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MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A 
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ACCURACY. 
 
 
IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR 
INACCURACY IN THIS MANUAL, even if advised of the possibility of such 
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Roadmap 
 
 
 
 
 
 
 
 
 
 

Before you start 
This manual is the reference user’s guide for THEA and its post-processor, THEAPOST. 
Throughout this manual we assume that the reader is familiar with the physics and engineering 
issues that are associated with the design and analysis of a superconducting cable. Details on 
the physics modeling that is at the basis of the program are given in [1], [2] and [3]. We 
strongly suggest that the reader consults these references before using this manual. 
 

How to use this manual 
This manual is structured as follows: 
 
§ Chapter 1 contains a brief and general introduction on the modeling principle and solution 

methods available. 
 

§ Chapter 2 gives basic information on the installation, explains how to start a THEA run 
and launch the post-processor THEAPOST on a UNIX workstation. 
 

§ Chapter 3 contains case studies that the reader should use to familiarize with the operation 
and features of the program. 
 

§ Chapter 4 contains additional information on the preparation of the input and the meaning 
of the input variables 
 

§ Chapter 5 describes the details of the post-processing command language. 
 

§ Chapter 6 describes the External Routines that can be used for advanced use. These 
routines can be linked to the standard code to provide powerful customization. 
 

§ Chapter 7 deals with troubleshooting and error messages; 
 

§ Chapter 8 gives the references and a general bibliography for documentation. 
 
Beginners to THEA should read chapters 1, 2 and 3 in sequence. They will make occasional 
cross-reference to chapters 4 and 5 for detailed information. Experienced users will use 
chapters 4, 5 and 6 for daily operation. Chapter 7 can be consulted as an indexed glossary for 
error messages and associated actions. 
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CHAPTER 1 

Introduction 
 
 
 
 
 
 
 
 
 
 

What is THEA 
THEA is a computer program for the Thermal, Hydraulic and Electric Analysis of 
superconducting cables. THEA computes the evolution of the temperature, coolant flow and 
current distribution in a cable during fast transients such as stability perturbations and the 
following quench evolution, as well as slow transients such as normal operation ramps to 
steady state, or cool-down. In order to respond to the changing needs and evolving designs, we 
have designed THEA for maximum flexibility. As in other codes for the thermal and hydraulic 
analysis of superconductors, we have made in THEA the hypothesis that the conductor length 
is much larger than its transverse dimension, so that all phenomena can be dealt with in a 1-D 
approximation of the cable along its length. However, as compared to other similar codes, the 
main new features of THEA is that it allows: 
 
§ consistent, implicitly coupled analysis of thermal, hydraulic and electric transients in 

conductors; 
§ an arbitrary, user controlled configuration for the superconducting cable, additional 

structural components, cooling channels; 
§ variable geometry and properties along the conductor. 
 

A THEA model 
To achieve the modeling capability the superconductor cross section is subdivided by the user 
in components that can be of one of the following three types: 
 
§ thermal components, that model 1-D heat diffusion in solids, external heat sources, Joule 

heat and heat exchange with other solids or with coolants. The state of thermal 
components is identified by the instantaneous temperature of the solid; 

§ hydraulic components, that model 1-D compressible flow in a channel exchanging heat 
with the channel wall, and exchanging mass, momentum and heat with other adjacent 
channels. The state of a hydraulic component is identified by the instantaneous pressure, 
temperature and velocity of the fluid in the channel; 

§ electric components, that model 1-D current diffusion among resistive and inductive 
current carrying materials. The state of an electric component is identified by the 
instantaneous value of the current. 

 
Components of the same type identify physically distinct units in the conductor, e.g. different 
sub-cable units or different channels. Components of different type can describe different 
phenomena in physically overlapping units. This is the case for thermal and electric 
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components that model the thermal conduction and current distribution in the same set of 
strands in a cable. The user couples components of different type, e.g. thermal and hydraulic 
components to simulate heat convection at the surface of a cooling channel, or thermal and 
electric components to achieve consistent treatment of current distribution and heat transfer in 
a cable. See the case studies in Chapter 3 for more details on the process of subdivision and 
coupling. 
 

PDE Solution 
THEA solves for each component defined by the user a set of partial differential equations 
(PDEs), coupled among components whenever chosen by the user, and obtains at any time 
required the distribution in space, along the conductor length, for the state variable(s). The 
solution satisfies the initial conditions chosen and the boundary conditions set by the user. 
 
To solve the system of PDEs, THEA uses independent space and time discretization. The 
space discretization is based on the finite element method, and uses 1-D lagrangian elements 
with at most fifth order shape functions. The initial mesh is automatically adapted in time to 
achieve the following objectives: 
 
§ track discontinuities such as quench propagating fronts, or lambda transitions in the case 

of superfluid helium hydrodynamics; 
§ achieve a user-defined interpolation error on any state variable; 
§ maintain the element size between maximum and minimum user-defined values. 
 
The user can control the meshing process through the choice of element order and of 
parameters that affect adaptivity. The time discretization is based on a multi-step finite 
difference algorithm of the Beam and Warming family with at most third order accuracy. The 
time step is adapted automatically to achieve a user-defined error, either using a predictive or 
an a-posteriori error estimate. The user has control on the time integration accuracy through 
the choice of algorithm, while the time adaptivity is controlled specifying the error estimator 
and the desired accuracy. 
 

Structure 
The overall structure of THEA is schematically shown below. THEA starts reading the data 
necessary to configure the run from an input file. It then checks the data for consistency. 
Depending on the type of run, it either initializes the state variables of the model (for a start-up 
run), or reads the state variables from a storage file (for a restart run). This stage is needed to 
determine the initial conditions for the time integration. When requested, the External 
Routines for customization of initial conditions are called once at this stage.  
 
The time integration can then start, continuing until the end time is reached. The time 
integration consists of a loop that calls a solver routine at each step. The solver routine 
advances the solution by a single step in time over the complete space domain. This routine 
builds the matrix of the PDE to be solved. The External Routines for customization of material 
properties and characteristics of components are called at this stage, when user’s defined 
materials are requested. The PDE solver then computes the finite element matrices and 
imposes the boundary conditions to the system. Here the External Routines are called in the 
case that the user has specified customized boundary conditions. 
 
The calls to External Routines during the PDE solution are at the lowest level in the program 
tree. This implies that the calls are repeated several times during a run (typically millions to 
tens of millions of times for a practical problem). It is therefore very important that the user 
provides an efficient implementation for these routines. 
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After the solution has been advanced, the mesh is adapted according to the criteria set by the 
user. 
 
Auxiliary variables (e.g. magnetic field, cable current, strain, fluid properties, transport 
properties such as friction factor, etc.) necessary for the solution of the system are computed 
after the solution of the system, at each step. The External Routines for the customization of 
the calculation of auxiliary variables are called at this point. 
 

 

Post-processing 
The results produced by THEA are integrally stored and can be analyzed to produce plots and 
reports by the post-processor THEAPOST. THEAPOST responds to a user-friendly command 
language and allows selection of results in time or space, plot and print-out of results vs. time 
or space, parametric plot of results at given time or space coordinate. See the case studies in 
Chapter 3 for examples of post-processing sessions, and Chapter 5 for the details on the syntax 
of the command language. 
 

User Flexibility and Further Extensions 
THEA has several features that allow to customize its modeling capability beyond the 
allowable parameterization of the thermal/hydraulic/electric configuration that can be achieved 
using the standard input file. Specifically, the user can: 
 
§ modify the dependence of geometry, waveforms and material properties on space, time 

and solution variables, beyond the standard models implemented, using External Routines 
that can be statically linked to the program segments through a compilation step that 

Read/check input
ReadInput
CheckData

Initial conditions

Read
ReadInitialConditions

Time integration

Generate
SetInitialConditions

StoreHeader
StoreResults

PDE step
PDESolver

Auxiliary variables
AssigneVars

Mesh adaptivity
AdaptMesh

Data storage
StoreResults

THEA

External Routines
initial conditions

PDE matrices

FE matrices

Boundary conditions

External Routines
Solid properties
Fluid properties

Thermals
Hydraulics
Electrics

External Routines
Boundary conditions

Time step

External Routines
Current

Field
Strain

Heat transfer
Friction factor
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produces a customized version of the code. See Chapter 6 for documentation on External 
Routines; 

§ change parametrically the behavior of the External Routines by making use of Variables 
that are read by the code input parser, and can be accessed at run-time using the Variables 
library. See Chapter 4 for details on the syntax to be adopted for the Variables input 
block; 

§ couple to other programs of the CryoSoft suite through the multi-tasking code manager 
SUPERMAGNET. This allows to augment the physics span of the simulation domain to 
include thermal networks (e.g. heat exchange in a coil), hydraulic networks (e.g. 
proximity cryogenics) or electrical circuits (e.g. magnet protection). 
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CHAPTER 2 

Installing and Running THEA 
 
 
 
 
 
 
 
 
 
 

Platforms 
THEA and its post-processor THEAPOST are provided as a package developed for running 
under UNIX or UNIX-like (e.g. Linux) operating system. The reason is that they require 
computer intensive calculations, orderly file management and little interactivity. At the time 
when this manual is written, the platform where THEA is developed is: 
 
§ Macintosh running MacOS-X (10.10.5 and higher) under XQuartz,(2.7.4) gcc (5.1) with 

gfortran. 
 
At different time of the development and production, the code has been installed and tested on 
the following platforms: 
 
§ Mac-OS X (10.2 and higher) operating system; 
§ GNU/Linux operating system (most distributions). 
§ INTEL PC’s running RedHat Linux OS; 
§ IBM-RISC workstations running the AIX-V4 operating system and later; 
§ SUN-SPARC workstation running the Solaris OS operating system; 
§ DEC-ALPHA workstation running the OSF-1 operating system; 
§ HP workstations running HP-UX OS; 
§ Windows-2000 and Windows-XP operating system, with an installed CYGWIN 

environment (the reference version tested is CYGWIN 1.5.24-2). 
 
Although UNIX obeys strict standards, the architecture of the operating and file system may 
vary from vendor to vendor. It is therefore possible that porting may require minor adaption of 
code and libraries. Contact us for advice. 
 
In the following sections we assume here that you are running under a UNIX or UNIX-like 
operating system, and that you are familiar with UNIX commands, directory and file handling. 
Contact your system administrator for matters regarding UNIX commands and file system. 
 
Although versions of THEA and THEAPOST have been ported to PC’s running the Windows 
OS, at the time when this manual is written this is not a platform directly supported and part of 
the instructions provided below (i.e. how to run and post-process a case) may not be directly 
applicable. 
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Installation 
THEA is one of the CryoSoft family of programs. You will have therefore received the 
CryoSoft package containing THEA either as a tar-ball or in pre-installed form. Verify in the 
CryoSoft installation manual [4] the procedure to be followed for the proper installation of the 
complete package. The executable codes, thea and theapost are in the directory 
~/CryoSoft/bin/. You will find the example inputs and post-processing command files in 
the directory ~/CryoSoft/xample/thea/code_x.x/ (the symbol ~/ stands for your home 
directory, x.x for the version you received) 
 

How to run THEA 
Start-up To run THEA you will need to launch the executable code. In the standard 
installation on a UNIX system described above THEA is launched typing the command: 
 
~/CryoSoft/bin/thea [-i InputFile] [-v/-s] [-h] 
 
Note that command line options are not mandatory (enclosed in brackets, following UNIX 
documentation standard). The meaning of the options is the following: 
 
-i, --input use InputFile to parse the input for the run 
-v, --verbose print simulation progress on stdout (default) 
-s, --silent no output to stdout 
-h, --help print a help message 
 
Once launched, the program decodes the options, if any are given, and checks for the specific 
operation mode requested. If no input file is provided as an option, then the program prompts 
the user for the input file name. THEA reads the problem definition from an ASCII file whose 
structure and content are described in detail in Chapter 4 of this manual. Examples of input 
files are given in Chapter 3. At this time you will enter the name of a file containing the input 
for the case to be run (e.g. file.input): 
 
THEA Enter input file name 
file.input 
 
THEA then parses the input file, performs checks on consistency, configures the case and 
starts the simulation. A simulation starts from an initial condition at the starting time and 
advances in time using the time stepping algorithm selected. At each time step THEA emits a 
message with the real time reached in the simulation (in s) the time step taken (in s) and the 
ratio of real time to the total time to be simulated: 
 
.... 
Time : 4.949E-03   Step :  3.235E-05   Time/Tend :   0.98987 
Time : 4.998E-03   Step :  4.852E-05   Time/Tend :   0.99957 
.... 
 
until the end of the simulation. When the end time of the simulation is reached THEA prints a 
message reporting the total CPU time used in the run: 
 
Total Cpu [s]:   244.059998 
 
Each run of THEA produces: 
 
§ a binary storage file containing all results stored at user’s specified times. The user can 

control the name of this file, the default file name is thea.store; 
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§ a log file containing a report on the case run, run statistics and error messages. The user 
can control the name of this file; the default file name is thea.log.  

 
Restart After a successful completion of a run it is possible to restart the simulation at 
the last time stored in the binary storage file and proceed with the time integration. A restart 
procedure is triggered if the input file read by THEA contains the Restart command (see 
Chapter 3 and 4 for details). Assuming that this is the case for the input file file.restart, 
and the program is launched with no command line options, a restart in our example is 
obtained launching again THEA: 
 
~/CryoSoft/bin/thea 
THEA Enter input file name 
file.restart 
 
in which case THEA reads the binary storage file and starts the simulation at the last time 
stored: 
 
Time : 5.000E-03   Step :  1.000E-05   Time/Tend :   0.00000 
 
Until the final time specified in the input file file.restart is reached. 
 
Note You can use an arbitrary sequence of restarts to simulate different time spans with 
varying resolution and accuracy. There is no limit to the number of restarts that can be 
executed for a single simulation. 
 
We show below schematically the flow-diagram of a THEA run: 
 

 
 
as compared to the flow-diagram of a THEA restart reported below. Data is read at the 
beginning of the restart from the binary storage file, and is appended to the same file while the 
simulation proceeds: 
 

input file

thea

run log file
(thea.log)

binary storage
file (thea.store)

binary storage file, containing
all results stored at user’s
specified times.

log file, containing the report of
the run, CPU statistics, errors
and warnings.
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How to run THEAPOST 
To produce any detailed result, both in the form of printed tables or plotted curves in 
PostScript® format, it is necessary to run the THEA post-processor THEAPOST. THEAPOST 
is launched under UNIX with the command: 
 
~/CryoSoft/bin/theapost [-i InputFile] [-v/-s] [-h] 
 
Also in this case command line options are not mandatory (enclosed in brackets, following 
UNIX documentation standard). The meaning of the options is the following: 
 
-i, --input use InputFile to parse the input for the post-processor 
-v, --verbose print post-processing progress on stdout (default) 
-s, --silent no output to stdout 
-h, --help print a help message 
 
Once launched, the program decodes the options, if any are given, and checks for the specific 
operation mode requested. If no input file is provided as an option, then the program prompts 
the user for the name of an ASCII file containing the series of commands that control the 
generation of the printouts and plots. The structure and content of this file is described in detail 
in Chapter 5 of this manual. Examples of command files are given in Chapter 3. At this time 
you will enter the name of the file containing the commands (e.g. file.post): 
 
Enter command file name 
file.post 
 
THEAPOST then parses, echoes and interprets the commands from the command file. The 
commands cause retrieval of the results of a run from the binary storage file generated by 
THEA (by default from the file thea.store). As a result THEAPOST generates: 
 

§ a file containing the formatted printouts of the results (theapost.out), and 
§ a file containing the plots requested in PostScript® format (theapost.ps). 

 

input file

thea

run log file
(thea.log)

binary storage
file (thea.store)

binary storage file, read-in at
the beginning and used for
further storage of results.

log file, containing the report of
the run, CPU statistics, errors
and warnings.
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Customization 
The method described earlier provides the standard manner to run a THEA simulation, and 
post-process the results. THEA, however, as most other CryoSoft codes, gives the possibility 
to customize the physical models by using External Routines, as described in Chapter 6 (see 
later for details). The user has the possibility to adapt and extend the physics contained in the 
standard solver, at the additional complexity of writing FORTRAN routines that must obey to 
the language syntax, and parameter call specification. The customized External Routines need 
to be compiled and linked the program segments to generate the customized version of the 
code. Template for the External Routines are given in the directory 
~/CryoSoft/usr/thea/code_x.x. Compilation and link-editing can be done using the 
standard installation script CSmake, but we discourage users to modify the standard codes 
provided, as this will replace the reference installation. As a safer alternative, we strongly 
recommend copying the External Routines templates in a work directory, and generating in 
this location the customized version of the code by using an adapted compilation script, or a 
makefile. Consult the examples below, and contact us for guidelines on how to set-up one such 
customized structure. 

command
file

theapost

binary storage
file (thea.store)

PostScript plot
file (theapost.ps)

printout file
(theapost.out)

Postscript® file, containing
plots as required by the user.

Formatted print-outs.
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CHAPTER 3 

Case Studies 
 
 
 
 
 
 
 
 
 
 

As discussed in Chapter 2, THEA requires an input file with all definitions necessary to 
specify the model structure, its characteristics, the operating conditions, initial and boundary 
conditions and the solution controls. We refer to this file as the input file. The input file is 
needed both for a start-up run and a restart run. 
 
Similarly, post-processing of THEA results using the post-processor THEAPOST requires an 
input file with a sequence of commands that select results, print and plot them. We refer to this 
file as the post-processing command file. 
 
In this Chapter we give examples of input files and post-processing command files to deal 
with practical modeling situations. The case studies given here are intended to guide the user 
from the formulation of a problem to its modeling, the creation of the input file for the case, 
running the case, and finally the generation of the results. For obvious reasons, they are of 
limited complexity and are intended as examples to illustrate minimum capability of the 
program. More complex situations can obviously be modeled, taking the following case 
studies as starting points and evolving or combining them. In the last example reported we 
show how o use Eternal Routines. Using External Routines is the most advanced way to 
customize the operation of THEA. 
 
Refer to Chapter 2 on how to run the examples described here with THEA and how to 
generate results and plots with THEAPOST. 
 
