
User’s Guide

Version 2.4
November 2021

THEA
CryoSoft

Thermal, Hydraulic and Electric
Analysis of Superconducting Cables

2

© CryoSoft, 2021

DISCLAIMER

Even though CryoSoft has carefully reviewed this manual, CRYOSOFT MAKES
NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS PROVIDED “AS IS”, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if advised of the possibility of such
damages.

Copyright Ó 2001-2021 by CryoSoft

 3

© CryoSoft, 2021

Contents

ROADMAP 5	
Before you start 5	
How to use this manual 5	

INTRODUCTION 6	
What is THEA 6	
A THEA model 6	
PDE Solution 7	
Structure 7	
Post-processing 8	
User Flexibility and Further Extensions 8	

INSTALLING AND RUNNING THEA 10	
Platforms 10	
Installation 11	
How to run THEA 11	
How to run THEAPOST 13	
Customization 14	

CASE STUDIES 15	
A heater for supercritical helium 16	
Adiabatic strand quench 22	
Current distribution in a two-strand cable 26	
Quench in a CICC with central cooling hole 31	
Critical current measurement in a Nb-Ti CICC (External Routines) 39	

INPUT REFERENCE 42	
Structure and syntax 42	
Input variables reference 43	

Model 43	
Thermals 47	
Hydraulics 52	
Electrics 59	
Links 63	
Simulation 65	
Variables 70	

POST-PROCESSING LANGUAGE REFERENCE 71	
Structure and syntax 71	
Commands reference 71	

EXTERNAL ROUTINES 76	
Linking external routines 76	
Calling protocol 77	

Boundary conditions 77	

4

© CryoSoft, 2021

Cable current 79	
Electric components 79	
Properties of fluids 80	
Friction factor 83	
Heating of hydraulic components 83	
Heat transfer coefficient 84	
Local elevation 85	
Hydraulic components 85	
Initial conditions 85	
Links 88	
Magnetic field 89	
Heating of thermal components 89	
Properties of solid materials 90	
Longitudinal strain 93	
Thermal components 93	
Voltage source in electric components 94	

TROUBLESHOOTING AND ERRORS 95	
Input parsing errors 95	
Data consistency errors 95	
Runtime errors 95	
Internal consistency errors 96	

REFERENCES 97	

 Roadmap 5

© CryoSoft, 2021

Roadmap

Before you start
This manual is the reference user’s guide for THEA and its post-processor, THEAPOST.
Throughout this manual we assume that the reader is familiar with the physics and engineering
issues that are associated with the design and analysis of a superconducting cable. Details on
the physics modeling that is at the basis of the program are given in [1], [2] and [3]. We
strongly suggest that the reader consults these references before using this manual.

How to use this manual
This manual is structured as follows:

§ Chapter 1 contains a brief and general introduction on the modeling principle and solution

methods available.

§ Chapter 2 gives basic information on the installation, explains how to start a THEA run
and launch the post-processor THEAPOST on a UNIX workstation.

§ Chapter 3 contains case studies that the reader should use to familiarize with the operation
and features of the program.

§ Chapter 4 contains additional information on the preparation of the input and the meaning
of the input variables

§ Chapter 5 describes the details of the post-processing command language.

§ Chapter 6 describes the External Routines that can be used for advanced use. These
routines can be linked to the standard code to provide powerful customization.

§ Chapter 7 deals with troubleshooting and error messages;

§ Chapter 8 gives the references and a general bibliography for documentation.

Beginners to THEA should read chapters 1, 2 and 3 in sequence. They will make occasional
cross-reference to chapters 4 and 5 for detailed information. Experienced users will use
chapters 4, 5 and 6 for daily operation. Chapter 7 can be consulted as an indexed glossary for
error messages and associated actions.

