Children(1), while LinkType(1) and
LinkID(1) is a valid component type and ID in the
process Children(2). The allowable values of
LinkType(1) and LinkID(1) depend on the processes
linked as follows:

Child LinkType
THEA Cable links to POWER
 Hydraulic links to FLOWER/HEATER
 Thermal links to HEATER
FLOWER Volume links to HEATER
 Junction links to THEA/HEATER
POWER Branch links to THEA
HEATER Point links to FLOWER
 Line links to THEA/FLOWER

The links allowed are listed in the table below that
contains for any type of component of the first child the
allowed coupling to components in the second child

 Child(2)
Child(1) Component THEA FLOWER POWER HEATER MrX
THEA cable branch
 thermal line
 hydraulic junction line
FLOWER volume point
 junction hydraulic line
POWER branch cable
HEATER point volume
 line thermal/

hydraulic
junction

MrX

36 Chapter 5 Troubleshooting and Errors

© CryoSoft, 2021

 CHAPTER 5

Troubleshooting and Errors

Error messages are reported to the output ASCII log file and to the standard output. The form
of a typical error report is the following

ERROR in procedure <procedure name>: <error message>
called by <calling procure> at position <n>
called by <calling procure> at position <m>
......

where <procedure name> is the name of the routine where the error occurred and <error
message> reports a short description of the error situation. This line is followed by the trace of
the <calling procedure> up to the main program. In case of queries about error conditions,
please take care to report error messages completely, including the calling trace.

Errors can be generated at four different levels in the code, and/or in any of the coupled
children processes:

• input parsing and syntax errors;
• data consistency errors;
• runtime errors;
• internal consistency errors.

Input parsing errors
Input parsing and syntax errors are detected during the interpretation of the input file. They
indicate that the variable naming, the command syntax or the type and number of numerical
data in the input file are incorrect. Verify syntax in the input file in this case.

Data consistency errors
Data consistency errors are detected when input data are not coherent among themselves and
would result in a model that cannot be analyzed. Typical cases are selection of incompatible
options, or input data out-of-range. Verify the consistency of the input data in this case. While
data consistency is easily verified for each separate child process, this is not possible at the
level of coupled processes (under the control of the user). For this reason SUPERMAGNET
demands much care in the preparation of a run, especially to ensure the internal consistency of
the various input files. Indeed error messages during a SUPERMAGNET run may point to a data
consistency problem among input files.

 Chapter 5 Troubleshooting and Errors 37

© CryoSoft, 2021

Runtime errors
Runtime errors are detected either when a solver enters a physical or numerical instability, or
when the size of the problem exceeds the maximum allowed. Refer to the manual of each of
the coupled codes for advice on the treatment of instabilities and how to adapt the solver to the
size of the problem.

In addition, in the case of SUPERMAGNET, the explicit coupling algorithm can lead to
numerical instabilities among codes. The present version of SUPERMAGNET does not check for
this type of instabilities, which will cause the solution of one or more of the coupled children
processes to diverge. The only possible cure to this type of instability is to decrease the time
step of the coupled codes.

The maximum size of the coupled system that can be solved is determined by the requested
memory allocation in the FORTRAN include files:

~/CryoSoft/src/supermagnet/code_x.x/includes/SM.inc
~/CryoSoft/src/library/IC/IC.inc

where a number of parameters are set statically. The version of the code you received can be
modified by adjusting these parameters as desired. The code then needs to be compiled and
link-edited as explained in the installation manual you received [6].

Warning Modifying the code dimensioning parameters requires understanding of the
memory allocation for the system variables, and of the internal structure of the code. IN NO
EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF THIS
FEATURE, even if advised of the possibility of such damages.

Internal consistency errors
Internal consistency errors indicate corruption of the internal data structure of the program. An
internal consistency error cannot be generated using the standard program and reading data
from input only. However, they can be detected in case of data inconsistencies among coupled
children processes (see above), or they can be triggered in each child process by customized
External Routines with improper data handling. Internal consistency errors diagnose a severe
fault within the code. Verify data consistency among input files. If you are using External
Routines, verify their consistency with the calling protocol. Failing to track internal
consistency errors to input or External Routines, report these errors to us.

38 Chapter 6 References

© CryoSoft, 2021

CHAPTER 6

References

[1] CryoSoft THEA, Thermal, Hydraulic and Electric Analysis of Superconducting Cables,

Version 2.4, January 2021.

[2] CryoSoft FLOWER, Hydraulic Network Simulator, Version 4.5, User’s Manual, January

2016.

[3] CryoSoft POWER, Electric Network Simulation of Magnetic Systems, Version 2.1,

September 2016.

[4] CryoSoft HEATER, Simulation of Heat Conduction, Version 2.1a, April 2021.

[5] K.C. Park, C.A. Felippa, Partitioned Analysis of Coupled Systems, in Computational

Methods for Transient Analysis, T. Belytchko and T.J.R. Hughes eds., Elsevier, 157-219,
1983.

[6] CryoSoft Installation Manual, Version 8.2, January 2021.