Note All input files and post-processing command files, the makefile and user routine files 
for the case studies discussed in this manual are provided with the standard installation. They 
are located in the directory: 
 
~/CryoSoft/xample/thea/code_x.x 
 
where x.x stands for the version you received. In the following sections we use the Courier 
font to reproduce the content of those input files, while text in italic indicates our comments to 
the input. 
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A heater for supercritical helium 
Physical definition of the problem We consider the case of a heater pipe of 5 mm 
diameter and 10 m length supplied with a flow of supercritical helium at 4.5 K, 5 bar inlet 
pressure and 4.8 bar outlet pressure. A resistance deposits a power of 20 W over a length of 2 
m in the middle of the pipe. The purpose of the analysis is to determine the helium flow and 
the evolution of the helium outlet temperature during the heating pulse, assuming that the heat 
pulse lasts a long time compared to the residence time of the helium. In this simple example 
we assume that the pipe has a negligible heat capacity, so that it can be neglected and the heat 
can be modeled as a direct input into the helium flow. The helium flow has a friction factor as 
determined by the turbulent correlation of Blasius. 

 
Input file for the start-up run The problem requires the definition of a single hydraulic 
component, with given inlet and outlet conditions and heated at the location of the resistive 
heater. The step-by-step definition of the input file for THEA start-up run is shown below. 
 

heater.input 
 
Define the global model characteristics and parameters: a title used for labeling output and 
plots, total heater length (10 m), no electric current, magnetic field and strain. 

 
Begin Model 

 
Note the use of apex to delimit a text containing special characters or blanks. 

 
  ModelName             'Supercritical helium heater' 
 
  Length                10.0 
  CurrentModel          none 
  MagneticFieldModel    none 
  StrainModel           none 
 
end 
 

Define the details of the hydraulic components. 
 
Begin Hydraulics 
 

A single component is defined, with cross section Area, hydraulic diameter Dh and hydraulic 
properties constant along the length. The Blasius correlation is used for the friction factor, 
and the Dittus-Boelter is used for the heat transfer coefficient. 

 
  Components           1 
  Fluid                helium 
  Model                constant 
  Area                 19.6e-6  
  Dh                   5.0e-3 
 
  fModel               Blasius  
  hModel               DB   
 

Tin = 4.5 K
pin = 5 bar

pout = 4.8 barLresistance = 2 m
qʼ = 10 W/m

Lheater = 10 m
D = 5 mm
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The helium has 4.5 K initial temperature, 5 bar initial pressure and zeroflow. These conditions 
are constant along the length. 

 
  InitialCondition     constant    
  TInitial             4.5 
  pInitial             5.0e5 
  mdotInitial          0.0 
 

A heating power Q of 10 W/m is present in space between Q_XBegin and Q_XEnd and is 
constant in time. 

 
  QModel               constant  
  Q                    10.0 
  Q_XBegin             4.0 
  Q_XEnd               6.0 
 

Boundary conditions are of prescribed pressure and temperature at both left and right side of 
the length analysed (infinite reservoir). The value of pressure and temperature in the two 
reservoirs is constant in time. On the left boundary the temperature is 4.5 K and the pressure 5 
bar, on the right boundary the temperature is 4.5 K and the pressure 4.75 bar. 

 
  BoundaryType         reservoir reservoir 
  BoundaryConditions   constant  constant 
  TBoundary            4.5       4.5 
  pBoundary            5.0e5     4.75e5 
 
end 
 

Define the simulation parameters (numerics), storage and output.  
 
Begin Simulation 
 

The mesh is automatically generated using the given number of elements NrElements 
uniformly distributed in space. The element type is determined by the number of nodes 
ElementNodes and the interpolation order ElementOrder.  

 
  MeshType              uniform 
  NrElements            100 
  ElementOrder          2 
  ElementNodes          3 
 

The time integration starts at StartTime and ends at EndTime, with output of the results every 
OutputStep 

 
  StartTime             0.0 
  EndTime               1.0 
  OutputStep            0.05 
 

The time integration uses backward-differences (2nd order accurate in time). The time step is 
adapted automatically between the lower limit MinimumStep and the upper limit 
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase, 
performed depending on the comparison of the estimated integration error and the desired 
tolerance Tolerance. The time integration error is estimated based on the change in the 
solution during a time step. As the error control ErrorControl is on, each time step is iterated 
changing the time step until the error is smaller than the desired tolerance. 

 
  TimeMethod            BackwardDifference 
  MinimumStep           1.0e-6 
  MaximumStep           1.0 
  StepEstimate          smooth 
  ErrorEstimate         change 
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  ErrorControl          on 
  Tolerance             3.0e-2 
 

Log output is directed to the file heater.log, while results are stored in the file heater.store for 
later restart and reporting 

 
  LogFile               heater.log 
  StorageFile           heater.store 
 
end 

 
 
Input file for the restart run To proceed with the simulation for a longer time than 1 s 
(the EndTime specified in the start-up run) we use the restart feature of THEA. Below we give 
the step-by-step definition of the input file for the restart of the simulation with a reduced time 
resolution in the storage of results and changing the time integration method. 
 

heater.restart 
 

In case of restart only the simulation parameters are needed. All other parameters are taken 
from the storage file generated during the previous run. 

 
Begin Simulation 
 

The presence of the Restart keyword is necessary to trigger a restart run. 
 
  Restart 
 

The time integration starts at the last time stored on file heater.store (as specified below) and 
proceeds to the new EndTime, with the prescribed OutputStep. 

 
  EndTime                    5.0 
  OutputStep                 0.1 
 

The time integration method is changed to Crank-Nicolson (2nd order accurate) while the 
other method options are left unchanged. 

 
  TimeMethod                 CrankNicolson 
 

Log output and results are appended to the existing files during the restart. 
 
  LogFile                    heater.log 
  StorageFile                heater.store 
 
end 

 
 
Post-processing command file The following is an example of the sequence of 
commands necessary to generate of print-outs and plots using the post-processor THEAPOST. 
 

heater.post 
 
Define the file where results are stored. 

 
StorageFile heater.store 
 

Define the file for Postscript® output. 
 
PostScriptFile heater.ps 
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Define the file for printed output. 
 
OutputFile heater.out 
 

The number of plots per page can be set to 1, 2, 3, 4 or 6. 
 
set plotsperpage 4 
 

Select the results of the simulation at the times closest to those below. All following plots are 
as f(x), the selected times are parameters. 

 
select time 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
 

Plot various quantities as f(x) selecting the quantity first, the component next. 
 
plot pressure hydraulic 1 
plot temperature hydraulic 1 
plot velocity hydraulic 1 
plot massflow hydraulic 1 
 

Reselect times, this replaces previous selection. 
 
select time 0.5 1.0 1.5 2.0 2.5 3.0 
 

Plot quantities as f(x). 
 
plot temperature hydraulic 1 
plot velocity hydraulic 1 
 

Plot now parametrically one variable versus a second variable 
 
plot pressure hydraulic 1 vs temperature hydraulic 1 
plot htc hydraulic 1 vs reynoldsnr hydraulic 1 
 

Select the results of the simulation at the points with coordinate x closest to those below. All 
following plots are as a f(t), the selected x are parameters. 

 
select x 1 3 5 7 10 
 

Plot various quantities as f(t) selecting the quantity first, the component next. 
 
set plotsperpage 6 
 
plot pressure hydraulic 1 
plot temperature hydraulic 1 
plot velocity hydraulic 1 
plot htc hydraulic 1 
plot massflow hydraulic 1 
 

Produce a printout of the heater outlet temperature as a function of time. 
 
select x 10 
print temperature hydraulic 1 
 

The stop command terminates parsing, the post-processing session is finished. 
 
stop 
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Results Two files are generated running the post-processor THEAPOST  with the 
commands described abovein the file heater.post: the PostScript output heater.ps and 
the ASCII output heater.out.  
 
Note You will need a PostScript viewer to look at the plots in the PostScript file. The 
standard viewer, usually installed on UNIX systems, is gs. Try to launch the viewer with the 
command: 
 
gs heater.ps 
 
The plots below show the first page in the PostScript output heater.ps. As requested in the 
commands file, the first four plots are the pressure, temperature, velocity and massflow 
distributions along the heater at selected times. Note the establishment of a steady state 
pressure gradient along the pipe and the transient temperature increase under the heated 
region. 

 
 
The file heater.out contains the output requested. In our case the only output requested is 
the temperature of the helium at the heater outlet (x=10 m). We report here only an abridged 
version of the full file. 
 

heater.out 
 
The following is the output of the results. In our case the temperature at x=10 m, at the outlet 
of the heater, as a function of time for all times stored in the binary storage file. 
 
hydraulic 1    
Time        temperature    
[s]         [K]            
             1.00E+01 m    
-------------------------- 
 0.00E+00    4.50E+00      
 5.00E-02    4.49E+00      
 1.00E-01    4.48E+00      
 1.50E-01    4.48E+00      
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 2.00E-01    4.48E+00      
 
..... (lines omitted) 
 
 4.90E+00    4.94E+00      
 5.00E+00    4.95E+00      
 
 



22 Chapter 3     Case Studies 

© CryoSoft, 2021 

Adiabatic strand quench 
Physical definition of the problem This case study deals with the calculation of the 
evolution of temperature in a quenching NbTi strand assumed to be perfectly adiabatic. The 
strand is 2 m long (e.g. a critical current measurement sample) and is operated at 4.2 K, 500 A 
in a background field of 5 T. The strand itself  has a diameter of 1 mm, is composed of 
Copper, with RRR of 100, and standard NbTi in a Cu:NbTi ratio of 1.5:1. The V-I resistive 
transition at the critical current is modeled using the power law approximation with a 
reference electric field of 1 µV/cm (10-4 V/m) and an exponent n of 20. The quench is initiated 
by a short heating pulse of 10 W/m with 1 ms duration and deposited over 2 cm length 
centered in the strand length corresponding to a total energy deposited of 0.2 mJ. 
 

 
 
Input file for the run For this case we define a single thermal component, consisting of the 
two materials of the strand: Cu and NbTi. In absence of electric components, the total current 
in the cable is assumed to flow in the thermal model. The step-by-step definition of the input 
file is shown below. 
 

strand.input 
 

Define the global model characteristics and parameters: a title used for labeling output and 
plots, total strand length 2 m, total current 500 A, magnetic field 5 T and no strain. 

 
Begin Model 
 
  ModelName                  'single strand quench' 
 
  Length                     2.0 
  CurrentModel               constant 
  InitialCurrent             500.0       
  StrainModel                none 
 

A left and right values are defined for the magnetic field. The field is interpolated linearly in x 
using the values below. 

 
  MagneticFieldModel         constant 
  MagneticFieldSS            5.0  5.0 
 
end 
 

Define the details of the thermal components. 
 
Begin Thermals 
 

Only one thermal component is defined: the composite NbTi strand, with constant cross 
section and properties along the length. The strand itself is made up of two materials: NbTi 
and Cu. The temperature is  the same for all materials within a component. 

 
  Components                1 
 

 

I = 500 A 
T = 4.2 K 
B = 5 T 

Lheater = 2 cm 
qʼ = 10 W/m 

Lstrand = 2 m 

D = 1 mm 
Cu:NbTi = 1.5 
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  Model                     constant 
 
  NrMaterials               2 
  Materials                 Cu            Nb-Ti 
 

Cross sections are defined for the two materials. For Cu the value of the RRR (residual 
resistivity ratio) is needed. Note that RRR must be given for all materials although it may not 
be necessary for the physical description. A dummy value (0) can be used. For the strand it is 
finally necessary to define the parameters of the power fit to the V-I curve for the critical 
current transition: E0 (electric field) and nPower (power law exponent). 

 
  Area                      0.4712e-6     0.3142e-6 
  RRR                       100.0         0.0 
  E0                        1.0e-4 
  nPower                    20 
 

A heating power pulse with strength Q of 10 W/m is applied in space between Q_XBegin and 
Q_XEnd (2 cm between 0.99 and 1.01 m) and in time from 0 to Q_Tau (1 ms pulse). 

 
  QModel                    window 
  Q                         10.0 
  Q_Tau                     1.0e-3    
  Q_XBegin                  0.99    
  Q_XEnd                    1.01    
 

The initial conditions are of constant temperature. 
 
  InitialCondition          constant 
  TInitial                  4.2 
 

The right and left boundary conditions are of prescribed heat flux at the boundary. The heat 
flux is constant in time, and it is equal to zero. This corresponds to adiabatic boundary 
conditions. 

 
  BoundaryType              heat          heat 
  BoundaryConditions        constant      constant 
  qBoundary                 0.0           0.0 
 
end 
 

Define the simulation parameters (numerics), storage and output.  
 
Begin Simulation 
 

The mesh is automatically generated using the given number of elements NrElements 
uniformly distributed in space. The element type is determined by the number of nodes 
ElementNodes and the interpolation order ElementOrder.  

 
  MeshType                   uniform 
  NrElements                 200 
  ElementOrder               2 
  ElementNodes               3 
 

The time integration starts at StartTime and ends at EndTime, with output of the results every 
OutputStep. 

 
  StartTime                  0.0 
  EndTime                    5.0e-3 
  OutputStep                 0.1e-3 
 



24 Chapter 3     Case Studies 

© CryoSoft, 2021 

The time integration uses the Crank-Nicolson method (2nd order accurate in time). The time 
step is adapted automatically between the lower limit MinimumStep and the upper limit 
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase, 
performed depending on the comparison of the estimated integration error and the desired 
tolerance Tolerance. The time integration error is estimated based on the change in the 
solution during a time step. As the error control ErrorControl is on, the time step is iterated to 
achieve the desired tolerance. 

 
  TimeMethod                 CrankNicolson 
  MinimumStep                1.0e-6 
  MaximumStep                100.0e-3 
  StepEstimate               smooth 
  ErrorEstimate              change 
  ErrorControl               on 
  Tolerance                  1.0e-2 
 

Log output is directed to the file strand.log, while results are stored in the file strand.store for 
later reporting and plots. 

 
  LogFile                    strand.log 
  StorageFile                strand.store 
 
end 
 

At this point the input definition is complete and execution starts. 
 
 
Post-processing command file The following is an example of the sequence of 
commands necessary to generate of print-outs and plots using the post-processor THEAPOST. 
 

strand.post 
 
Define the file where results are stored. 

 
StorageFile strand.store 
 

Define the file for Postscript® output. 
 
PostScriptFile strand.ps 
 

The number of plots per page can be set to 1, 2, 3, 4 or 6. 
 
set plotsperpage 2 
 

Select the results of the simulation at the times closest to those below. All following plots are 
as f(x), the selected times are parameters. 

 
select time 0.0 0.1e-3 0.2e-3 0.5e-3 1.0e-3 1.5e-3 2.0e-3 5.0e-3 
 

Plot various quantities as f(x) selecting the quantity first, the component next. 
 
plot temperature thermal 1 
plot QJoule      thermal 1 
 

Select the results of the simulation at the points with coordinate x closest to those below. All 
following plots are as a f(t), the selected x are parameters. 

 
select x 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0 
 

Plot various quantities as f(t) selecting the quantity first, the component next. 
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plot temperature thermal 1 
plot Resistance  thermal 1 
 

Plot now parametrically one variable versus a second variable in the middle of the domain 
analysed. 

 
select x 1.0 
 
plot resistance thermal 1 vs temperature thermal 1 
plot QJoule thermal 1 vs temperature thermal 1 
 

The stop command terminates parsing, the post-processing session is finished. 
 
stop 

 
 
Results In this case the output of the post-processor THEAPOST is the PostScript file 
strand.ps. The plots below show the first page in the PostScript output, and in particular 
they show the evolution of the temperature of the strand and of the Joule heat power density. 
Note the propagation of the normal zone from the center (the heated region) towards the ends. 
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Current distribution in a two-strand cable 
Physical definition of the problem In this case we model the current diffusion in a 
cable formed by two strands with a transposition error localised over a short length and 
subjected to an external field change. The conditions selected here are close to the 
experimental conditions used by Krempaski and Schmidt, and reported in [5]. 
 
The cable has a total length of 4.7 m, and the transposition error is an additional loop placed in 
the centre of the cable length. The loop has a cross section of 70 mm2, and it is assumed to be 
smeared over a length of 10 mm. Over this length the change of the external magnetic field 
causes a voltage difference between the two strands proportional to the cross section of the 
loop and to the field ramp-rate. The effect of the field variation on the other regions of the 
cable is neglected. For the loop we take a field ramp-rate of 0.26 T in 7.6 s, thus resulting in a 
loop voltage of 2.4 µV. This voltage is applied over a length of 10 mm, so that the voltage per 
strand unit length is then 240 µV/m. This voltage is applied to the first strand, taking as 
reference (zero voltage) the second one. 
 
The cable is soldered along its length, and the interstrand conductance is 52 MSiemens. The 
self inductance of a strand is 0.836 µH/m, and the mutual inductance between the two strands 
is 0.557 µH/m.  
 
The problem is symmetric, and therefore only one half of the domain need to be analysed. The 
symmetry axis is place at the middle of the central loop. The symmetry boundary condition  
(left boundary) is expressed by a constant and zero voltage difference between the two strands 
(the center of the cable is the electrical axis). The boundary condition at the cable end (right 
boundary) models the fact that the strands are cut open and therefore no current can circulate 
at the boundary.  
 

 
 

Input file for the run Two electric components are needed in this case, modelling the two 
strands. In the assumption of constant temperature, the two strands are superconducting. This 
results in zero longitudinal resistance, which is the default for electric components not linked 
to thermal components. Only the electric properties (transverse conductance and inductances) 
need then to be defined. The total cable current is set to zero (no transport current), and this 
condition is insured throughout the simulation. The input file is defined below. 
 

twostrand.input 

Lcable= 4.7 m

A= 70 mm2

dB/dt

B

time

0.26 T

7.6 s
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Define the global model characteristics and parameters. These are title, length, total cable 
current, field and strain. 

 
Begin Model 
 
  ModelName            'Current distribution' 
 

The cable has a total length of 4.7 m. Here we assume symmetry in the center (see boundary 
conditions for electrics) and we analyse only half of the length. 