6 Chapter 1 Introduction

© CryoSoft, 2021

CHAPTER 1

Introduction

What is THEA
THEA is a computer program for the Thermal, Hydraulic and Electric Analysis of
superconducting cables. THEA computes the evolution of the temperature, coolant flow and
current distribution in a cable during fast transients such as stability perturbations and the
following quench evolution, as well as slow transients such as normal operation ramps to
steady state, or cool-down. In order to respond to the changing needs and evolving designs, we
have designed THEA for maximum flexibility. As in other codes for the thermal and hydraulic
analysis of superconductors, we have made in THEA the hypothesis that the conductor length
is much larger than its transverse dimension, so that all phenomena can be dealt with in a 1-D
approximation of the cable along its length. However, as compared to other similar codes, the
main new features of THEA is that it allows:

§ consistent, implicitly coupled analysis of thermal, hydraulic and electric transients in

conductors;
§ an arbitrary, user controlled configuration for the superconducting cable, additional

structural components, cooling channels;
§ variable geometry and properties along the conductor.

A THEA model
To achieve the modeling capability the superconductor cross section is subdivided by the user
in components that can be of one of the following three types:

§ thermal components, that model 1-D heat diffusion in solids, external heat sources, Joule

heat and heat exchange with other solids or with coolants. The state of thermal
components is identified by the instantaneous temperature of the solid;

§ hydraulic components, that model 1-D compressible flow in a channel exchanging heat
with the channel wall, and exchanging mass, momentum and heat with other adjacent
channels. The state of a hydraulic component is identified by the instantaneous pressure,
temperature and velocity of the fluid in the channel;

§ electric components, that model 1-D current diffusion among resistive and inductive
current carrying materials. The state of an electric component is identified by the
instantaneous value of the current.

Components of the same type identify physically distinct units in the conductor, e.g. different
sub-cable units or different channels. Components of different type can describe different
phenomena in physically overlapping units. This is the case for thermal and electric

 Chapter 1 Introduction 7

© CryoSoft, 2021

components that model the thermal conduction and current distribution in the same set of
strands in a cable. The user couples components of different type, e.g. thermal and hydraulic
components to simulate heat convection at the surface of a cooling channel, or thermal and
electric components to achieve consistent treatment of current distribution and heat transfer in
a cable. See the case studies in Chapter 3 for more details on the process of subdivision and
coupling.

PDE Solution
THEA solves for each component defined by the user a set of partial differential equations
(PDEs), coupled among components whenever chosen by the user, and obtains at any time
required the distribution in space, along the conductor length, for the state variable(s). The
solution satisfies the initial conditions chosen and the boundary conditions set by the user.

To solve the system of PDEs, THEA uses independent space and time discretization. The
space discretization is based on the finite element method, and uses 1-D lagrangian elements
with at most fifth order shape functions. The initial mesh is automatically adapted in time to
achieve the following objectives:

§ track discontinuities such as quench propagating fronts, or lambda transitions in the case

of superfluid helium hydrodynamics;
§ achieve a user-defined interpolation error on any state variable;
§ maintain the element size between maximum and minimum user-defined values.

The user can control the meshing process through the choice of element order and of
parameters that affect adaptivity. The time discretization is based on a multi-step finite
difference algorithm of the Beam and Warming family with at most third order accuracy. The
time step is adapted automatically to achieve a user-defined error, either using a predictive or
an a-posteriori error estimate. The user has control on the time integration accuracy through
the choice of algorithm, while the time adaptivity is controlled specifying the error estimator
and the desired accuracy.

Structure
The overall structure of THEA is schematically shown below. THEA starts reading the data
necessary to configure the run from an input file. It then checks the data for consistency.
Depending on the type of run, it either initializes the state variables of the model (for a start-up
run), or reads the state variables from a storage file (for a restart run). This stage is needed to
determine the initial conditions for the time integration. When requested, the External
Routines for customization of initial conditions are called once at this stage.