 
  Length                2.35 
 

The total cable current is constant and equal to zero. Neither magnetic field nor strain are 
defined. The effect of the magnetic field ramp is modeled as a voltage applied to the length of 
cable with the transposition error (see electric model). 

 
  CurrentModel          constant 
  InitialCurrent        0.0 
  MagneticFieldModel    none 
  StrainModel           none  
 
end 
 

Define details of electric model. These are electric parameters, voltage source, initial and 
boundary conditions for the two components defined 

 
Begin Electrics 
 
  Components            2 
 

The electric (link) parameters are constant in space. In this case the inductance matrix of the 2 
components is built as follows: 
 Self Mutual 
 Mutual Self 
while the transverse conductance among the couple of electric components is constant and 
equal to Conductance, i.e. the matrix is built as follows: 
 0.0 Conductance 
 Conductance 0.0 
The user should take care that the parameters are such that the resulting matrices are 
physically consistent. 

 
  Links_Model           constant  
  Self                  8.36e-7 
  Mutual                5.57e-7 
  Conductance           5.20e+7 
 

The voltage in the electric 1 has a given value Voltage between V_XBegin and V_XEnd in 
space and between 0 and V_Tau in time. No voltage is applied to electric 2. Values for all 
parameters are needed for BOTH components, although they are not used for electric 2. 

 
  VModel                window     none 
 
  Voltage               2.4E-4     0.0  
  V_XBegin              0.0        0.0 
  V_XEnd                0.005      0.0 
  V_Tau                 7.6        0.0 
 

Both strands have initial current uniform in space, equal to zero. 
 
  InitialCondition      constant  constant 
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  IInitial              0.0       0.0 
 

The type of boundary conditions to be imposed is defined for both sides of both electric 
components - the order in the definition matters ! The left boundary of both components is of 
imposed voltage type, while the  right boundary is of imposed current type. Types, flags and 
values are given in the following order:  
 

left boundary, electric 1   right boundary, electric 1 
left boundary, electric 2   right boundary, electric 2 
left boundary, electric 3   right boundary, electric 3 
left boundary, electric 4   right boundary, electric 4 

 
and so on. The number of boundary conditions that can be imposed is equal to the total 
number of electric components minus one. This is a must to guarantee that current is 
conserved at the boundary as well. 

 
  BoundaryType          voltage    current 
 

The boundary conditions are constant in time. The values of the boundary currents and 
voltage differences are all needed although only some values are used (e.g. voltage on left 
boundary, current on right boundary). Note that repetition can be simplified using the 
keyword Nx where N stands for the number of entries to be taken equal. The entry below: 

 
  BoundaryConditions    2x constant 
 

means that the interpreter expands it during reading to the following equivalent: 
 
  BoundaryConditions    constant   constant 
 

note also that repetition of assignment is not an error. Useful for testing. 
 
  IBoundary             0.0        0.0 
  VBoundary             0.0        0.0 
 
end 
 

Define the simulation parameters (numerics), storage and output. 
 
Begin Simulation 
 

The mesh is automatically generated using the given number of elements NrElements 
uniformly distributed in space. The element type is determined by the number of nodes 
ElementNodes and the interpolation order ElementOrder.  

 
  MeshType              uniform 
  NrElements            1000 
  ElementNodes          3 
  ElementOrder          2 
 

The time integration starts at StartTime 0 s and ends at EndTime 15 s, with output of the 
results every OutputStep 0.5 s. 

 
  StartTime             0.0 
  EndTime               15.0 
  OutputStep            0.5 
 

The time integration uses the Crank-Nicolson method (2nd order accurate in time). The time 
step is not adapted, as StepEstimate is set to none. No error estimate is provided 
(ErrorEstimate set to none) and as a consequence no iterative error control is possible 
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(ErrorControl is set to none). The effect of this combination is to perform time integration with 
a constant time step, equal to the minimum MinimumStep 

 
  TimeMethod            CrankNicolson 
  MinimumStep           0.05 
  MaximumStep           0.05 
  StepEstimate          none 
  ErrorEstimate         none 
  ErrorControl          none 
 

Log output is directed to the file twostrand.log, while results are stored in the file 
twostrand.store for later reporting 

 
  LogFile               twostrand.log 
  StorageFile           twostrand.store 
 
end 

 
 
Post-processing command file The following is an example of the sequence of 
commands necessary to generate of print-outs and plots using the post-processor THEAPOST. 
 

twostrand.post 
 
Define the file where results are stored. 

 
StorageFile twostrand.store 
 

Define the file for PostScript® output. 
 
PostScriptFile twostrand.ps 
 

The number of plots per page can be set to 1, 2, 3, 4 or 6. 
 
set plotsperpage 2 
 

Select the results of the simulation at the points with coordinate x closest to those below. All 
following plots are as a f(t), the selected x are parameters. 

 
select x 0 0.1 0.2 0.5 
 

Plot various quantities as f(t) selecting the quantity first, the component next. The same 
quantity can be plotted on different components on the same plot 

 
plot current     electric 1    electric 2 
plot VExternal   electric 1    electric 2 
 

Select the results of the simulation at the times closest to those below. All following plots are 
as f(x), the selected times are parameters. 

 
select time 1 2 5 10 15 
 

Plot quantities as f(x). 
 
plot current     electric 1 
plot current     electric 2 
 

The execution stops automatically at the end-of-file. 
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Results The results of the post-processor THEAPOST is the PostScript file 
twostrand.ps. The plots below show the first page in the PostScript output. The first plot 
contains the current in both the electric components plotted as a function of time at different 
locations x selected along the length of the cable. Note how the currents have been combined 
in a single plot. Similarly the second plot reports the external longitudinal voltage applied in 
the two components. According to the definition of this case a voltage is applied only to the 
first component during a time window of 7.6 s. 
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Quench in a CICC with central cooling hole 
Physical definition of the problem In this case we compute the evolution of the 
temperature in the QUELL conductor during a quench. The QUELL (Quench on Long 
Length) experiment was performed at EPFL/CRPP Villigen (CH) in the SULTAN test facility. 
This conductor has a central cooling hole and is a downsized model of an ITER-EDA CICC. 
Details on the experiment can be found in [6]. 
 

 
 
The QUELL cable can be modeled in first approximation as a bundle of strands forming the 
cable, cooled by intimate flow of helium. A large cooling channel is present in the middle of 
the conductor, separated by a loose spiral from the helium cooling the cable. The conductor 
has a Titanium alloy jacket which is externally insulated and epoxy impregnated. The sample 
length is approximately 100 m. The cable is supposed to operate at 8 kA current, in a 10 T 
magnetic field. The helium has inlet conditions at 4.5 K and 5 bar, outlet at 4.75 bar. The 
boundary are assumed to provide constant inlet and outlet helium state, while the cable, jacket 
and insulation are assumed to be adiabatic. 
 
Input file for the start-up run For this case we assume that the current distribution within 
the cable is uniform, and we define three thermal components for the cable strands, the jacket 
and the insulation. The total current is distributed resistively and instantaneously among them. 
The thermal components are coupled among themselves through thermal resistance, and are 
cooled by heat convection with the helium flow in the bundle and in the cooling hole. These 
two flows are modelled as separate and coupled hydraulic components. The step-by-step 
definition of the input file is given below. 
 

quell.input 
 

Define the global model characteristics and parameters: a title used for labeling output and 
plots, total cable length 100 m, total current 8 kA, magnetic field 10 T and no strain. 

 
Begin Model       
  
  ModelName             QUELL 
 
  Length                100.0 
  CurrentModel          constant 
  InitialCurrent        8000.0 
  StrainModel           none 
 

A left and right values are defined for the magnetic field. The field is interpolated linearly in x 
using the values below. 

 
  MagneticFieldModel    constant 
  MagneticfieldSS       10.0     10.0 
 
end 
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Define the details of the thermal components. 

 
Begin Thermals 
 

Three thermal components are defined: the Cu/Nb3Sn superconducting strands that model the 
cable bundle, a Ti jacket and a composite glass-epoxy insulation. The components have 
constant cross section and properties along the length. The temperature evolution is computed 
for each component separately. The first component, the strands, have a composite structure 
made up of two materials, the Nb3Sn and the Cu stabilizer. The temperature is assumed to be 
the same for all materials within a component. Cross sections are defined for all materials. 
For Cu the value of the RRR (residual resistivity ratio) is needed (not necessary for other 
materials). For the strand it is finally necessary to define the parameters of the power fit to the 
V-I curve for the critical current transition: E0 (electric field) and nPower (power law 
exponent). Note that values and properties must be given for all materials (e.g. RRR) or all 
components (e.g. E0, nPower) although they may not be necessary for the physical description 
(and are not used). 

 
  Components         3 
 
  Model              constant            constant    constant 
 
  NrMaterials        2                   1           1 
  Materials          Cu        Nb3Sn     Ti          GE-warp 
  Area               60.8e-6   40.6e-6   73.5e-6     61.0e-6 
  RRR                100.0     0.0       0.0         0.0 
  E0                 1.0e-4              0.0         0.0 
  nPower             20                  0           0 
 

A heating power pulse with strength Q of 50 kW/m is applied in space between Q_XBegin and 
Q_XEnd (45 and 55 m) and in time from 0 to Q_Tau (10 ms). 

 
  QModel               window              none        none  
  Q                    5.0e+4              0.0         0.0 
  Q_Tau                10.0e-3             0.0         0.0 
  Q_XBegin             45.0                0.0         0.0 
  Q_XEnd               55.0                0.0         0.0 
 

The initial conditions are of constant temperature in all components. 
 
  InitialCondition     constant            constant    constant 
  TInitial             4.5                 4.5         4.5 
 

The boundary conditions are of prescribed heat flux at the boundary. The heat flux is constant 
in time, and it is equal to zero. This corresponds to adiabatic boundary conditions. 

 
  BoundaryType         heat       heat 
                       heat       heat 
                       heat       heat 
  BoundaryConditions   constant   constant 
                       constant   constant 
                       constant   constant 
  qBoundary            0.0        0.0 
                       0.0        0.0 
                       0.0        0.0 
 

The thermal resistances define the thermal contact among the thermals and in this case they 
are given as a matrix. The order matters, the thermal resistances are in the following 
sequence: 
 
    Thermal 1 <---> Thermal 2   Thermal 1 <---> Thermal 3 
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    Thermal 2 <---> Thermal 3 
 
A value of 1 (K m / W) is taken between cable and jacket, and a value of 0.1 (K m / W) between 
between jacket and insulation. The thermal 
resistance among cable and insulation, on the other hand, is very high 
(ideally infinite) 

 
  Links_Model          matrix 
 
  ThermalResistanceMatrix    1.0    1.0e6 
                             0.1 
 
 
end 
 

Define the details of the hydraulic components. 
 
Begin Hydraulics 
 

Two hydraulic components are defined, the first in intimate contact with the cable bundle, and 
the second contained in a cooling hole in the cable. The cross section Area, hydraulic 
diameter Dh are defined for both as constant along the length. The Katheder correlation is 
used for the friction factor of hydraulic 1, the Blasius correlation for hydraulic 2. The Dittus-
Boelter correlation is used for the heat transfer coefficient of both hydraulics. 

 
  Components           2 
  Fluid                helium 
  Model                constant   constant 
  Area                 71.4e-6    19.6e-6 
  Dh                   0.865e-3   5.0e-3 
 
  fModel               Katheder   Blasius  
  hModel               DB         DB 
 
  Links_Model          constant 
  WettedPerimeter      15.7e-3 
  Perforation          1.0e-2 
 

The helium has 4.5 K initial temperature, 5 bar initial pressure and 5 g/s initial flow. These 
conditions are constant along the length. 

 
  InitialCondition     constant   constant 
  TInitial             4.5        4.5 
  pInitial             5.0e5      5.0e5 
  mdotInitial          5.0e-3     5.0e-3 
 

No heating power is input directly in the channels 
 
  QModel               none       none 
 

Boundary conditions are of prescribed pressure and temperature at both left and right side of 
the length analysed (infinite reservoir). The value of pressure and temperature in the two 
reservoirs is constant in time. On the left boundary the temperature is 4.5 K and the pressure 5 
bar, on the right boundary the temperature is 4.5 K and the pressure 4.75 bar. 

 
  BoundaryType         reservoir  reservoir 
                       reservoir  reservoir 
  BoundaryConditions   constant   constant 
                       constant   constant 
  TBoundary            4.5        4.5 
                       4.5        4.5 
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  pBoundary            5.0e5      4.75e5 
                       5.0e5      4.75e5 
 
end 
 

Define the details of the wetted perimeter among thermal and hydraulic components. 
 
Begin Links 
 

The S_H_Links_Model determines that the wetted perimeter is a constant along the length. 
The order matters, the links are in the following sequence: 
   Thermal 1 <---> Hydraulic 1   Thermal 1 <---> Hydraulic 2 
   Thermal 2 <---> Hydraulic 1   Thermal 2 <---> Hydraulic 2 
   Thermal 3 <---> Hydraulic 1   Thermal 3 <---> Hydraulic 2 
The wetted perimeter is then defined for each link, in the same sequence 

 
  S_H_Links_Model      constant   constant  
                       constant   constant  
                       constant   constant  
  WettedPerimeter      0.33       15.7e-3 
                       5.1e-2     0.0 
                       0.0        0.0 
 
end 
 

Define the simulation parameters (numerics), storage and output.  
 
Begin Simulation 
 

The mesh is automatically generated using the given number of elements NrElements 
uniformly distributed in space. The element type is determined by the number of nodes 
ElementNodes and the interpolation order ElementOrder.  

 
  MeshType              uniform 
  NrElements            250 
  ElementOrder          1 
  ElementNodes          2 
 

The time integration starts at StartTime and ends at EndTime, with output of the results every 
OutputStep. 

 
  StartTime             0.0 
  EndTime               5.0e-3 
  OutputStep            5.0e-4 
 

The time integration uses the Galerkin algorithm (1st order accurate in time). The time step is 
adapted automatically between the lower limit MinimumStep and the upper limit 
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase, 
performed depending on the comparison of the estimated integration error and the desired 
tolerance Tolerance. The time integration error is estimated based on the change in the 
solution during a time step. As the error control ErrorControl is none, the time step is not 
iterated to achieve the desired tolerance, thus reducing execution time. 

 
  TimeMethod            Galerkin 
  MinimumStep           1.0e-5 
  MaximumStep           1.0 
  StepEstimate          smooth 
  ErrorEstimate         change 
  ErrorControl          none 
  Tolerance             3.0e-2 
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Log output is directed to the file quell.log, while results are stored in the file quell.store for 
later reporting and plots. 

 
  LogFile               quell.log 
  StorageFile           quell.store 
 
end 

 
 
Input file for the restart run Below we give the step-by-step definition of the input file 
for a restart of the simulation performed using the input given above. 
 

quell.restart 
 

In case of restart only the simulation parameters are needed. All other parameters are taken 
from the storage file generated during the previous run. 

 
Begin Simulation 
 

The presence of the Restart keyword is necessary to trigger a restart run. 
 
  Restart 
 

The time integration starts at the last time stored on file quell.store (as specified below) and 
proceeds to the new EndTime, with the prescribed OutputStep. 

 
  EndTime               500.0e-3 
  OutputStep            2.0e-3 
 

Log output is directed to the file quell.log, while results are stored in the file quell.store for 
later reporting and plots. 

 
  LogFile               quell.log 
  StorageFile           quell.store 
 
end 

 
 
Post-processing command file The following is an example of the sequence of 
commands necessary to generate of print-outs and plots using the post-processor THEAPOST. 
 

quell.post 
 
Define the file where results are stored. 

 
StorageFile quell.store 
 

Define the file for Postscript® output. 
 
PostScriptFile quell.ps 
 

Define the file for printed output. 
 
OutputFile quell.out 
 

The number of plots per page  can be set to 1, 2, 3, 4 or 6. 
 
set plotsperpage 2 
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Select the results of the simulation at the times closest to those below. All following plots are 
as f(x), the selected times are parameters. 

 
select time 0.0 5.0e-4 1.0e-3 2.0e-3 5.0e-3 
 

Plot various quantities as f(x) selecting the quantity first, the component next. Note that 
several components can be selected at the same time to overplot curves. 

 
plot temperature thermal 1 thermal 2 thermal 3 
plot specificresistance  thermal 1 thermal 2 
 

Changing the number of plots per page will automatically generate a new page 
 
set plotsperpage 3 
 
plot pressure    hydraulic 1 hydraulic 2 
plot temperature hydraulic 1 hydraulic 2 
plot velocity    hydraulic 1 hydraulic 2 
 

Cause the present plot page to be completed and a new page to be open. This usually happens 
automatically every PlotsPerPage plots, and can be done manually to separate plots. 

 
newpage  
 

The times can be re-selected to have a different sampling of results 
 
select time 10.0e-3 50.0e-3 100.e-3 
 

Plot various quantities as f(x) selecting the quantity first, the component next. 
 
set plotsperpage 2 
plot temperature thermal 1 thermal 2 thermal 3 
plot resistance  thermal 1 thermal 2 thermal 3 
set plotsperpage 3 
plot pressure    hydraulic 1 hydraulic 2 
plot temperature hydraulic 1 hydraulic 2 
plot velocity    hydraulic 1 hydraulic 2 
 

The above cycle is repeated, opening a new page, selecting results at different times and 
plotting results as f(x). 

 
newpage 
select time 200.0e-3 300.0e-3 400.0e-3 500.e-3 
set plotsperpage 2 
plot temperature thermal 1 thermal 2 thermal 3 
plot resistance  thermal 1 thermal 2 thermal 3 
set plotsperpage 3 
plot pressure    hydraulic 1 hydraulic 2 
plot temperature hydraulic 1 hydraulic 2 
plot velocity    hydraulic 1 hydraulic 2 
 

Select a location in the middle of the cable and produce a print-out of the temperatures of all 
components. 

 
select x 50 
print temperature thermal 1 thermal 2 thermal 3 
print temperature hydraulic 1 hydraulic 2 
 
stop 
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Results The results of the post-processor THEAPOST are in the PostScript file 
quell.ps and in the ASCII output file quell.out. The plots below show the first page in 
the PostScript output. The first plot contains the temperature evolution in the thermal 
components, plotted as a function of space at different locations times. The initiation of the 
quench is clear in the plot. The second plot reports the distribution of the resistance per unit 
length of the two conducting thermal components. Also there we can see clearly the normal 
zone with increased temperature, where the resistance grows. 