The time integration can then start, continuing until the end time is reached. The time
integration consists of a loop that calls a solver routine at each step. The solver routine
advances the solution by a single step in time over the complete space domain. This routine
builds the matrix of the PDE to be solved. The External Routines for customization of material
properties and characteristics of components are called at this stage, when user’s defined
materials are requested. The PDE solver then computes the finite element matrices and
imposes the boundary conditions to the system. Here the External Routines are called in the
case that the user has specified customized boundary conditions.

The calls to External Routines during the PDE solution are at the lowest level in the program
tree. This implies that the calls are repeated several times during a run (typically millions to
tens of millions of times for a practical problem). It is therefore very important that the user
provides an efficient implementation for these routines.

8 Chapter 1 Introduction

© CryoSoft, 2021

After the solution has been advanced, the mesh is adapted according to the criteria set by the
user.

Auxiliary variables (e.g. magnetic field, cable current, strain, fluid properties, transport
properties such as friction factor, etc.) necessary for the solution of the system are computed
after the solution of the system, at each step. The External Routines for the customization of
the calculation of auxiliary variables are called at this point.

Post-processing
The results produced by THEA are integrally stored and can be analyzed to produce plots and
reports by the post-processor THEAPOST. THEAPOST responds to a user-friendly command
language and allows selection of results in time or space, plot and print-out of results vs. time
or space, parametric plot of results at given time or space coordinate. See the case studies in
Chapter 3 for examples of post-processing sessions, and Chapter 5 for the details on the syntax
of the command language.

User Flexibility and Further Extensions
THEA has several features that allow to customize its modeling capability beyond the
allowable parameterization of the thermal/hydraulic/electric configuration that can be achieved
using the standard input file. Specifically, the user can:

§ modify the dependence of geometry, waveforms and material properties on space, time

and solution variables, beyond the standard models implemented, using External Routines
that can be statically linked to the program segments through a compilation step that

Read/check input
ReadInput
CheckData

Initial conditions

Read
ReadInitialConditions

Time integration

Generate
SetInitialConditions

StoreHeader
StoreResults

PDE step
PDESolver

Auxiliary variables
AssigneVars

Mesh adaptivity
AdaptMesh

Data storage
StoreResults

THEA

External Routines
initial conditions

PDE matrices

FE matrices

Boundary conditions

External Routines
Solid properties
Fluid properties

Thermals
Hydraulics
Electrics

External Routines
Boundary conditions

Time step

External Routines
Current

Field
Strain

Heat transfer
Friction factor

 Chapter 1 Introduction 9

© CryoSoft, 2021

produces a customized version of the code. See Chapter 6 for documentation on External
Routines;

§ change parametrically the behavior of the External Routines by making use of Variables
that are read by the code input parser, and can be accessed at run-time using the Variables
library. See Chapter 4 for details on the syntax to be adopted for the Variables input
block;

§ couple to other programs of the CryoSoft suite through the multi-tasking code manager
SUPERMAGNET. This allows to augment the physics span of the simulation domain to
include thermal networks (e.g. heat exchange in a coil), hydraulic networks (e.g.
proximity cryogenics) or electrical circuits (e.g. magnet protection).

10 Chapter 2 Installing and Running THEA

© CryoSoft, 2021

CHAPTER 2

Installing and Running THEA

Platforms
THEA and its post-processor THEAPOST are provided as a package developed for running
under UNIX or UNIX-like (e.g. Linux) operating system. The reason is that they require
computer intensive calculations, orderly file management and little interactivity. At the time
when this manual is written, the platform where THEA is developed is:

§ Macintosh running MacOS-X (10.10.5 and higher) under XQuartz,(2.7.4) gcc (5.1) with

gfortran.

At different time of the development and production, the code has been installed and tested on
the following platforms:

§ Mac-OS X (10.2 and higher) operating system;
§ GNU/Linux operating system (most distributions).
§ INTEL PC’s running RedHat Linux OS;
§ IBM-RISC workstations running the AIX-V4 operating system and later;
§ SUN-SPARC workstation running the Solaris OS operating system;
§ DEC-ALPHA workstation running the OSF-1 operating system;
§ HP workstations running HP-UX OS;
§ Windows-2000 and Windows-XP operating system, with an installed CYGWIN

environment (the reference version tested is CYGWIN 1.5.24-2).