 
 
The file quell.out contains the output requested. In our case the output requested is the 
temperature of the thermal and hydraulic components in the middle of the cable (x=50 m). We 
report here only an abridged version of the full file. 
 

quell.out 
 
The following is the output of the results. In our case first the temperatures of the thermal 
components at x=50 m, in the middle of the cable, as a function of time for all times stored in 
the binary storage file. 
 
            thermal 1    thermal 2    thermal 3      
Time        temperature  temperature  temperature    
[s]         [K]          [K]          [K]            
             5.00E+01 m   5.00E+01 m   5.00E+01 m    
---------------------------------------------------- 
 0.00E+00    4.50E+00     4.50E+00     4.50E+00      
 5.00E-04    1.82E+01     4.62E+00     4.58E+00      
 1.00E-03    2.14E+01     4.76E+00     4.70E+00      
 1.50E-03    2.34E+01     4.89E+00     4.82E+00      
 
..... (lines omitted) 
 
 4.97E-01    2.58E+01     1.95E+01     1.44E+01      
 4.99E-01    2.58E+01     1.95E+01     1.44E+01      
 5.00E-01    2.58E+01     1.95E+01     1.44E+01      
 
Followed by temperatures of the hydraulic components at x=50 m. 
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            hydraulic 1  hydraulic 2    
Time        temperature  temperature    
[s]         [K]          [K]            
             5.00E+01 m   5.00E+01 m    
--------------------------------------- 
 0.00E+00    4.50E+00     4.50E+00      
 5.00E-04    4.58E+00     4.54E+00      
 1.00E-03    4.69E+00     4.61E+00      
 1.50E-03    4.82E+00     4.68E+00      
 2.00E-03    4.97E+00     4.77E+00      
 2.50E-03    5.12E+00     4.86E+00      
 
..... (lines omitted) 
 
 4.97E-01    1.88E+01     1.53E+01      
 4.99E-01    1.89E+01     1.54E+01      
 5.00E-01    1.89E+01     1.54E+01      
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Critical current measurement in a Nb-Ti CICC (External Routines) 
Physical definition of the problem The example considered is the analysis of a critical 
current run in the PF Conductor Insert (PFCI) for ITER. This was a coil test that took place in 
2008 in the CS Model Coil Test Facility at JAEA (Naka, Japan) to characterize the 
performance of one of the Nb-Ti CICC cables to be used in the ITER PF coils. A description 
of the test and its main results can be found in [12], which also contains reference dimensions 
for the insert coil. The figure below shows a cross section of the PFCI conductor, a dual-flow 
CICC with Cu/Nb-Ti strands in a steel jacket, and the 3-D rendering of the insert winding, 
which contains a joint not considered in this simple test case. The total cable length in the 
insert was 48.77 m (inlet to outlet). 
 

   
 
 
The aim of this case study is to reproduce a critical current measurement, and more 
specifically run 27-2. During this run the temperature at inlet was set at 6.28 ± 0.05 K, the 
background field was 5.4 T, and the current was increased with a slow linear ramp till a 
quench was detected.  
 
A complete simulation of the run, including all features of the PFCI, is beyond the scope of 
this simplified case study. This is why we focused here only on a few interesting 
customizations that are necessary to capture the main features of the experiment. Specifically: 
 

• The conductor geometry has been reproduced based on the data reported in [12], and 
references therein; 

• The critical current density of the NbTi material used was calibrated against an 
extensive set of measurements referenced in [12]. This required defining a specific 
material property using External Routines; 

• Constant inlet and outlet conditions for the He flow were imposed, resulting in 
approximate flow conditions as measured in the experiment, using standard 
definitions for the friction factor and heat transfer coefficients (not calibrated to the 
conductor); 

• The current was defined as a linear ramp lasting 300 s, attempting to reach 45 kA. A 
check is performed on the resistive voltage, and a quench dump with an exponential 
decay constant of 1 s is triggered if the resistive voltage exceeds 100 mV. This 
required defining a specific material property using External Routines; 

• The magnetic field is taken as the sum of the background field imposed by the CS 
Model Coil (5.4 T) and the self field proportional to the PFCI current, with a 
proportionality constant of 15.7 mT/kA. The field profile along the length was 
ignored (in reality the field increases in the few meters of the insert), and the self field 
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quoted above corresponds to the peak field in the cable, which was found to match 
well the measured performance [12]. This definition of the magnetic field required 
defining a specific material property using External Routines. 

 
Input files for the test case All files necessary to recreate the above conditions are 
contained in the directory: 
 
~/CryoSoft/xample/thea/code_x.x/PFCI 
 
which has been created to contain customized External Routines, a customized makefile, and 
(after compilation and link-editing) the customized executable code. This is the recommended 
way to organize specific work on parts of the External Routines, so to maintain a reference 
version of the code, and only modify local copies. The directory contains the following files:  
 
PFCI.input input file with standard format (described earlier in the manual), as 

well as reference to user definitions of operating current, magnetic 
field and a specific NbTi material; 

PFCI.make customized makefile, based on the standard THEA makefile, used 
to create a local version of THEA, including the desired customized 
features; 

PFCI.post post-processing command file, used to obtain plots after the 
simulation; 

obj a directory containing the object files of the External Routines, after 
compilation with the makefile script; 

usr a directory containing the source files of the External Routines, to 
be compiled using the makefile script. This directory contains the 
following files: 

 userCurrent.f the External Routine for the current waveform; 
 userMagneticField.f the External Routine for the field profile;  
 userSolids.f External Routine for solids material properties. 
 
We refer the reader to the specific files for comments on the actual inputs and programming 
solutions. 
 
Running test case Before running this test case, please insure that a standard installation 
of THEA has been completed successfully. This is required because of the configuration 
settings (compilers, compiler options, libraries). All standard code segments should have been 
compiled (linked if available by the makefile script) and a standard code version available and 
tested (this a pre-requisite to verify that this THEA version can run in your installation). To 
run this test case the user will follow these steps: 
 
Compile and link-edit the customized version of the code by using the makefile provided, 
using the command: 
 
make –f  PFCI.make 
 
The script compiles the External Routines, generates three object files in the obj/ directory, 
and links the standard objects into a new executable file, PFCI.thea, that contains all custom 
features required. At this point the case can be run as a standard THEA run, using the new 
executable, as follows: 
 
./PFCI.thea 
 
the program will prompt for the input file, as in the case of a standard execution: 
 
THEA Enter input file name 
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PFCI.input 
 
Which can be followed by a standard post-processing run, using the command file 
PFCI.post. 
 
Once again, as can be inferred from this brief explanation, and by examining the input and 
makefile, all customization, new executable, inputs and results are local to the directory of the 
test case, and in no ways they affect the standard code. 
 
Results The results of the test case are shown below, where we report the first page of 
the PostScript® plot file generated by THEAPOST. The upper-left plot is the current 
waveforms, linear until a quench is triggered, at approximately 42 kA, and followed by the 
exponential fast dump.  
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CHAPTER 4 

Input Reference 
 
 
 
 
 
 
 
 
 
 

Structure and syntax 
The input file is read by the input interpreter that parses and analyzes the syntax and the 
grammar of the various entries. In general the file contains a series of blocks that are 
structured as follows: 
 
 Begin BlockName 
  VariableName value(s) 
  VariableName value(s) 
 
  ……………….. 
  ……………….. 
 
  VariableName value(s) 
 End 
 
where BlockName is a keyword indicating the block type, and must be one of the following 
valid choices: 
 
 Model  define the general properties of the model 
 Thermals define the number and properties of the thermal components 
 Hydraulics define the number and properties of the hydraulic components 
 Electrics define the number and properties of the electric components 
 Links  define the thermals-hydraulics and thermals-electrics links 
 Simulation define the simulation parameters 
 Variables define user variables for use in routines and functions 
 
The content of a block is a series of assignations of a set of values to a generic variable 
VariableName. VariableName must be chosen among the set of keywords described in the 
following sections.  
 
The structure and content of the input file must comply with the following rules and 
conventions: 
 
§ the identifier of a variable and the corresponding value(s) can appear at any position on 

the line, they can carry on to several lines and must be separated by blanks or tabs; 
§ the interpretation is case insensitive; 
§ abbreviations of the keys are not allowed; 
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§ a character ‘;’ in any position of the command line indicates that the remainder of the line 
must be considered as a comment. If the ‘;’ is the first character in a line, then the whole 
line is ignored; 

§ for an array of variables, the exact number of elements must follow the keyword. The 
expected number of elements is reported in the description of the variables below. If a 
keyword or a numeric entry entry is repeated N times within an array the alternative 
implicit syntax Nx entry can be used to shorten the input. In the case of matrices of 
entries, described below as arrays with 2 dimensions (e.g. boundary condition definitions) 
the implicit multiple definition applies to the first dimension of the matrix only; 

§ the variables in the block are read sequentially and are checked at read-in time. For this 
reason the order of precedence of the variables must be respected whenever a value is 
needed to proceed with the interpretation of a block (i.e. the total number of components 
must be available to read the physical characteristics of all components within a block); 

§ repeated variable assignation overrides previous values and is not checked at read-in time; 
§ the blocks in the file are read sequentially and are checked at read-in time. This means 

that, if Electrics-Thermals and/or Hydraulics-Thermals links are requested, then the 
Electrics/Hydraulics and Thermals blocks  must be assigned before the Links block. The 
same BlockName can appear more than once in a file 

 
Parsing of the input file is finished as soon as an end-of-file is found. At this point the 
execution control is passed to the main program that executes checks on data consistency, 
configures the run and launches the simulation. For sample input files see Chapter 3. 
 

Input variables reference 
The following table contains, in alphabetical order, the keywords defining the input variables, 
their physical dimensions and meanings for each block type. Predefined possible values are 
reported in Courier. The default value is indicated in the table and underlined. 
 
Note In the tables below we use the following convention for the type of variables: 
 
 C  character (a string delimited by blanks, tabs or apices) 
 R real (a number in floating point or engineering notation) 
 I integer (an integer number) 
 
Typing must be respect in the input file to avoid errors or mis-interpretation by the parser. 
 

Model 
The model block describes general quantities that apply to all components in the model being 
prepared. These are in particular total length and local elevation of the components (for the 
calculation of buoyancy effects), operating conditions such as total current, magnetic field and 
longitudinal strain. A title can be defined to identify the case. The title appears in plots and 
print-outs generated by THEAPOST. 
 
Variable Type Units Meaning 
 
CurrentModel C (-) Flag describing the behaviour of the current in time. 

Possible values: 
user user defined through the function 

UserCurrent (see Chapter 6). 
none no current defined (default). 
constant constant in time, equal to 

InitialCurrent 
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linear combination of constant in time, equal 
to InitialCurrent, between 0 and 
TauDetection, followed by linear 
decay between TauDetection and 
TauDetection + TauDump. 

exponential combination of constant in time, equal 
to InitialCurrent, between 0 and 
TauDetection, followed by 
exponential decay after 
TauDetection with TauDump time 
constant. 

External the current is obtained from one of the 
other CryoSoft simulators, through 
explicit coupling at each time step. This 
coupling requires execution under the 
SuperMagnet environment, and leads to 
an error in case it is used in stand-alone 
mode. See the SuperMagnet manual for 
more details. 

 
InitialCurrent R (A) Initial current, used for scaling the value of the current 

in time and also as a reference for scaling of the 
magnetic field and strain. 

 
Length R (m) Total length of the 1-D domain analysed (e.g. cable 

length) 
 
Height R (m) Array of 2 elements containing the elevation of the 

components at the left and right boundary. 
 
HeightModel C (-) Flag describing the definition of the local elevation z of 

the components along the length x. Possible values: 
user user defined through the function 

UserHeight (see Chapter 6). 
none no height defined (default to z=0) 
linear varying linearly in space. The value is 

obtained through linear interpolation 
along the total length between the left 
value Height(1) and the right value 
Height(2). 

MagneticFieldAngle R (T) Array of 2 elements containing the value of the 
magnetic field angle at the left and right boundary, in 
degrees. The convention is an angle of 0 degrees for a 
field normal to the current direction, and an angle of 90 
degrees for a field parallel to the current direction. 

 
MagneticFieldModel C (-) Flag describing the behaviour of the magnetic field in 

time and space. Possible values: 
user user defined through the function 

UserMagneticField and 
UserMagneticFieldAngle (see 
Chapter 6). 

none no magnetic field defined (default) 
constant constant in time and linear in space. 

The value is obtained through linear 
interpolation along the total length 
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between the left value 
MagneticFieldSS(1) and the right 
value MagneticFieldSS(2). The 
field angle is obtained by linear 
interpolation along the total length 
between the left value 
MagneticFieldAngle(1) and the 
right value MagneticFieldAngle 
(2). 

proportional scaled proportionally to the cable 
current, linear in space. The magnetic 
field value is obtained as the sum of a 
component identical to the one 
described above, and a transient 
component obtained interpolating 
linearly in space between the left 
value MagneticFieldTr(1) and 
the right value 
MagneticFieldTr(2). The 
transient component is scaled linearly 
with the ratio of instantaneous current 
to the initial current. The field angle 
remains always constant. 

 
MagneticFieldSS R (T) Array of 2 elements containing the steady state value of 

the magnetic field at the left and right boundary. 
 
MagneticFieldTr R (T) Array of 2 elements containing the transient value of 

the magnetic field at the left and right boundary. 
 
ModelName C (-) Model name, used for labeling plots and print-outs. 
 
StrainModel C (-) Flag describing the behaviour of the longitudinal strain 

in time and space. Possible values: 
user user defined through the function 

UserStrain (see Chapter 6). 
none no strain defined (default) 
constant constant in time and linear in space. 

The value is obtained through linear 
interpolation along the total length 
between the left value StrainSS(1) 
and the right value StrainSS(2). 

proportional scaled proportionally to the square of 
the cable current, linear in space. The 
strain value is obtained as the sum of 
a component identical to the one 
described above, and a transient 
component obtained interpolating 
linearly in space between the left 
value StrainTr(1) and the right 
value StrainTr(2). The transient 
component is scaled quadratically 
with the ratio of instantaneous current 
to the initial current. 
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StrainSS R (-) Array of 2 elements containing the steady state value of 
the longitudinal strain at the left and right boundary. 

 
StrainTr R (-) Array of 2 elements containing the transient value of 

the longitudinal strain at the left and right boundary. 
 
TauDetection R (s) Delay time (detection) before the current dump. 
 
TauDump R (s) Dump time constant for the current decay. 
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Thermals 
The thermals block describes the configuration and detailed properties for the thermal 
components. Thermal components are heat conducting solids, possibly superconducting, 
carrying a current and generating Joule heat. This block defines their number, material 
composition, cross sections and material properties. Heating can be set on a component-by-
component basis. Thermal links within thermal components are defined through thermal 
resistances. In addition this block gives initial temperature and boundary conditions for the 
thermal components. 
 
Note In the case of keywords associated with an array, all elements of the array must follow 
in the input file, even if these are not defined or are not used. Dummy values can be used. 
 
Variable Type Units Meaning 
 
Area R (m2) Array of (NrMaterials,Components) elements 

containing the cross sections of all materials in each 
component. 

   The entries must be in the following order: 
   (mi,Tj) (mi+1,Tj) (mi+2,Tj) … 
   (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) … 
   end so on, where mi stands for the i-th material and Tj 

for the j-th thermal component. 
 
BoundaryConditions  C (-) Array of (2,Components) elements containing the 

flag defining the time dependence of the boundary 
value. 

   The entries must be in the following order: 
   (b1,Tj) (b2,Tj)  
   (b1,Tj+1) (b2,Tj+1) 
   end so on, where bi stands for the i-th boundary and Tj 

for the j-th thermal component. 
   Possible values: 

user user defined through the functions 
UserSTBoundary and UserQBoundary 
(see Chapter 6). 

constant constant boundary value in time 
(default). 

 
BoundaryType C (-) Array of (2,Components) elements containing the 

flag defining the type of boundary.  
   The entries must be in the following order: 
   (b1,Tj) (b2,Tj)  
   (b1,Tj+1) (b2,Tj+1) 
   end so on, where bi stands for the i-th boundary and Tj 

for the j-th thermal component. 
   Possible values: 

temperature prescribed temperature at the boundary 
(default). 

heat prescribed heating power at the 
boundary. 

 
Components I (-) Number of thermal components defined. 
 
E0 R (V/m) Array of Components elements containing the electric 

field used as reference for the definition of the critical 
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current Jc in the superconducting components. The 
longitudinal electric field (V-I curve) is computed 
using the power law fit with scaling field E0 and power 
exponent nPower. 

 
InitialCondition C (-) Array of Components elements containing the flags 

defining the initial conditions of temperature in each 
thermal component. Possible values: 
user user defined through the function 

UserSTInitial (see Chapter 6). 
constant constant in space, equal to TInitial 

(default). 
 
Links_Model  C (-) Flag defining the thermal links (thermal resistances) 

among thermal components. Possible values: 
user user defined for each couple of thermal 

components through the function 
UserThermalResistance (see Chapter 
6). 

none no links among thermal components 
(default). 

constant all componentsd are thermally linked, and 
a single value ThermalResistance is 
used for all couples of thermal 
components, constant in space. 

matrix the components are thermally linked, and 
the thermal resistance for each couple of 
thermal components is given in 
ThermalResistanceMatrix. 

 
Materials C (-) Array of (NrMaterials,Components) elements 

containing the material names. Details on the material 
properties can be found in the CryoSoft Solids Library 
[7]. The material name can be one of the predefined 
standard names or any user specified names. 

   In the case of a user’s specified name the material 
properties and types are computed by the functions: 

    UserConductivity  
    UserDensity  

   UserResistivity 
UserCriticalCurrentDensity 

    UserSpecificHeat 
   UserCriticalTemperature, 

UserCurrentSharing 
    UserMaterialType  
   that must be provided by the user (see Chapter 6). At 

most one superconductor material per thermal 
component is allowed. The entries must be in the 
following order: 

   (mi,Tj) (mi+1,Tj) (mi+2,Tj) … 
   (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) … 
   end so on, where mi stands for the i-th material and Tj 

for the j-th thermal component. 
 