Although UNIX obeys strict standards, the architecture of the operating and file system may
vary from vendor to vendor. It is therefore possible that porting may require minor adaption of
code and libraries. Contact us for advice.

In the following sections we assume here that you are running under a UNIX or UNIX-like
operating system, and that you are familiar with UNIX commands, directory and file handling.
Contact your system administrator for matters regarding UNIX commands and file system.

Although versions of THEA and THEAPOST have been ported to PC’s running the Windows
OS, at the time when this manual is written this is not a platform directly supported and part of
the instructions provided below (i.e. how to run and post-process a case) may not be directly
applicable.

 Chapter 2 Installing and Running THEA 11

© CryoSoft, 2021

Installation
THEA is one of the CryoSoft family of programs. You will have therefore received the
CryoSoft package containing THEA either as a tar-ball or in pre-installed form. Verify in the
CryoSoft installation manual [4] the procedure to be followed for the proper installation of the
complete package. The executable codes, thea and theapost are in the directory
~/CryoSoft/bin/. You will find the example inputs and post-processing command files in
the directory ~/CryoSoft/xample/thea/code_x.x/ (the symbol ~/ stands for your home
directory, x.x for the version you received)

How to run THEA
Start-up To run THEA you will need to launch the executable code. In the standard
installation on a UNIX system described above THEA is launched typing the command:

~/CryoSoft/bin/thea [-i InputFile] [-v/-s] [-h]

Note that command line options are not mandatory (enclosed in brackets, following UNIX
documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the run
-v, --verbose print simulation progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the input file name. THEA reads the problem definition from an ASCII file whose
structure and content are described in detail in Chapter 4 of this manual. Examples of input
files are given in Chapter 3. At this time you will enter the name of a file containing the input
for the case to be run (e.g. file.input):

THEA Enter input file name
file.input

THEA then parses the input file, performs checks on consistency, configures the case and
starts the simulation. A simulation starts from an initial condition at the starting time and
advances in time using the time stepping algorithm selected. At each time step THEA emits a
message with the real time reached in the simulation (in s) the time step taken (in s) and the
ratio of real time to the total time to be simulated:

....
Time : 4.949E-03 Step : 3.235E-05 Time/Tend : 0.98987
Time : 4.998E-03 Step : 4.852E-05 Time/Tend : 0.99957
....

until the end of the simulation. When the end time of the simulation is reached THEA prints a
message reporting the total CPU time used in the run:

Total Cpu [s]: 244.059998

Each run of THEA produces:

§ a binary storage file containing all results stored at user’s specified times. The user can

control the name of this file, the default file name is thea.store;

12 Chapter 2 Installing and Running THEA

© CryoSoft, 2021

§ a log file containing a report on the case run, run statistics and error messages. The user
can control the name of this file; the default file name is thea.log.

Restart After a successful completion of a run it is possible to restart the simulation at
the last time stored in the binary storage file and proceed with the time integration. A restart
procedure is triggered if the input file read by THEA contains the Restart command (see
Chapter 3 and 4 for details). Assuming that this is the case for the input file file.restart,
and the program is launched with no command line options, a restart in our example is
obtained launching again THEA:

~/CryoSoft/bin/thea
THEA Enter input file name
file.restart

in which case THEA reads the binary storage file and starts the simulation at the last time
stored:

Time : 5.000E-03 Step : 1.000E-05 Time/Tend : 0.00000

Until the final time specified in the input file file.restart is reached.

Note You can use an arbitrary sequence of restarts to simulate different time spans with
varying resolution and accuracy. There is no limit to the number of restarts that can be
executed for a single simulation.

We show below schematically the flow-diagram of a THEA run:

as compared to the flow-diagram of a THEA restart reported below. Data is read at the
beginning of the restart from the binary storage file, and is appended to the same file while the
simulation proceeds:

input file

thea

run log file
(thea.log)

binary storage
file (thea.store)

binary storage file, containing
all results stored at user’s
specified times.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

 Chapter 2 Installing and Running THEA 13

© CryoSoft, 2021

How to run THEAPOST
To produce any detailed result, both in the form of printed tables or plotted curves in
PostScript® format, it is necessary to run the THEA post-processor THEAPOST. THEAPOST
is launched under UNIX with the command:

~/CryoSoft/bin/theapost [-i InputFile] [-v/-s] [-h]

Also in this case command line options are not mandatory (enclosed in brackets, following
UNIX documentation standard). The meaning of the options is the following:

-i, --input use InputFile to parse the input for the post-processor
-v, --verbose print post-processing progress on stdout (default)
-s, --silent no output to stdout
-h, --help print a help message

Once launched, the program decodes the options, if any are given, and checks for the specific
operation mode requested. If no input file is provided as an option, then the program prompts
the user for the name of an ASCII file containing the series of commands that control the
generation of the printouts and plots. The structure and content of this file is described in detail
in Chapter 5 of this manual. Examples of command files are given in Chapter 3. At this time
you will enter the name of the file containing the commands (e.g. file.post):

Enter command file name
file.post

THEAPOST then parses, echoes and interprets the commands from the command file. The
commands cause retrieval of the results of a run from the binary storage file generated by
THEA (by default from the file thea.store). As a result THEAPOST generates:

§ a file containing the formatted printouts of the results (theapost.out), and
§ a file containing the plots requested in PostScript® format (theapost.ps).

input file

thea

run log file
(thea.log)

binary storage
file (thea.store)

binary storage file, read-in at
the beginning and used for
further storage of results.

log file, containing the report of
the run, CPU statistics, errors
and warnings.

14 Chapter 2 Installing and Running THEA

© CryoSoft, 2021

Customization
The method described earlier provides the standard manner to run a THEA simulation, and
post-process the results. THEA, however, as most other CryoSoft codes, gives the possibility
to customize the physical models by using External Routines, as described in Chapter 6 (see
later for details). The user has the possibility to adapt and extend the physics contained in the
standard solver, at the additional complexity of writing FORTRAN routines that must obey to
the language syntax, and parameter call specification. The customized External Routines need
to be compiled and linked the program segments to generate the customized version of the
code. Template for the External Routines are given in the directory
~/CryoSoft/usr/thea/code_x.x. Compilation and link-editing can be done using the
standard installation script CSmake, but we discourage users to modify the standard codes
provided, as this will replace the reference installation. As a safer alternative, we strongly
recommend copying the External Routines templates in a work directory, and generating in
this location the customized version of the code by using an adapted compilation script, or a
makefile. Consult the examples below, and contact us for guidelines on how to set-up one such
customized structure.

command
file

theapost

binary storage
file (thea.store)

PostScript plot
file (theapost.ps)

printout file
(theapost.out)

Postscript® file, containing
plots as required by the user.

Formatted print-outs.

 Chapter 3 Case Studies 15

© CryoSoft, 2021

CHAPTER 3

Case Studies

As discussed in Chapter 2, THEA requires an input file with all definitions necessary to
specify the model structure, its characteristics, the operating conditions, initial and boundary
conditions and the solution controls. We refer to this file as the input file. The input file is
needed both for a start-up run and a restart run.

Similarly, post-processing of THEA results using the post-processor THEAPOST requires an
input file with a sequence of commands that select results, print and plot them. We refer to this
file as the post-processing command file.