Model C (-) Array of Components elements containing the flags 

defining the property variation in space. Possible 
values: 
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user cross sections and material propertis are 
user defined through the functions 
UserSArea, UserConductivity, 
UserDensity, UserRRR, UserE0, 
UsernPower, UserSpecificHeat, 
UserCriticalCurrent, 
UserCriticalTemperature, 
UserCurrentSharing, 
UserResistivity (see Chapter 6). 

constant constant in time and space, as read-in from 
input (default). 

 
nPower I (-) Array of Components elements containing the 

exponent used for the power-law description of the 
longitudinal electric field in a superconductor (V-I 
curve). For a value of nPower larger than 250, a sharp 
transition is assumed. 

 
NrMaterials I (-) Array of Components elements defining the number of 

materials in the same component. 
 
RRR R (-) Array of (NrMaterials,Components) elements 

containing the Residual Resistivity Ratio of each 
material 

   The entries must be in the following order: 
   (mi,Tj) (mi+1,Tj) (mi+2,Tj) … 
   (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) … 
   end so on, where mi stands for the i-th material and Tj 

for the j-th thermal component. 
 
Q R (W/m) Array of Components elements defining the linear 

heat flux density, and used depending on the heating 
model QModel (see below). 

 
QBoundary R (W) Array of (2,Components) elements defining the heat 

flux in the left and right boundaries, used when the 
corresponding BoundaryType = heat 

   The entries must be in the following order: 
   (b1,Tj) (b2,Tj)  
   (b1,Tj+1) (b2,Tj+1) 
   end so on, where bi stands for the i-th boundary and Tj 

for the j-th thermal component. 
 
QModel  C (-) Array of Components elements containing the flag 

defining the model for heating along the length. 
Possible values: 
user user defined through the function 

UserSHeating (see Chapter 6). 
none no heating (default) 
constant linear power density equal to Q within 

the space frame between Q_XBegin 
and Q_XEnd, constant in time, zero 
otherwise. 

window linear power density equal to Q within 
the space frame between Q_XBegin 
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and Q_XEnd, from time 0 to Q_Tau, 
zero otherwise. 

exponential linear power density equal to Q within 
the space frame between Q_XBegin 
and Q_XEnd, exponential decay in time 
with time constant Q_Tau, zero 
otherwise. 

external the linear power density is obtained 
from one of the other CryoSoft 
simulators, through explicit coupling at 
each time step. This coupling requires 
execution under the SuperMagnet 
environment, and leads to an error in 
case it is used in stand-alone mode. See 
the SuperMagnet manual for more 
details. 

 
Q_Tau R (s) Array of Components elements containing the heating 

time constant. 
 
Q_XBegin R (m) Array of Components elements containing the start 

coordinate of the heating window. 
 
Q_XEnd R (m) Array of Components elements containing the end 

coordinate of the heating window. 
 
TBoundary R (K) Array of (2,Components) elements defining the 

temperature at the left and right boundaries, used when 
the corresponding BoundaryType = temperature. 

   The entries must be in the following order: 
   (b1,Tj) (b2,Tj)  
   (b1,Tj+1) (b2,Tj+1) 
   end so on, where bi stands for the i-th boundary and Tj 

for the j-th thermal component. 
 
ThermalResistance R (K m/W) Thermal resistance among all couples of thermal 

components, used il Links_Model is constant. All 
thermal components are thermally linked through the 
value given. 

 
ThermalResistanceMatrix 
 R (K m/W) array of (Components,Components) elements 

defining the thermal resistance among all possible 
couples of thermal components (used if Links_Model 
is matrix). The thermal resistance for the thermal 
couple (i,j) is the same as the thermal resistance of the 
couple (j,i). For this reson only the upper triangle of the 
matrix is given in input, in the following order: 

   (1,2) (1,3) ... (1,N-1) (1,N) 
    (2,3) ... (2,N-1)  (2,N) 
     ... 
     ...  (N-1,N) 
   for a total of Components*(Components-1)/2 

entries. 
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TInitial R (K) Array of Components elements containing the initial 
temperature in each thermal component (uniform in 
space). 
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Hydraulics 
The hydraulics block describes the configuration and detailed properties for the hydraulic 
components. Hydraulic components are channels where the fluid flows. This block defines the 
fluid flowing in the channels, their number, cross sections, hydraulic properties and turbulent 
correlations. Heating can be set on a component-by-component basis. Links within hydraulic 
components are defined through heat and/or mass transfer among channels. In addition this 
block sets initial temperature, pressure, flow and boundary conditions for all hydraulic 
components. 
 
Variable Type Units Meaning 
 
Area R (m2) Array of Components elements containing the cross 

sections of all hydraulic components. 
 
BoundaryConditions  C (-) Array of (2,Components) elements containing the 

flag defining the time dependence of the boundary 
value.  

   The entries must be in the following order: 
   (b1,Hj) (b2,Hj)  
   (b1,Hj+1) (b2,Hj+1) 
   end so on, where bi stands for the i-th boundary and Hj 

for the j-th hydraulic component. 
   Possible values: 

user user defined through the functions 
UsermdotBoundary , UserpBoundary 
and UserHTBoundary (see Chapter 6). 

constant constant boundary value in time 
(default). 

External the boundary conditions are obtained 
from one of the other CryoSoft 
simulators, through explicit coupling at 
each time step. This coupling requires 
execution under the SuperMagnet 
environment, and leads to an error in 
case it is used in stand-alone mode. See 
the SuperMagnet manual for more 
details. 

 
BoundaryType C (-) Array of (2,Components)  elements containing the 

flag defining the type of boundary.  
   The entries must be in the following order: 
   (b1,Hj) (b2,Hj)  
   (b1,Hj+1) (b2,Hj+1) 
   end so on, where bi stands for the i-th boundary and Hj 

for the j-th hydraulic component. 
   Possible values: 

reservoir prescribed temperature and pressure as 
provided by a large (infinite) volume 
reservoir connected at the end of the 
channel (default). 

closed closed pipe boundary (zero flow). 
 
Components I (-) Number of hydraulic components defined. 
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CModel C (-) Array of Components elements containing the flag 
defining the model for convection along the length. 
Possible values: 
user user defined, through the heat transfer 

coefficient of the flow (see hModel), 
the wetted perimeter T0_WP and a wall 
temperature given by the function 
UserHT0 (see Chapter 6). 

none no convection heating (default) 
constant convection heat transfer as computed 

from the heat transfer coefficient of the 
flow (see hModel), the wetted 
perimeter T0_WP and a constant wall 
temperature T0, within the space frame 
between T0_XBegin and T0_XEnd, 
zero otherwise. 

external the convection heat transfer is obtained 
from one of the other CryoSoft 
simulators, through explicit coupling at 
each time step. This coupling requires 
execution under the SuperMagnet 
environment, and leads to an error in 
case it is used in stand-alone mode. See 
the SuperMagnet manual for more 
details. 

 
Note Hydraulic heating either through surface convection (CModel different from None) or 
direct heating (QModel different from None) is mutually exclusive. Only one of the two input 
definitions is allowed. 
 
Dh R (m) Array of Components elements containing the 

hydraulic diameter of all hydraulic components. 
 
Fluid C (-) Name of the fluid flowing in all channels defined. 

Details on the material properties can be found in the 
CryoSoft Fluids Library [8]. The fluid name can be one 
of the following predefined standard names: 
Helium Single phase 4He in any state, 

including superfluid 
Nitrogen Single phase N2. 

   Only one fluid can be defined for all channels defined, 
to avoid inconsistencies in case that flow mixing 
among channels is allowed through non-zero 
perforation of the channel walls. 
 

fModel  C (-) Array of Components elements containing the flag 
defining the friction factor model. In general the 
friction factor is defined as the maximum value 
between the correlation chosen and the laminar flow 
limit. This limiting procedure is not used in the case of 
fModel user or none. Possible values: 
user user defined through the function 

UserFrictionFactor (see Chapter 
6) 

none no friction factor (default) 
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constant constant in time and space, equal to 
FrictionFactor as defined in 
input. 

Blasius Blasius correlation. 
Katheder Katheder correlation for CICC’s with 

40 % void fraction. 
Nikuradse Nikuradse-von Karman correlation. 
Smooth smooth tube correlation. 
Westinghouse Westinghouse correlation for CICC’s. 

   Details on the correlations can be found in [9]. 
 
FrictionFactor R (-) Array of Components elements containing a constant 

value of the friction factor of the flow, used if fModel 
is constant. 

 
HTC R (W/m2 K) Array of Components elements containing a constant 

value of the heat transfer coefficient of the flow, used if 
hModel is constant. 

 
hModel C (-) Array of Components elements containing the flag 

defining the heat transfer coefficient model. Possible 
values: 
user user defined through the function UserHTC 

(see Chapter 6). 
none no heat transfer coefficient (default). 
constant constant in time and space. 
BLQ Boundary layer filling with step in wall 

heat flux. 
BLT Boundary layer filling with step in wall 

temperature. 
DB Dittus-Bölter correlation. 
DBG Dittus-Bölter-Giarratano correlation for 

supercritical helium. 
Kapitza Kapitza thermal resistance. 

   Details on the correlations can be found in [10]. 
 
InitialCondition C (-) Array of Components elements containing the flags 

defining the initial conditions of temperature, pressure 
and flow in each hydraulic component. Possible values: 
user user defined through the function 

UserHTInitial UserpInitial and 
UsermdotInitial (see Chapter 6). 

constant constant in space, equal to TInitial , 
pInitial and mdotInitial (default). 

 
Links_Model C (-) Flag defining the nature of the thermal and mass links 

among hydraulic components. Possible values: 
user user defined for each couple of hydraulic 

components through the function 
UserWettedPerimeter and 
UserPerforation (see Chapter 6). 

none no links among hydraulic components 
(default). 

constant the hydraulic components are linked by 
heat and mass exchange through the wetted 
perimeter and perforation of the hydraulic 
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channels. A single value of 
WettedPerimeter and Perforation is 
used for all couples of hydraulic 
components, constant in space. 

matrix the hydraulic components are linked by 
heat and mass exchange through the wetted 
perimeter and perforation of the hydraulic 
channels. The values of the wetted 
pertimeter and perforation for each couple 
of hydraulic channels are given in the 
WettedPerimeterMatrix and in the 
PerforationMatrix, constant in space. 

 
mdotBoundary R (kg/s) Array of (2,Components) elements defining the 

massflow at the left and right boundaries, not used. 
   The entries must be in the following order: 
   (b1,Hj) (b2,Hj)  
   (b1,Hj+1) (b2,Hj+1) 
   end so on, where bi stands for the i-th boundary and Hj 

for the j-th hydraulic component. 
 
mdotInitial R (kg/s) Array of Components elements containing the initial 

massflow in each hydraulic component (uniform in 
space). 

 
Model C (-) Array of Components elements containing the flags 

defining the cross section and properties variation in 
space. Possible values: 
user cross sections and hydraulic diameter are 

user defined through the functions 
UserHArea, UserDh, (see Chapter 6). 

constant constant in time and space, as read-in 
from input (default). 

 
pBoundary R (Pa) Array of (2,Components) elements defining the 

pressure at the left and right boundaries, used when the 
corresponding BoundaryType=reservoir. 

   The entries must be in the following order: 
   (b1,Hj) (b2,Hj)  
   (b1,Hj+1) (b2,Hj+1) 
   end so on, where bi stands for the i-th boundary and Hj 

for the j-th hydraulic component. 
 
Perforation R (-) Perforation factor of the wetted perimeter for each 

couple of hydraulic components, used if Links_Model 
is constant. The perforation factor is between 0 (no 
perforation) and 1 (full perforation) and governs mass 
transfer at the wetted perimeter of two channels. 

 
PerforationMatrix R (-) Matrix of (Components,Components) elements 

containing the perforation factor of the wetted 
perimeter for each couple of hydraulic components, 
used if Links_Model is matrix. The perforation 
factor is between 0 (no perforation) and 1 (full 
perforation) and governs mass transfer at the wetted 
perimeter of two channels. The  perforation factor for 
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the couple (i,j) of hydraulic i and hydraulic j is the 
same as the perforation factor of the couple (j,i). For 
this reason only the upper triangle of the matrix is 
given, in the following order: 

   (1,2) (1,3) ... (1,N-1) (1,N) 
    (2,3) ... (2,N-1)  (2,N) 
     ... 
     ...  (N-1,N) 
   for a total of Components*(Components-1)/2 

entries. 
 
pInitial R (Pa) Array of Components elements containing the initial 

pressure in each hydraulic component (uniform in 
space). 

 
Q R (W/m) Array of Components elements defining the linear 

heat flux density, and used depending on the heating 
model QModel (see below). 

 
QModel C (-) Array of Components elements containing the flag 

defining the model for heating along the length. 
Possible values: 
user user defined through the function 

UserHHeating (see Chapter 6). 
none no heating (default) 
constant linear power density equal to Q within 

the space frame between Q_XBegin 
and Q_XEnd, constant in time, zero 
otherwise. 

window linear power density equal to Q within 
the space frame between Q_XBegin 
and Q_XEnd, from time 0 to Q_Tau, 
zero otherwise. 

exponential linear power density equal to Q within 
the space frame between Q_XBegin 
and Q_XEnd, exponential decay in time 
with time constant Q_Tau, zero 
otherwise. 

external the linear power density is obtained 
from one of the other CryoSoft 
simulators, through explicit coupling at 
each time step. This coupling requires 
execution under the SuperMagnet 
environment, and leads to an error in 
case it is used in stand-alone mode. See 
the SuperMagnet manual for more 
details. 

 
Note Hydraulic heating either through surface convection (CModel different from None) or 
direct heating (QModel different from None) is mutually exclusive. Only one of the two input 
definitions is allowed. 
 
Q_Tau R (s) Array of Components elements containing the heating 

time constant. 
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Q_XBegin R (m) Array of Components elements containing the start 
coordinate of the heating window. 

 
Q_XEnd R (m) Array of Components elements containing the end 

coordinate of the heating window. 
 
T0 R (m) Array of Components elements containing the wall 

temperature used for the calculation of the convection 
heat transfer, depending on the convection model 
CModel. 

 
T0_WP R (m) Array of Components elements containing the wetted 

perimeter used for the calculation of the convection 
heat transfer. 

 
T0_XBegin R (m) Array of Components elements containing the start 

coordinate of the convection heat transfer window, 
depending on the convection model CModel. 

 
T0_XEnd R (m) Array of Components elements containing the end 

coordinate of the convection heat transfer window, 
depending on the convection model CModel. 

 
TBoundary R (K) Array of (2,Components) elements defining the 

temperature at the left and right boundaries, used when 
the corresponding BoundaryType=reservoir. 

   The entries must be in the following order: 
   (b1,Hj) (b2,Hj)  
   (b1,Hj+1) (b2,Hj+1) 
   end so on, where bi stands for the i-th boundary and Hj 

for the j-th hydraulic component. 
 
TInitial R (K) Array of Components elements containing the initial 

temperature in each hydraulic component (uniform in 
space). 

 
WettedPerimeter R (m) Wetted perimeter for each couple of hydraulic 

components, used if Links_Model is constant. The 
wetted perimeter governs heat transfer and mass 
transfer (through the relative Perforation) between 
two channels.  

 
WettedPerimeterMatrix 
 R (m) Matrix of (Components,Components) elements 

containing the wetted perimeter for each couple of 
hydraulic components, used if Links_Model is 
matrix. The wetted perimeter governs heat transfer 
and mass transfer (through the relative Perforation) 
between two channels. The wetted perimeter for the 
couple (i,j) of hydraulic i and hydraulic j is the same as 
the wetted perimeter of the couple (j,i). For this reson 
only the upper triangle of the matrix is given, in the 
following order: 

   (1,2) (1,3) ... (1,N-1) (1,N) 
    (2,3) ... (2,N-1)  (2,N) 
     ... 
     ...  (N-1,N) 
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   for a total of Components*(Components-1)/2 
entries. 
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Electrics 
The electrics block describes the configuration and detailed properties for the electric 
components. Electric component carry current. This block defines their number and electrical 
properties. Voltage sources can be chosen for each component. Finally this block is used to 
define initial current and boundary conditions for the electric components. 
 
Variable Type Units Meaning 
 
BoundaryConditions C (-) Array of (2,Components-1) elements containing the 

flag defining the time dependence of the boundary 
value for all the electric components up to the last one. 
No boundary condition can be prescribed for the last 
electric component as this equation is used to guarantee 
the total current conservation. 

   The entries must be in the following order: 
   (b1,Ej) (b2,Ej)  
   (b1,Ej+1) (b2,Ej+1) 
   end so on, where bi stands for the i-th boundary and Ej 

for the j-th electric component.  
   Possible values: 

user user defined through the functions 
UserVBoundary and UserIBoundary 
(see Chapter 6). 

constant constant boundary value in time (default). 
 
BoundaryType C (-) Array of (2,Components-1) elements containing the 

flag defining the type of boundary for all the electric 
components up to the last one. No boundary condition 
can be prescribed for the last electric component as this 
equation is used to guarantee the total current 
conservation.  

   The entries must be in the following order: 
   (b1,Ej) (b2,Ej)  
   (b1,Ej+1) (b2,Ej+1) 
   end so on, where bi stands for the i-th boundary and Ej 

for the j-th electric component. 
   Possible values: 

current prescribed current at the boundary. 
voltage prescribed voltage difference with respect 

to the last electric component at the 
boundary(default). 

 
Components I (-) Number of electric components defined. 
 
Conductance R (1/Wm) Conductance per unit length among electric 

components (used if Links_Model is constant). 
 
ConductanceMatrix R (1/Wm) Array of (Components,Components) elements 

defining the conductance per unit length among electric 
components (used if Links_Model is matrix). The  
conductance factor for the couple (i,j) of electric i and 
electric j is the same as the conductance of the couple 
(j,i). For this reason only the upper triangle of the 
matrix is given, in the following order: 

   (1,2) (1,3) ... (1,N-1) (1,N) 
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    (2,3) ... (2,N-1)  (2,N) 
     ... 
     ...  (N-1,N) 
   for a total of Components*(Components-1)/2 

entries. 
 