In this Chapter we give examples of input files and post-processing command files to deal
with practical modeling situations. The case studies given here are intended to guide the user
from the formulation of a problem to its modeling, the creation of the input file for the case,
running the case, and finally the generation of the results. For obvious reasons, they are of
limited complexity and are intended as examples to illustrate minimum capability of the
program. More complex situations can obviously be modeled, taking the following case
studies as starting points and evolving or combining them. In the last example reported we
show how o use Eternal Routines. Using External Routines is the most advanced way to
customize the operation of THEA.

Refer to Chapter 2 on how to run the examples described here with THEA and how to
generate results and plots with THEAPOST.

Note All input files and post-processing command files, the makefile and user routine files
for the case studies discussed in this manual are provided with the standard installation. They
are located in the directory:

~/CryoSoft/xample/thea/code_x.x

where x.x stands for the version you received. In the following sections we use the Courier
font to reproduce the content of those input files, while text in italic indicates our comments to
the input.

16 Chapter 3 Case Studies

© CryoSoft, 2021

A heater for supercritical helium
Physical definition of the problem We consider the case of a heater pipe of 5 mm
diameter and 10 m length supplied with a flow of supercritical helium at 4.5 K, 5 bar inlet
pressure and 4.8 bar outlet pressure. A resistance deposits a power of 20 W over a length of 2
m in the middle of the pipe. The purpose of the analysis is to determine the helium flow and
the evolution of the helium outlet temperature during the heating pulse, assuming that the heat
pulse lasts a long time compared to the residence time of the helium. In this simple example
we assume that the pipe has a negligible heat capacity, so that it can be neglected and the heat
can be modeled as a direct input into the helium flow. The helium flow has a friction factor as
determined by the turbulent correlation of Blasius.

Input file for the start-up run The problem requires the definition of a single hydraulic
component, with given inlet and outlet conditions and heated at the location of the resistive
heater. The step-by-step definition of the input file for THEA start-up run is shown below.

heater.input

Define the global model characteristics and parameters: a title used for labeling output and
plots, total heater length (10 m), no electric current, magnetic field and strain.

Begin Model

Note the use of apex to delimit a text containing special characters or blanks.

 ModelName 'Supercritical helium heater'

 Length 10.0
 CurrentModel none
 MagneticFieldModel none
 StrainModel none

end

Define the details of the hydraulic components.

Begin Hydraulics

A single component is defined, with cross section Area, hydraulic diameter Dh and hydraulic
properties constant along the length. The Blasius correlation is used for the friction factor,
and the Dittus-Boelter is used for the heat transfer coefficient.

 Components 1
 Fluid helium
 Model constant
 Area 19.6e-6
 Dh 5.0e-3

 fModel Blasius
 hModel DB

Tin = 4.5 K
pin = 5 bar

pout = 4.8 barLresistance = 2 m
qʼ = 10 W/m

Lheater = 10 m
D = 5 mm

 Chapter 3 Case Studies 17

© CryoSoft, 2021

The helium has 4.5 K initial temperature, 5 bar initial pressure and zeroflow. These conditions
are constant along the length.

 InitialCondition constant
 TInitial 4.5
 pInitial 5.0e5
 mdotInitial 0.0

A heating power Q of 10 W/m is present in space between Q_XBegin and Q_XEnd and is
constant in time.

 QModel constant
 Q 10.0
 Q_XBegin 4.0
 Q_XEnd 6.0

Boundary conditions are of prescribed pressure and temperature at both left and right side of
the length analysed (infinite reservoir). The value of pressure and temperature in the two
reservoirs is constant in time. On the left boundary the temperature is 4.5 K and the pressure 5
bar, on the right boundary the temperature is 4.5 K and the pressure 4.75 bar.

 BoundaryType reservoir reservoir
 BoundaryConditions constant constant
 TBoundary 4.5 4.5
 pBoundary 5.0e5 4.75e5

end

Define the simulation parameters (numerics), storage and output.

Begin Simulation

The mesh is automatically generated using the given number of elements NrElements
uniformly distributed in space. The element type is determined by the number of nodes
ElementNodes and the interpolation order ElementOrder.

 MeshType uniform
 NrElements 100
 ElementOrder 2
 ElementNodes 3

The time integration starts at StartTime and ends at EndTime, with output of the results every
OutputStep

 StartTime 0.0
 EndTime 1.0
 OutputStep 0.05

The time integration uses backward-differences (2nd order accurate in time). The time step is
adapted automatically between the lower limit MinimumStep and the upper limit
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase,
performed depending on the comparison of the estimated integration error and the desired
tolerance Tolerance. The time integration error is estimated based on the change in the
solution during a time step. As the error control ErrorControl is on, each time step is iterated
changing the time step until the error is smaller than the desired tolerance.

 TimeMethod BackwardDifference
 MinimumStep 1.0e-6
 MaximumStep 1.0
 StepEstimate smooth
 ErrorEstimate change

18 Chapter 3 Case Studies

© CryoSoft, 2021

 ErrorControl on
 Tolerance 3.0e-2

Log output is directed to the file heater.log, while results are stored in the file heater.store for
later restart and reporting

 LogFile heater.log
 StorageFile heater.store

end

Input file for the restart run To proceed with the simulation for a longer time than 1 s
(the EndTime specified in the start-up run) we use the restart feature of THEA. Below we give
the step-by-step definition of the input file for the restart of the simulation with a reduced time
resolution in the storage of results and changing the time integration method.

heater.restart

In case of restart only the simulation parameters are needed. All other parameters are taken
from the storage file generated during the previous run.

Begin Simulation

The presence of the Restart keyword is necessary to trigger a restart run.

 Restart

The time integration starts at the last time stored on file heater.store (as specified below) and
proceeds to the new EndTime, with the prescribed OutputStep.

 EndTime 5.0
 OutputStep 0.1

The time integration method is changed to Crank-Nicolson (2nd order accurate) while the
other method options are left unchanged.

 TimeMethod CrankNicolson

Log output and results are appended to the existing files during the restart.

 LogFile heater.log
 StorageFile heater.store

end

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs and plots using the post-processor THEAPOST.

heater.post

Define the file where results are stored.

StorageFile heater.store

Define the file for Postscript® output.

PostScriptFile heater.ps

 Chapter 3 Case Studies 19

© CryoSoft, 2021

Define the file for printed output.

OutputFile heater.out

The number of plots per page can be set to 1, 2, 3, 4 or 6.

set plotsperpage 4

Select the results of the simulation at the times closest to those below. All following plots are
as f(x), the selected times are parameters.

select time 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Plot various quantities as f(x) selecting the quantity first, the component next.

plot pressure hydraulic 1
plot temperature hydraulic 1
plot velocity hydraulic 1
plot massflow hydraulic 1

Reselect times, this replaces previous selection.

select time 0.5 1.0 1.5 2.0 2.5 3.0

Plot quantities as f(x).

plot temperature hydraulic 1
plot velocity hydraulic 1

Plot now parametrically one variable versus a second variable

plot pressure hydraulic 1 vs temperature hydraulic 1
plot htc hydraulic 1 vs reynoldsnr hydraulic 1

Select the results of the simulation at the points with coordinate x closest to those below. All
following plots are as a f(t), the selected x are parameters.

select x 1 3 5 7 10

Plot various quantities as f(t) selecting the quantity first, the component next.

set plotsperpage 6

plot pressure hydraulic 1
plot temperature hydraulic 1
plot velocity hydraulic 1
plot htc hydraulic 1
plot massflow hydraulic 1

Produce a printout of the heater outlet temperature as a function of time.

select x 10
print temperature hydraulic 1

The stop command terminates parsing, the post-processing session is finished.

stop

20 Chapter 3 Case Studies

© CryoSoft, 2021

Results Two files are generated running the post-processor THEAPOST with the
commands described abovein the file heater.post: the PostScript output heater.ps and
the ASCII output heater.out.