IBoundary R (A) Array of (2,Components-1) elements defining the 

current in the left and right boundaries, used when the 
corresponding BoundaryType = current. No 
boundary condition can be prescribed for the last 
electric component as this equation is used to guarantee 
the total current conservation. 

   The entries must be in the following order: 
   (b1,Ej) (b2,Ej)  
   (b1,Ej+1) (b2,Ej+1) 
   end so on, where bi stands for the i-th boundary and Ej 

for the j-th electric component. 
 
IInitial R (A) Array of Components elements containing the initial 

current in each electric component (uniform in space). 
 
InductanceMatrix R (H/m) Array of (Components,Components) elements 

defining the inductance per unit length among electric 
components (used if Links_Model is matrix). The  
inductance  for the couple (i,j) of electric i and electric j 
is the same as the inductance of the couple (j,i). For this 
reason only the diagonal and the upper triangle of the 
matrix are given, in the following order: 

   (1,1) (1,2) ... (1,N-1) (1,N) 
    (2,2) ... (2,N-1)  (2,N) 
     ... 
     ... (N-1,N-1) (N-1,N) 
     ...  (N,N) 
   for a total of Components*(Components+1)/2 

entries. 
 
InitialCondition C (-) Array of Components elements containing the flags 

defining the initial conditions of current for each 
electric component. Possible values: 
user user defined through the function 

UserIInitial (see Chapter 6). 
constant constant in space, equal to IInitial 

(default). 
 
Links_Model C (-) Flag defining the electric links (transverse conductance 

and inductance) among electric components. Possible 
values: 
user user defined for each couple of thermal 

components through the functions 
UserConductance and 
UserInductance (see Chapter 6). 

constant the transverse conductance and inductance 
matrices are built using the input values of 
Conductance, Self and Mutual. The 
matrices are the same for all possible 
couples of components, and are constant in 
space (default). 
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matrix the transverse conductance and inductance 
matrices are given in 
ConductanceMatrix and 
InductanceMatrix. 

 
 
Mutual R (H/m) Mutual inductance per unit length for any couple of 

electric components (used if Links_Model is 
constant).  

 
Self R (H/m) Self inductance per unit length for any electric 

component (used if Links_Model is constant). 
 
RLongitudinal R (Ohm/m) Array of Components elements containing the 

constant longitudinal resistance per unit length in each 
electric component (used if RModel is constant). 

 
RModel C (-) Array of Components elements containing the flag 

defining the model for longitudinal electric resistance 
of the electric component. Possible values: 
user the longitudinal resistance is user 

defined through the function 
UserResistance (see Chapter 6). 

none the longitudinal resistance is taken to 
be zero throughout the simulation.  

constant the longitudinal resistance is constant 
in space and time, as defined by the 
value of the variable RLongitudinal. 

standard the longitudinal resistance is computed 
consistently using the properties of the 
coupled thermal components. The 
default result when the electric 
component is not linked to a thermal 
component, or when no thermal 
components are present in the model, is 
zero longitudinal resistance, i.e. as if 
option none were chosen. 

 
VBoundary R (V) Array of (2,Components-1) elements defining the 

voltage difference among all components and the last 
component defined in the left and right boundaries, 
used when the corresponding BoundaryType = 
voltage. No boundary condition can be prescribed for 
the last electric component as this equation is used to 
guarantee the total current conservation. 

   The entries must be in the following order: 
   (b1,Ej) (b2,Ej)  
   (b1,Ej+1) (b2,Ej+1) 
   end so on, where bi stands for the i-th boundary and Ej 

for the j-th electric component. 
 
VModel C (-) Array of Components elements containing the flag 

defining the model for the longitudinal voltage source 
along the length. Possible values: 
user user defined through the function 

UserVoltage (see Chapter 6). 
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none no voltage (default) 
constant linear voltage per unit length equal to 

Voltage within the space frame 
between V_XBegin and V_XEnd, 
constant in time, zero otherwise. 

window linear voltage per unit length equal to 
Voltage within the space frame 
between V_XBegin and V_XEnd, from 
time 0 to V_Tau, zero otherwise. 

exponential linear voltage per unit length equal to 
Voltage within the space frame 
between V_XBegin and V_XEnd, 
exponential decay in time with time 
constant V_Tau, zero otherwise. 

 
Voltage R (V/m) Array of Components elements defining the 

longitudinal voltage per unit length in the component, 
and used depending on the voltage model VModel (see 
above). 

 
V_Tau R (s) Array of Components elements containing the 

longitudinal voltage source time constant. 
 
V_XBegin R (m) Array of Components elements containing the start 

coordinate of the window of longitudinal voltage 
source. 

 
V_XEnd R (m) Array of Components elements containing the end 

coordinate of the window of longitudinal voltage 
source. 
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Links 
The links block determines the coupling among different components. Such couplings are 
between thermal and hydraulic components (through heat transfer at the wetted perimeter) and 
between thermal and electric components (through Joule heat in the thermal components and 
resistance in the electric components). Coupling can be determined component by component 
in a structure of matrices containing either the type of coupling, the components coupled and 
the properties of the coupling. 
 
Note All components must be defined before defining their mutual links. This means that the 
links block must come after the thermal, hydraulic and electric blocks in the input file. A 
parsing error is generated if this is not the case. 
 
Variable Type Units Meaning 
 
S_E_Links I (-) Matrix with size (NrOfThermalsComponents, 

NrOfElectricComponents) containing the entries 
for coupling thermal and electric components. The 
entry (i,j) for the thermal component i and the electric 
component j contains 0 for no coupling and 1 for 
coupling. The matrix is entered in the following order 

   (T1,E1) (T1,E2)  … (T1,ENE) 
   (T2,E1) (T2,E2)  … (T2,ENE) 
       … 
   (TNT,E1) (TNT,E2) … (TNT,ENE) 
   where (Ti,Ej) stands for the entry (0 or 1) of thermal 

component Ti and electric component Ej. 
 
S_H_Links_Model C (-) Matrix with size (NrOfThermalsComponents, 

NrOfHydraulicComponents) containing the flags 
determining the type of links among thermal and 
hydraulic components. The flags can be different for 
each couple. Possible values: 
user the thermal coupling happens on a wetted 

perimeter defined by the user for each 
couple of thermal and hydraulic 
component through the function 
UserSHWettedPerimeter (see Chapter  
6). 

none no coupling (default). 
constant the thermal coupling takes place as defined 

by the WettedPerimeter and is 
constant in space. 

   The matrix is entered in the following order 
   (T1,H1) (T1,H2)  … (T1,HNH) 
   (T2,H1) (T2,H2)  … (T2,HNH) 
       … 
   (TNT,H1) (TNT,H2) … (TNT,HNH) 
   where (Ti,Hj) stands for the flag entry of thermal 

component Ti and hydraulic component Hj. 
 
WettedPerimeter R (m) Matrix with size (NrOfThermalsComponents, 

NrOfHydraulicComponents) containing in the 
location (i,j) the wetted perimeter for each couple of a 
thermal component i and an hydraulic component j. 

   The matrix is entered in the following order 
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   (T1,H1) (T1,H2)  … (T1,HNH) 
   (T2,H1) (T2,H2)  … (T2,HNH) 
       … 
   (TNT,H1) (TNT,H2) … (TNT,HNH) 
   where (Ti,Hj) stands for the wetted perimeter between 

thermal component Ti and hydraulic component Hj. 
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Simulation 
The simulation block describes the numerical parameters for meshing, space and time 
integration, logging and storage of results. 
 
Variable Type Units Meaning 
 
AdaptivityMethod C (-) Switch for mesh adaptivity method. Possible values: 

none no adaptivity method selected 
Threshold the mesh is adapted based on a threshold 

condition on a value, i.e. the variable 
AdptVariable in the component 
AdptIndex of type AdptComponent 
crossing a pre-defined value AdptValue. 
The syntax of the command is: 

 
Threshold AdptVariable AdptComponent AdptIndex AdptValue 

 
 The combination of the variable selection 

AdptVariable and of component 
AdptComponent can be one of the 
following: 

  Temperature Thermal 
  Temperature Hydraulic 
  Pressure Hydraulic 
  Velocity Hydraulic 
  Current Electric 
 
Front the mesh is adapted based on a threshold 

condition on a derivative, i.e. the space 
derivative of the variable 
AdptVariable in the component 
AdptIndex of type AdptComponent 
crossing a pre-defined value AdptValue. 
The syntax of the command is: 

 
Front AdptVariable AdptComponent AdptIndex AdptValue 

 
 The same combination of the variable 

selection AdptVariable and of 
component AdptComponent is 
possible as in the case of Threshold 
tracking (see above). 

 
Note The Front tracking option is presently available for compatibility with future 
developments. The input is correctly parsed and checked, but no mesh adaptivity is performed 
at run time. 

 
Lambda the mesh is adapted to track the lambda 

transition (He-I to He-II) in the 
component AdptIndex of type hydraulic 
(i.e. in this case AdptComponent must 
be hydraulic). The syntax of the 
command is: 

 
Lambda Hydraulic AdptIndex 
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Quench the mesh is adapted to track the quench 

front in the component AdptIndex of 
type thermal (i.e. in this case 
AdptComponent must be thermal). 
The syntax of the command is: 

 
Quench Thermal AdptIndex 

 
ArtificialViscosity C (-) Switch to control the amount of artificial viscosity 

added in the solution of the compressible fluid flow 
equations. Artificial viscosity is always needed to 
stabilize the solution of compressible flow at sharp 
discontinuities and moving fronts in the fluid. Possible 
values: 
none no artificial viscosity is applied. This 

choice can lead to large oscillation in 
flow quantities (velocity, pressure, 
temperature) especially at sharp fronts 
such as moving normal zones. 

Lapidus Second-order artificial viscosity as 
defined by Lapidus. The artificial 
viscosity is proportional to the velocity 
gradient and to the square of the element 
size through an empirical coefficient. 
This choice provides good smoothing for 
velocity and pressure at fronts, but is not 
effective for temperature fronts. 

Upwind First-order upwind. The artificial 
viscosity is proportional to the fluid 
speed and the the element size, resulting 
in optimal balancing of the hyperbolic 
transport term at high Peclet number. 
This choice is effective for velocity at 
fronts and large temperature gradients, 
but can lead to pressure oscillations 
during transients. 

 
ElementNodes I (-) Number of nodes per element. This is in the range of 2 

(linear element) to 6 (quintic element). The same 
number of nodes is used for all elements in an 
automatic mesh. 

 
ElementOrder I (-) Interpolation order of the element. This parameter 

defines the order of the shape functions. At the moment 
only Lagrangian finite elements are implemented, 
meaning that the order of interpolation is equal to 
ElementNodes-1. Any other choice results in a run-
time error. 

 
EndTime R (s) End time to be reached with the simulation. 
 
ErrorControl C (-) Switch for iterative error control during time 

integration. Possible values: 
none the time step is not iterated. 
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on at each time step a check is performed to verify 
that the integration error is below the specified 
Tolerance. If this is not the case the time step 
is changed and the integration is tried again, 
iterating until the tolerance error is reached 
(default). ErrorControl on requires that an 
ErrorEstimate method is provided (change 
or halving) and that a StepEstimate is 
allowed (smooth or power). The iteration can 
significantly increase CPU time. 

 
ErrorEstimate C (-) Flag for the method used to estimate the time 

integration error control during a time step. Possible 
values: 
none no error estimate is provided 
change the error is estimated based on the change of 

the system solution during a time step 
(default). 

halving the error is estimated comparing the result 
obtained with a time step with the result 
obtained  using two subsequent time steps of 
halved magnitude. This method can 
significantly increase CPU time. 

 
H0Extrapolate C (-) Switch for higher-order extrapolation of the results of a 

time step. The order of accuracy of the time stepping 
method chosen is used to extrapolate the solution to a 
higher order. Possible values: 
none no higher-order extrapolation applied (default). 
on at each time step the solution is extrapolated 

using the result of a time step and of two 
subsequent time steps of halved magnitude. The 
higher-order extrapolation can significantly 
increase CPU time and in pathological situations 
it leads to numerical instabilities. 

 
LogFile C (-) Log file name. This file contains the echo of the input 

and the log of the run, including error messages. If not 
given the default log file name is thea.log. 

 
MaximumSize R (m) Maximum element size allowed during automatic mesh 

adaptivity. 
 
MaximumStep R (s) Maximum time step allowed during adaptive time 

integration. 
 
MeshAdaptivity C (-) Switch for mesh adaptivity. Possible values: 

none the initial mesh is steady 
on adaptive mesh refinement, as defined by 

AdaptivityMethod 
 
MeshType C (-) Flag defining the initial mesh type. Possible values: 

uniform uniform initial mesh. The mesh consists of 
NrElements elements with ElementNodes 
nodes 
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refined refined initial mesh. The mesh consists of a 
total of NrElements elements with 
ElementNodes nodes, of which 
NrRefined elements are placed in a region 
between BeginRefined and EndRefined 

user user’s defined initial mesh. This option is 
active but not documented in the present 
version 

 
MinimumSize R (m) Minimum mesh size allowed during automatic mesh 

adaptivity. 
 
MinimumStep R (s) Minimum time step allowed during adaptive time 

integration. 
 
NrElements I (-) Total number of elements in the mesh. 
 
OutputStep R (s) Time step for storage of the results. The results are 

written to the output binary file every OutputStep 
seconds of simulation. 

 
Restart   Flag triggering a restart. If this key is present in this 

block THEA reads the content of the specified 
StorageFile until the last stored time is found. The 
simulation begins then from this time. Storage of 
results continues on StorageFile (appended). All 
input will be ignored, except for EndTime, 
ErrorControl, ErrorEstimate, LogFile, 
MaximumStep, MinimumStep, OutputStep, 
StepEstimate, TimeMethod and Tolerance. 

 
StartTime R (s) Start time for the begin of the simulation. 
 
StepEstimate I (-) Flag for the method used to estimate the time step 

based on the time integration error and the requested 
Tolerance. Possible values: 
none no estimate of the time step is performed. The 

time step taken is equal to the MinimumStep 
specified. 

smooth the time step is increased/decreased smoothly 
by means of fixed percentage change (default). 
A StepEstimate smooth requires that an 
ErrorEstimate method is provided 
(change or halving). 

power the time step is increased/decreased scaling 
the ratio of the time integration error to the 
required Tolerance using the order of 
accuracy of the time integration method. A 
StepEstimate power requires that an 
ErrorEstimate method is provided 
(change or halving). 

 
StorageFile C (-) Binary storage file name. This file contains the results 

stored at the user’s specified times, and is used for 
restarts or post-processing. If not given the default file 
name is thea.store. 
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TimeMethod I (-) Flag for the selection of the time integration method. 

Possible values: 
EulerBackward Euler-backward, or full 

implicit, or q=1 method. 1st 
order accurate (default). 

Galerkin Galerkin, or q=2/3 method, 1st 
order accurate. 

CrankNicolson Crank-Nicolson, or 
trapezoidal, or q=1/2 method, 
2nd order accurate. 

BackwardDifference Two-stage backward 
differences method, 2nd order 
accurate. 

ImplicitDifference Two-stage, implicit third order 
differencing method, 3rd order 
accurate (mildly unstable). 

AdamsMoulton Adams-Moulton method, 3rd 
order accurate (mildly 
unstable) 

Milne Milne method, 4th order 
accurate (strongly unstable). 

 
Tolerance R (-) Relative error to be achieved at each time step during 

time integration, used to control the time step. 
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Variables 
The variables block is used to define user variables, with given name and type, stored 
internally and shared among routines and procedures. The value of these user-defined 
variables is accessible through a simple calling protocol in FORTRAN, which greatly 
simplifies the preparation and parameterization of External Routines. Variables can be seen as 
an extension of the standard input parameters, i.e. a facility for easy customization. 
 
Variables are defined with the following syntax: 
 
 VariableType VariableName Value 
 
where VariableType is one of the types defined in the table below, VariableName is the name 
assigned to the variable, and used later to retrieve its value, and Value is the value, of the 
appropriate type, assigned to the variable. 
 
Note We report below a short form of the variables syntax. For further reference, and for 
explanations on how to access variables from customized External Routines, consult the 
Variables manual [11] 
 
VariableType   Meaning 
 
Character   VariableName is a string, whose Value is read as a text, 

delimited by apexes if the text contains a blank (not 
recommended) 

Integer   VariableName is an integer, whose Value is read 
according to FORTAN READ conventions 

Real   VariableName is a real, whose Value is read according 
to FORTAN READ conventions (floating point or 
scientific notation) 

 
The variables defined in the variables block are accessed from the External Routines (and 
elsewhere in subroutines and functions linked at run time) through calls to the function 
getXVariable(VariableName,Value), where X stands for the variable type (i.e. C, I or R) 
as described in [11]. 
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CHAPTER 5 

Post-processing Language Reference 
 
 
 
 
 
 
 
 
 
 

Structure and syntax 
The post-processing command file is read by the post-processor interpreter of THEAPOST. 
This parses and analyzes the syntax and the grammar of the various entries. In general the file 
contains a series  of commands that are executed in sequence during a post-processing session. 
 
The structure and content of the post-processing command file is similar to that of the input 
file already described in Chapter 4. In particular the following rules and conventions apply: 
 
§ the identifier of a variable and the corresponding value(s) can appear at any position on 

the line, they can carry on to several lines and must be separated by blanks or tabs; 
§ the interpretation is case insensitive; 
§ abbreviations of the keys are not allowed; 
§ a character ‘;’ in any position of the command line indicates that the remainder of the line 

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole 
line is ignored. 

 
Parsing of the input file is finished as soon as an end-of-file or the stop command are found. 
At this point the post-processor completes all pending print-outs and plots and closes the 
session. For sample input files see Chapter 3. 
 

Commands reference 
Post-processing commands In this section we report the list of the postprocessing 
commands and their meaning in alphabetical order. The keywords identifying commands and 
options are given in Courier. Parameters and values for the commands are given in italic. 
 
Note The selection of the items to plot or to print is done identifying first the target, i.e. 
quantity to be plotted/printed, and then the support, i.e. the component over which the quantity 
is defined. Each support must be followed by its identification number, coherent with the input 
simulation file (e.g. Thermal 2 for the second thermal component defined in the input for the 
simulation with THEA). 
 
 
NewPage 

 
Force a new plot page to be generated 
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OutputFile name 
 
Set the name of the file for printed output (generated with the command Print). The 
default file name for printed output is theapost.out. The file name can be changed 
only before the first printed output is generated. The command is ignored if a printed 
output has already been generated on another file or on the default file. 

 
Plot target support1 support2 …  supportn 

 
Generate n plot frames of target for  the specified support(s) as a function of time or 
space according to the selection done (see the Select command). 
Example: plot current electric 1 electric 2 

 
Plot target1 support1  vs target2 support2 

 
Plot target1 of support1 versus target2 of support2 at all times or space positions 
selected (see the Select command). 
Example: plot temperature hydraulic 1 vs temperature hydraulic 2 

 
PostScriptFile name 

 
Set the name of the file containing Postscript® output. The default file name for printed 
output is theapost.ps. The file name can be changed only before the first plot is 
generated. The command is ignored if a PostScript® output has already been generated 
on another file or on the default file. 

 
Print target1 target2 … targetn support1 support2 … supportm 

 
Generate a table of n x m columns of the target(s) in the support(s) for every time or 
space coordinate selected (see the Select command). Note that several targets and 
supports can be printed simultaneously. 
Example: print temperature pressure hydraulic 1 hydraulic 2 

 
Query query option 

 
List to standard output the input setting of query option, this can be one of the 
BlockName identifiers as for the input simulation file (Model, Thermals, 
Hydraulics, Electrics, Simulation) or All to list the complete input set. 

 
Reset EndTime 

 
Reset the end time for plots and listings to the last simulation time stored in the binary 
storage file. 

 
Reset EndX  

 
Reset the end spatial coordinate for plots and listings to the Length as specified in the 
simulation input. 

 
Reset StartTime 

 
Reset the start time for plots and listings to the first simulation time stored in the binary 
storage file. 

 
Reset StartX  
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Reset the start spatial coordinate for plots and listings to 0. 
 
Select Time t1 t2 … tn 

 
Select from the binary storage file the results at times closest to the specified times. The 
following Plot and Print commands will report the results as function of the spatial 
coordinate at the n requested times. The selection is overridden by a following Select 
command. 

 
Select X x1 x2 … xn 

 
Select from the binary storage file the results at the positions specified. Interpolation is 
performed if the specified positions fall between nodes. The following Plot and 
Print commands will report the results as function of the time at the n requested 
positions. The selection is overridden by a following Select command. 

 
Set Color on/off 

 
Switch among color coding and dashed-line coding (B/W) for curves plotted for 
different supports in the same plot frame, default is off (i.e. dashed-line coding). 

 
Set EndTime t 

 
Set the end time for plots and listings, default is the last time stored in the binary 
storage file. 

 
Set EndX x 

 
Set the end spatial coordinate for plots and listings, default is the simulated Length. 

 
Set PlotsPerPage n 

 
Set the number of plots per page. The number n must be an integer equal to 1, 2, 3, 4 or 
6, 6 being the default. Changing the number of plots per page will automatically 
generate the plots to a new page 

 
Set StartTime t 

 
Set the start time for plots and listings, default is the first time stored in the binary 
storage file. 

 
Set StartX x 

 
Set the start spatial coordinate for plots and listings, default is the simulated 0. 

 
Stop 

 
Stop execution and close the session. An end-of-file during parsing of the command 
file results in the same effect. 

 
StorageFile name 

 
Set the name of the file containing the binary stored results from THEA. The default 
file name for printed output is thea.store. Opening and reading of the binary storage 
file is automatic after parsing the first command. Therefore this command, if present, 
must be the first in the post-processing command file. 
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Supports and targets All plotting and print-out actions of the post-processor THEAPOST 
need the selection of a target to be plotted/printed and the relative support. A target is a 
variables or an auxiliary quantity computed in the simulation (e.g. temperature). A support is 
the component on which the quantity is defined (e.g. thermal component number 2). Target 
and support must be selected from a valid combination (e.g. temperature of thermal 
component number 2). In the following table we report the keys for the valid combinations of 
targets and supports. Note that a void support is allowed for variables that are overall cable 
quantities (e.g. cable current). Any invalid selection or combination of target and support 
results in a syntax error during parsing. 

 
Support Target Units Meaning 
 
 Current  (A) Total cable current 
 Height (m) Local elevation of the cable/channel 
 Mesh (1/m) Mesh density 
 Resistance  (W) Total cable resistance 
 TotalQExternal (W) Total external heat  
 TotalQJoule (W) Total Joule heat  
 TotalQTransverse (W) Total Joule heat generated by the current 

transfer among thermal and electric 
components 

 
Electric Current (A) Current of the electric component 
 DeltaV (V) Voltage difference between the electric 

component and the last electric component 
 ElectricField (V/m) electric field of the electric component 
 QLongitudinal (W/m) Joule heat due to current transfer among 

electric components and power due to 
external longitudinal voltage source 

 QTransverse (W/m) Joule heat due to current transfer among 
electric components 

 SpecificResistance (W/m) Resistance per unit length of the electric 
component 

 VExternal (V/m) External longitudinal voltage per unit 
length on the electric component 

 Voltage (V) Voltage of the electric component 
 
Hydraulic Conductivity (W/m K) Thermal conductivity of the fluid in the 

hydraulic component 
 Cp (J/kg K) Specific heat of the fluid in the hydraulic 

component 
 Density (kg/m3) Density of the fluid in the hydraulic 

component  
 Friction (-) Friction factor of the flow 
 HTC (W/m2 K) Heat transfer coefficient  of the flow 
 IntegratedQexternal (W) Total external heat in the hydraulic 

component 
 Massflow (kg/s) Massflow in the hydraulic component 
 PrandtlNr (-) Prandtl number of the flow 
 Pressure (Pa) Pressure in the hydraulic component 
 QExternal (W/m) External heat flux per unit length in the 

hydraulic component 
 CExternal (W/m) Convection heat flux per unit length in the 

hydraulic component 
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 T0External (K) Convection wall temperature for the 
hydraulic component 

 ReynoldsNr (-) Reynolds number of the flow 
 Temperature (K) Temperature of the hydraulic component 
 Velocity (m/s) Velocity in the hydraulic component 
 Viscosity (Pa/s) Viscosity of the fluid in the hydraulic 

component 
 
Thermal  Current (A) Current in the thermal component 
 Field (T) Magnetic field 
 IntegratedQExternal (W) Total external heat in the thermal 

component 
 IntegratedQJoule (W) Total Joule heat in the thermal component 
 IntegratedQTransverse(W) Total Joule heat in the thermal component 

generated by the current transfer among 
the electric components coupled 

 Ic (A) Critical current of the superconducting 
material in the thermal component 

 Jc (A/m2) Critical current density of the 
superconducting material in the thermal 
component 

 QExternal (W/m) External heat flux per unit length in the 
thermal component 

 NormalLength (m) Total normal length in the thermal 
component 

 QJoule (W/m) Joule heat flux per unit length in the 
thermal component 

 QVExternal (W/m) Heat per unit length in the thermal 
component generated by the longitudinal 
external voltage source in the electric 
components coupled 

 QTransverse (W/m) Joule heat per unit length in the thermal 
component generated by the current 
transfer among the electric components 
coupled 

 Resistance (W) Total resistance of the thermal component 
 SpecificResistance (W/m) Resistance per unit length of the thermal 

component 
 Strain (-) Longitudinal strain 
 Tc (K) Critical temperature of the 

superconducting material in the thermal 
component 

 Tcs (K) Current sharing temperature of the 
superconducting material in the thermal 
component 

 Temperature (K) Temperature of the thermal component 
 Tmargin (K) Temperature margin in the thermal 

component (Tcs-Temperature) 
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CHAPTER 6 

External Routines 
 
 
 
 
 
 
 
 
 
 
Although the modeling power of THEA is above that of any previously developed computer 
code for the analysis of superconducting cables, situations may arise when you may like to 
customize the code to use special functions, correlations, material properties or to read 
measured quantities to provide initial or boundary data. To this purpose THEA provides a very 
powerful customization mechanism through the External Routines, a wide set of procedures 
that gives access to low level functionalities within the code. You should be well familiar with 
FORTRAN programming, the operation of the code and input data before you use the 
additional capability provided by External Routines. 
 
Warning External Routines give unlimited access to the data structure used by the main 
program. Improper programming of External Routines can therefore corrupt operation and 
lead to evident or concealed malfunctions and generate manifest or hidden errors in the 
computed results. IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR 
UNAUTHORISED USE OF THIS FEATURE, even if advised of the possibility of such damages. 
 

Linking external routines 
 
The External Routines for THEA are FORTRAN functions packaged in a series of files 
contained in the directory: 
 
~/CryoSoft/usr/thea/code_x.x 
 
(where x.x stands for the version you received) which you will have received with the 
standard installation. In order to customize the code you will need to write modified version of 
these files. We strongly suggest to create your own directory tree within the above directory, 
and to modify only copies of the External Routines in order to be able to safely retrieve the 
standard version at your wish. Once the modified routines are ready, you will need to compile 
them and link them to the standard part of the code, to produce a customized version of the 
executable of THEA. For this purpose you can use the standard makefile   
 
~/CryoSoft/etc/thea.make 
 
that can be copied and modified. Once more we strongly suggest that you modify only a copy 
of the standard makefile. Refer to the installation guide [4] for more details on the use of the 
makefiles, compilation and link-editing of the program. 
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Calling protocol  
 
The following sections describe the calling protocol for the External Routines. For clarity we 
have subdivided the description in sections that are either associated with the type of function 
or with the type of component involved. The convention followed for the definition of the 
FORTRAN type of variables is the same as described in Chapter 4. 
 
The External Routines for THEA are defined as FORTRAN functions. The function 
returns a single real or integer value that must be computed by the user within the routine. 
All parameters passed to the function must be regarded as input parameters and cannot be 
modified. 
 
Note FORTRAN unit numbers above 50 are reserved by the CryoSoft library for internal 
use, and should not be allocated for read/write operations. Any allocation or use of units above 
50 can result in I/O errors or malfunctions. 
 

Boundary conditions 
The following routines are used to set boundary conditions for thermal, hydraulic or electric 
components. All THEA simulations require specification of both left and right boundary 
conditions. In all routines below the two boundaries are identified as follows: 
 

Boundary = 1 left boundary 
Boundary = 2 right boundary 

 
The routines described in this section are contained in the file userBoundary.f. 
 
 
real function UserSTBoundary (Time, Boundary, Thermal, Tboundary) 
 
Returns the boundary temperature (K) for the thermal component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=temperature. 
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Thermal I (-) index of the thermal component 
TBoundary R (K) boundary temperature as read-in from input 
 
 
real function UserSQBoundary (Time, Boundary, Thermal, Qboundary) 
 
Returns the boundary heating power (W) on the thermal component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=heat.  
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Thermal I (-) index of the thermal component 
QBoundary R (W) boundary heat flux as read-in from input 
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real function UserHTBoundary (Time, Boundary, Hydraulic, Tboundary) 
 
Returns the boundary temperature (K) for the hydraulic component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=reservoir.  
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Hydraulic I (-) index of the hydraulic component 
TBoundary R (K) boundary temperature as read-in from input 
 
 
real function UserpBoundary (Time, Boundary, Hydraulic, pBounbdary) 
 
Returns the boundary pressure (Pa) for the hydraulic component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=reservoir.  
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Hydraulic I (-) index of the hydraulic component 
pBoundary R (Pa) boundary pressure as read-in from input 
 
 
real function UsermdotBoundary (Time, Boundary, Hydraulic,  
                                mdotBoundary) 
 
Returns the boundary temperature (K) for the hydraulic component. At present not called. 
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Hydraulic I (-) index of the hydraulic component 
mdotBoundary R (kg/s) boundary massflow as read-in from input 
 
 
real function UserIBoundary (Time, Current, Boundary, Electric,  
                             IBoundary) 
 
Returns the boundary current (A) for the electric component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=current.  
 
Parameter Type Units Meaning 
 
Time R (s) time 
Current R (s) total operating current 
Boundary I (-) boundary index (left/right boundary) 
Electric I (-) index of the electric component 
IBoundary R (A) boundary current as read-in from input 
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real function UserVBoundary (Time, Boundary, Electric, VBoundary) 
 
Returns the boundary voltage (V) for the electric component. Called if 
BoundaryConditions(Boundary)=user and BoundaryType=voltage.  
 
Parameter Type Units Meaning 
 
Time R (s) time 
Boundary I (-) boundary index (left/right boundary) 
Electric I (-) index of the electric component 
VBoundary R (V) boundary voltage as read-in from input 
 
 
 

Cable current 
The following routine is used to set the total cable current as a function of time. The routine 
described in this section is contained in the file userCurrent.f. 
 
 
real function UserCurrent (Time, Resistance, InitialCurrent,  
                           TauDetection, TauDump) 
 
Returns the total cable current (A). Called if CurrentModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Resistance R (W) total cable resistance 
InitialCurrent R (A) initial cable current as from input 
TauDetection R (s) detection time constant as from input 
TauDump R (s) dump time constant as from input 
 
 
 

Electric components 
The electric characteristics of the electric components are customized through the External 
Routines described in this section. Two electrical characteristics are needed, namely the 
transverse conductance cij and the mutual inductance lij per unit length for any couple (i,j) of 
electric components. Both can be defined as a function of position. The values returned for the 
conductance (in 1/Wm) and inductance (in H/m) are assembled in two matrices. Note that the 
two matrices of transverse conductance and inductance cannot to be singular. The user should 
take care that this is the case. 
 
The routines described in this section are contained in the file userElectrics.f 
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real function UserConductance (Electric1, Electric2, X, Conductance) 
 
Returns the conductance per unit length (1/Wm) between any two components. Called if 
Links_Model=user. 
 
Parameter Type Units Meaning 
 
Electric1 I (-) index of the first electric component 
Electric2 I (-) index of the second electric component 
X R (m) nodal coordinate 
Conductance R (1/Wm) conductance as from input 
 
 
real function UserInductance (Electric1, Electric2, X, Self, Mutual) 
 
Returns the inductance per unit length (H/m) between any two components. Called if 
Links_Model=user 
 
Parameter Type Units Meaning 
 
Electric1 I (-) index of the first electric component 
Electric2 I (-) index of the second electric component 
X R (m) nodal coordinate 
Self R (H) self inductance as from input 
Mutual R (H) mutual inductance as from input 
 
 
real function UserResistance (Electric, X, Resistance, I0, Current) 
 
Returns the longitudinal resistance per unit length (W/m). Called if RModel=user. 
 
Parameter Type Units Meaning 
 
Electric I (-) index of the electric component 
X R (m) nodal coordinate 
Resistance R (W/m) resistance per unit length as from input 
I0 R (A) initial current in the electric component (IInitial) 
Current R (A) current 
 
 
 

Properties of fluids 
The thermophysical properties of the fluids can be customized using the routines described in 
this section. These routines are called if the fluid name used in the hydraulic block is not 
within the set of standard fluids. The properties computed are density r, specific heat at 
constant pressure Cp, specific heat at constant volume Cv, specific enthalpy h, specific 
entropy s, viscosity n, thermal conductivity K, sound speed c, Gruneisen factor f, superfluid 
effective conductivity function F. All properties are computed as a function of pressure p and 
temperature T 
 
The routines described in this section are contained in the file userFluids.f 
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real function UserFluidDensity (FluidName,p,T) 
 
Returns the density of the fluid (kg/m3). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidCp (FluidName,p,T) 
 
Returns the specific heat at constant pressure of the fluid (J/kg K). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidCv (FluidName,p,T) 
 
Returns the specific heat at constant volume of the fluid (J/kg K). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidEnthalpy (FluidName,p,T) 
 
Returns the specific enthalpy of the fluid (J/kg). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidEntropy (FluidName,p,T) 
 
Returns the specific entropy of the fluid (J/kg). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
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real function UserFluidViscosity (FluidName,p,T) 
 
Returns the dynamic viscosity of the fluid (Poise). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidConductivity (FluidName,p,T) 
 
Returns the thermal conductivity of the fluid (W/m K). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidSound (FluidName,p,T) 
 
Returns the sound speed of the fluid (m/s). Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserFluidGruneisen (FluidName,p,T) 
 
Returns the Gruneisen factor of the fluid (-), defined as r/T (dT/dr)s. Called if Fluid=user. 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
 
 
real function UserSuperFluid (FluidName,p,T) 
 
Returns the superfluid thermal conductance function of the fluid (W3/m5 K). Called if 
Fluid=user. Only applies to superfluid conditions (should be set to zero) 
 
Parameter Type Units Meaning 
 
FluidName C (-) name of the fluid 
p R (Pa) fluid pressure 
T R (Pa) fluid temperature 
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Friction factor 
The routine described in this section allows the customization of the friction factor as a 
function of the Reynolds number, position and the hydraulic component. The friction factor f 
is defined following the US convention, so that the pressure drop along a channel is given by: 
 

 

 
where symbol notation is conventional. The friction factor can be defined for all hydraulic 
components independently. 
 
The routine is contained in the file userFriction.f. 
 
 
real function UserFrictionFactor (Hydraulic, X, ReynoldsNr,  
                                  FrictionFactor) 
 
Returns the friction factor (-) of the component. Called if fModel=user. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
ReynoldsNr R (-) Reynolds number 
FrictionFactor R (-) friction factor as from input 
 
 
 
 

Heating of hydraulic components 
The heating of the hydraulic components can be defined using the routine described in this 
section. The heating power density (in W/m) or the wall temperature (in K) are defined as a 
function of space and time for all hydraulic components independently. 
 
The routines are contained in the file userHHeating.f. 
 
 
real function UserHHeating (Time, Hydraulic, X, Temperature, Q,  
                            Q_XBegin, Q_XEnd, Q_Tau) 
 
Returns the heat flux (W/m) for the component Called if QModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
Temperature R (K) temperature of the hydraulic component at the given 
   coordinate 
Q R (W/m) heat flux as from input 
Q_XBegin R (m) start coordinate of the heating space, as from input 
Q_XEnd R (m) end coordinate of the heating space, as from input 
Q_Tau R (s) end heating time, as from input 
 

∂p
∂x

= −2 f ρv
2

Dh
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real function UserHT0 (Time, Hydraulic, X, Temperature, T0, T0_WP, 
                       T0_XBegin, T0_XEnd) 
 
Returns the wall temperature (K) for the component Called if CModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
Temperature R (K) temperature of the hydraulic component at the given 
   coordinate 
T0 R (K) wall temperature, as from input 
T0_WP R (m) wall wetted perimeter, as from input 
T0_XBegin R (m) start coordinate of the convection space, as from input 
T0_XEnd R (m) end coordinate of the convection space, as from input 
 
 
 
 
 
 

Heat transfer coefficient 
The routine described in this section allows the customization of the heat transfer coefficient 
as a function of the Reynolds number, fluid state, average wall temperature, position and the 
hydraulic component. The friction factor can be defined for all hydraulic components 
independently. 
 
The routine is contained in the file userHTC.f. 
 
 
real function Userhtc (Hydraulic, X, Temperature, Pressure, Density,  
                       Twall, Dh, ReynoldsNr, HTC) 
 
Returns the heat transfer coefficient (W/m2K) of the component. Called if hModel=user. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
Temperature R (K) temperature 
Pressure R (Pa) pressure 
Density R (kg/m3) density 
Twall R (K) average wall temperature 
Dh R (m) hydraulic diameter 
ReynoldsNr R (-) Reynolds number 
HTC R (W/m2K) heat transfer coefficient as from input 
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Local elevation 
The following routine is used to set the local elevation (height) of the components as a 
function of position. The height can be set for each hydraulic component in the cable. The 
routine described in this section is contained in the file userHeight.f. 
 
 
real function UserHeight (X, Height) 
 
Returns the height (m) of the hydraulic components. Called if HeightModel=user. 
 
Parameter Type Units Meaning 
 
X I (m) coordinate 
Height R (m) array containing the left and right value of the 
   elevation as from input 
 
 
 

Hydraulic components 
The geometric characteristics of the hydraulic components can be customized through the 
External Routines described in this section. In particular the cross section of the channel and 
its hydraulic diameter can be set for each hydraulic component as a function of position. 
 
The routines described in this section are contained in the file userHydraulics.f 
 
 
real function UserHArea (Hydraulic, X, Area) 
 
Returns the area (m2) of the component. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
Area R (m2) area as from input 
 
real function UserDh (Hydraulic, X, Dh) 
 
Returns the hydraulic diameter (m) of the component. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
Dh R (m) hydraulic diameter of the component, as from input 
 
 

Initial conditions 
The following routines are used to set initial conditions for the three type of components. The 
initial conditions are the starting point for a simulation. Care should be taken that they are 
physically consistent and that they follow the boundary conditions. Numerical instabilities can 
be generated should this not be the case.  
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Different variables must be set depending on the type of component. Thermal components 
require setting of the temperature, hydraulic components require the pressure, temperature and 
massflow, and electric components require the current. The setting of the variables is required 
at all locations X within the domain of analysis. 
 
The routines described in this section are contained in the file userInitial.f. 
 
 
real function UserSTInitial (Thermal, X, TInitial) 
 
Returns the initial temperature (K) of the thermal component. Called if 
InitialCondition=user in the Thermals block. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
X R (m) nodal coordinate 
TInitial R (K) initial temperature as from input 
 
 
real function UserHTInitial (Hydraulic, X, TInitial) 
 
Returns the initial temperature (K) of the hydraulic component. Called if 
InitialCondition=user in the Hydraulics block. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
TInitial R (K) initial temperature as from input 
 
 
real function UsermdotInitial (Hydraulic, X, mdotInitial) 
 
Returns the initial mass flow (kg/s) of the hydraulic component. Called if 
InitialCondition=user in the Hydraulics block.  
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
mdotInitial R (kg/s) initial massflow as from input 
 
 
real function UserpInitial (Hydraulic, X, pInitial) 
 
Returns the initial pressure (Pa) of the hydraulic component. Called if 
InitialCondition=user in the Hydraulics block. 
 
Parameter Type Units Meaning 
 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
pInitial R (Pa) initial pressure as from input 
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real function UserIInitial (Electric, X, IInitial) 
 
Returns the initial current (A) of the electric component. Called if InitialCondition=user 
in the Electrics block. 
 
Parameter Type Units Meaning 
 
Electric I (-) index of the electric component 
X R (m) nodal coordinate 
IInitial R (A) initial current as from input 
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Links 
The characteristics of the thermal/hydraulic links can be defined through the External Routines 
described in this section. The links among thermal elements are defined by thermal resistances 
that can be function of position. The links among hydraulic components depend on the wetted 
perimeter of two channels (i.e. the common perimeter) and on the degree of perforation of the 
common wall. Both can be defined as functions of position. Links among thermal and 
hydraulic components depend on the wetted perimeter, which can be defined as a function of 
position. 
 
The corresponding routines are contained in the file userLinks.f. 
 
 
real function UserThermalResistance (Thermal1, Thermal2, X,  
                                     ThermalResistance) 
 
Returns the thermal resistance (K m/W) between two components. Called if 
Links_Model=user in the thermals block. 
 
Parameter Type Units Meaning 
 
Thermal1 I (-) index of the first thermal component 
Thermal2 I (-) index of the second thermal component 
X R (m) nodal coordinate 
ThermalResistance R (K m/W) thermal resistance as from input 
 
 
real function UserPerforation (Hydraulic1, Hydraulic2, X, Perforation) 
 
Returns the perforation (m) of two components. Called if Links_Model=user in the 
hydraulics block. 
 
Parameter Type Units Meaning 
 
Hydraulic1 I (-) index of the first hydraulic component 
Hydraulic2 I (-) index of the second hydraulic component 
X R (m) nodal coordinate 
Perforation R (m) perforation factor as from input 
 
 
real function UserWettedPerimeter (Hydraulic1, Hydraulic2, X,  
                                   WettedPerimeter) 
 
Returns the wetted perimeter (m) between two components. Called if Links_Model=user in 
the hydraulics block. 
 
Parameter Type Units Meaning 
 
Hydraulic1 I (-) index of the first hydraulic component 
Hydraulic2 I (-) index of the second hydraulic component 
X R (m) nodal coordinate 
WettedPerimeter R (m) wetted perimeter as from input 
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real function UserSHWettedPerimeter (Thermal, Hydraulic, X,  
                                     WettedPerimeter) 
 
Returns the wetted perimeter (m) between thermal and hydraulic component. Called if 
S_H_Links_Model=user. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
Hydraulic I (-) index of the hydraulic component 
X R (m) nodal coordinate 
WettedPerimeter R (m) wetted perimeter as from input 
 
 
 

Magnetic field 
The following routine is used to set the magnetic field in the cable as a function of position, 
time and current. The magnetic field can be set for each thermal component in the cable. 
 
The corresponding routines are contained in the file userMagneticField.f. 
 
 
real function UserMagneticField (Time, Thermal, X, Current,  
                                 InitialCurrent, MagneticFieldSS, 
                                 MagneticFieldTr) 
 
Returns the magnetic field (T) of the component. Called if MagneticFieldModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Thermal I (-) index of the thermal component 
X I (m) coordinate 
Current R (A) cable current as from input 
InitialCurrent R (A) initial cable current as from input 
MagneticFieldSS R (T) array containing the left and right value of the 
   steady-state magnetic field as from input 
MagneticFieldTr R (T) array containing the left and right value of the transient 
   magnetic field as from input 
 
 
 

Heating of thermal components 
The heating of the thermal components can be defined using the routine described in this 
section. The heating power density (in W/m) is defined as a function of space and time for all 
thermal components independently. 
 
The routine is contained in the file userSHeating.f. 
 

  



90 Chapter 6     External Routines 

© CryoSoft, 2021 

 
real function UserSHeating (Time, Thermal, X, Temperature, Q,  
                            Q_XBegin, Q_XEnd, Q_Tau) 
 
Returns the heat flux (W/m) of the component. Called if QModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Thermal I (-) index of the thermal component 
X R (m) nodal coordinate 
Temperature R (K) temperature of the thermal component at the given 
   coordinate 
Q R (W/m) heat flux as from input 
Q_XBegin R (m) start coordinate of the heating space, as from input 
Q_XEnd R (m) end coordinate of the heating space, as from input 
Q_Tau R (s) end heating time, as from input 
 
 
 

Properties of solid materials 
The thermophysical and electrical properties of the solid materials can be customized using the 
routines described in this section. These routines are called if the material name used in a 
thermal component is not within the set of standard materials, or in the case that the thermal 
model is explicitly set to user. The properties computed are thermal conductivity K, heat 
capacity C, density r, electrical resistivity h, critical current density Jc, critical temperature 
Tc, current sharing temperature Tcs. The routine UserMaterialType in addition identifies 
the type of material. The types allowed are reported in the table below. The properties used for 
the simulation depend on the type of material, as also defined in the table below where a 
symbol ✔ indicates that the corresponding property is needed. 
 

Material type K C r h Jc Tc Tcs 
SuperConductor ✔ ✔ ✔  ✔ ✔ ✔ 
Alloy ✔ ✔ ✔ ✔    
Metal ✔ ✔ ✔ ✔    
Insulator ✔ ✔ ✔     
Composite ✔ ✔ ✔     

 
Note In any case for a user’s defined material all routines below must be provided. 
Depending on the type of material (SuperConductor, Alloy, Metal, Insulator or Composite) 
some of the routines can return dummy values (e.g. zero critical current density if the material 
is not a superconductor). 
 
The routines described in this section are contained in the file userSolids.f 
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character*72 function UserMaterialType (MaterialName) 
 
Returns the type of the material: “SuperConductor”, “Alloy”, “Metal”, “Insulator” or 
“Composite”. Called for user specified materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
 
 
real function UserConductivity (MaterialName, X, Temperature, B, RRR) 
 
Returns the thermal conductivity (W/m K) of the material. Called if the Model=user or for 
user specified materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Temperature R (K) temperature 
B R (T) magnetic field 
RRR R (-) residual resistivity ratio 
 
 
real function UserCriticalCurrent (MaterialName, X, Temperature, B,  
                                      Epslon) 
 
Returns the critical current density (A/m2) of the material. Called if the Model=user or for 
user specified materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Temperature R (K) temperature 
B R (T) magnetic field 
Epslon R (-) longitudinal strain 
 
 
real function UserCriticalTemperature (MaterialName, X, B, Epslon) 
 
Returns the critical temperature (K) of the material. Called if the Model=user or for user 
specified materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
B R (T) magnetic field 
Epslon R (-) longitudinal strain 
 

  



92 Chapter 6     External Routines 

© CryoSoft, 2021 

 
real function UserCurrentSharing (MaterialName, X, B, Jop, Epslon) 
 
Returns the current sharing temperature (K) of the material. Called if the Model=user or for 
user specified materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
B R (T) magnetic field 
Jop R (A/m2)  operating current density 
Epslon R (-) longitudinal strain 
 
 
real function UserDensity (MaterialName, X, Temperature) 
 
Returns the density (kg/m3) of the material. Called if the Model=user or for user specified 
materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Temperature R (K) temperature 
 
 
real function UserResistivity (MaterialName, X, Temperature, B, RRR) 
 
Returns the resistivity (W m) of the material. Called if Model=user or for user specified 
materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Temperature R (K) temperature 
B R (T) magnetic field 
RRR R (-) residual resistivity ratio 
 
 
real function UserSpecificHeat (MaterialName, X, Temperature, B, Tcs,  
                                Epslon) 
 
Returns the specific heat (J/kg K) of the material. Called if Model=user or for user specified 
materials. 
 
Parameter Type Units Meaning 
 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Temperature R (K) temperature 
B R (T) magnetic field 
Tcs R (K) current sharing temperature 
Epslon R (-) longitudinal strain 
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Longitudinal strain 
The following routine is used to set the longitudinal strain on the cable as a function of 
position, time and current. The strain can be set for each thermal component in the cable.  
 
The routine described in this section is contained in the file userStrain.f. 
 
 
real function UserStrain (Time, Thermal, X, Current, InitialCurrent, 
                          StrainSS ,StrainTr) 
 
Returns the longitudinal strain (-) of the component. Called if StrainModel=user. 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Thermal I (-) index of the thermal component 
X I (m) coordinate 
Current R (A) cable current as from input 
InitialCurrent R (A) initial cable current as from input 
StrainSS R (T) array containing the left and right value of the  
   steady-state longitudinal strain as from input 
StrainTr R (T) array containing the left and right value of the transient  
   longitudinal strain as from input 
 
 

Thermal components 
The External Routines described in this section can be used to customize the characteristics of 
the thermal components. They are called when the thermal model is set to user. General 
characteristics of a component, such as its cross section, RRR or the parameters for the 
superconducting transition, can be varied as a function of position. 
 
The routines described in this section are contained in the file userThermals.f: 
 
 
real function UserE0 (Thermal, X, E0) 
 
Returns E0 (V/m) of the component. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
X R (m) nodal coordinate 
E0 R (V/m) E0 as from input 
 
 
integer function UsernPower (Thermal, X, nPower) 
 
Returns n (-) of the component. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
X R (m) nodal coordinate 
nPower I (-) nPower as from input 
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real function UserRRR (Thermal, MaterialName, X, RRR) 
 
Returns the residual resistivity ratio (-) of the material. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
RRR R (-) residual resistivity ratio as from input 
 
 
real function UserSArea (Thermal, MaterialName, X, Area) 
 
Returns the area (m2) of the component. Called if Model=user. 
 
Parameter Type Units Meaning 
 
Thermal I (-) index of the thermal component 
MaterialName C (-) name of the material 
X R (m) nodal coordinate 
Area R (m2) area as from input 
 
 
 

Voltage source in electric components 
The voltage source in the electric components can be defined using the routine described in 
this section. The longitudinal voltage density (electric field in V/m) is returned as a function of 
space and time for all electric components independently. 
 
The routine is contained in the file userVoltage.f. 
 
 
real function UserVoltage (Time, Electric, X, Voltage, V_XBegin,  
                           V_XEnd, V_Tau) 
 
Returns the voltage (V/m) of the component. Called if Links_Model=user 
 
Parameter Type Units Meaning 
 
Time I (s) time 
Electric I (-) index of the electric component 
X R (m) nodal coordinate 
Voltage R (V/m) voltage as from input 
V_XBegin R (m) start coordinate for setting the voltage as from input 
V_XEnd R (m) end coordinate for setting the voltage as from input 
V_Tau R (s) end time for setting the voltage as from input 
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CHAPTER 7 

Troubleshooting and Errors 
 
 
 
 
 
 
 
 
 
 
Error messages are reported to the output ASCII log file and to the standard output. The form 
of a typical error report is the following 
 
ERROR in procedure <procedure name>: <error message> 
called by <calling procure> at position <n> 
called by <calling procure> at position <m> 
...... 
 
where <procedure name> is the name of the routine where the error occurred and <error 
message> reports a short description of the error situation. This line is followed by the trace of 
the <calling procedure> up to the main program. In case of queries about error conditions, 
please take care to report error messages completely, including the calling trace. 
 
Errors can be generated at four different levels in the code: 
 
§ input parsing and syntax errors; 
§ data consistency errors; 
§ runtime errors; 
§ internal consistency errors. 
 

Input parsing errors 
Input parsing and syntax errors are detected during the interpretation of the input file. They 
indicate that the variable naming, the command syntax or the type and number of numerical 
data in the input file are incorrect. Verify syntax in the input file in this case. 
 

Data consistency errors 
Data consistency errors are detected when input data are not coherent among themselves and 
would result in a model that cannot be analyzed. Typical cases are selection of incompatible 
options, or input data out-of-range. Verify the consistency of the input data in this case. 
 

Runtime errors 
Runtime errors are detected either when the solver enters a physical or numerical instability, or 
when the size of the problem exceeds the maximum allowed. Physical instabilities can be 
triggered by improper setting of physical conditions (e.g. initial conditions or boundary 
conditions), excessive transient conditions (e.g. very large heating powers or pressure 
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differences), or because of incorrect values from fluid and solid properties. Verify input 
conditions in this case. 
 
Numerical instabilities can be triggered by the use of very large time steps, coarse mesh, and 
algorithms with little to no damping. In case of numerical instability, attempt at reducing the 
maximum time step (value of MaximumStep in input), reducing the allowed integrator 
tolerance (value of Tolerance in input), or choosing a time integration method that is more 
robust (choose EulerBackward as TimeMethod). 
 
The maximum size of the problem that can be solved is determined by the requested memory 
allocation in the FORTRAN include file: 
 
~/CryoSoft/src/thea/code_x.x/includes/parameters.inc  
 
where a number of parameters are set statically. The main parameters affecting memory 
allocation are the following, with the associated meaning: 
 
Parameter Meaning 
 
MaxSComp maximum number of thermal components 
MaxMatOfSComp maximum number of materials in a thermal component 
MaxHComp maximum number of hydraulic components 
MaxEComp maximum number of electric components 
MaxElements maximum number of finite elements in the mesh 
 
The additional parameters MaxWork4 and MaxWork8 are set to accommodate the bandwidth 
system matrix in the equation solver, and may need adjustment in case the PDE solver needs 
more work space. 
 
The version of the code you received can be modified by adjusting these parameters as 
desired. The code then needs to be compiled and link-edited as explained in the installation 
manual you received [4]. 
 
Warning Modifying the code dimensioning parameters requires understanding of the 
memory allocation for the system variables, and of the internal structure of the code. IN NO 
EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF THIS 
FEATURE, even if advised of the possibility of such damages. 
 

Internal consistency errors 
Internal consistency errors indicate corruption of the internal data structure of the program. An 
internal consistency error cannot be generated using the standard program and reading data 
from input only. However, they can be detected in case that customized External Routines 
with improper data handling are used. They diagnose a severe fault within the code. If you are 
using External Routines, verify their consistency with the calling protocol. In case you are not 
using External Routines, report internal consistency errors to us. 
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