Note You will need a PostScript viewer to look at the plots in the PostScript file. The
standard viewer, usually installed on UNIX systems, is gs. Try to launch the viewer with the
command:

gs heater.ps

The plots below show the first page in the PostScript output heater.ps. As requested in the
commands file, the first four plots are the pressure, temperature, velocity and massflow
distributions along the heater at selected times. Note the establishment of a steady state
pressure gradient along the pipe and the transient temperature increase under the heated
region.

The file heater.out contains the output requested. In our case the only output requested is
the temperature of the helium at the heater outlet (x=10 m). We report here only an abridged
version of the full file.

heater.out

The following is the output of the results. In our case the temperature at x=10 m, at the outlet
of the heater, as a function of time for all times stored in the binary storage file.

hydraulic 1
Time temperature
[s] [K]
 1.00E+01 m

 0.00E+00 4.50E+00
 5.00E-02 4.49E+00
 1.00E-01 4.48E+00
 1.50E-01 4.48E+00

 Chapter 3 Case Studies 21

© CryoSoft, 2021

 2.00E-01 4.48E+00

..... (lines omitted)

 4.90E+00 4.94E+00
 5.00E+00 4.95E+00

22 Chapter 3 Case Studies

© CryoSoft, 2021

Adiabatic strand quench
Physical definition of the problem This case study deals with the calculation of the
evolution of temperature in a quenching NbTi strand assumed to be perfectly adiabatic. The
strand is 2 m long (e.g. a critical current measurement sample) and is operated at 4.2 K, 500 A
in a background field of 5 T. The strand itself has a diameter of 1 mm, is composed of
Copper, with RRR of 100, and standard NbTi in a Cu:NbTi ratio of 1.5:1. The V-I resistive
transition at the critical current is modeled using the power law approximation with a
reference electric field of 1 µV/cm (10-4 V/m) and an exponent n of 20. The quench is initiated
by a short heating pulse of 10 W/m with 1 ms duration and deposited over 2 cm length
centered in the strand length corresponding to a total energy deposited of 0.2 mJ.

Input file for the run For this case we define a single thermal component, consisting of the
two materials of the strand: Cu and NbTi. In absence of electric components, the total current
in the cable is assumed to flow in the thermal model. The step-by-step definition of the input
file is shown below.

strand.input

Define the global model characteristics and parameters: a title used for labeling output and
plots, total strand length 2 m, total current 500 A, magnetic field 5 T and no strain.

Begin Model

 ModelName 'single strand quench'

 Length 2.0
 CurrentModel constant
 InitialCurrent 500.0
 StrainModel none

A left and right values are defined for the magnetic field. The field is interpolated linearly in x
using the values below.

 MagneticFieldModel constant
 MagneticFieldSS 5.0 5.0

end

Define the details of the thermal components.

Begin Thermals

Only one thermal component is defined: the composite NbTi strand, with constant cross
section and properties along the length. The strand itself is made up of two materials: NbTi
and Cu. The temperature is the same for all materials within a component.

 Components 1

I = 500 A
T = 4.2 K
B = 5 T

Lheater = 2 cm
qʼ = 10 W/m

Lstrand = 2 m

D = 1 mm
Cu:NbTi = 1.5

 Chapter 3 Case Studies 23

© CryoSoft, 2021

 Model constant

 NrMaterials 2
 Materials Cu Nb-Ti

Cross sections are defined for the two materials. For Cu the value of the RRR (residual
resistivity ratio) is needed. Note that RRR must be given for all materials although it may not
be necessary for the physical description. A dummy value (0) can be used. For the strand it is
finally necessary to define the parameters of the power fit to the V-I curve for the critical
current transition: E0 (electric field) and nPower (power law exponent).

 Area 0.4712e-6 0.3142e-6
 RRR 100.0 0.0
 E0 1.0e-4
 nPower 20

A heating power pulse with strength Q of 10 W/m is applied in space between Q_XBegin and
Q_XEnd (2 cm between 0.99 and 1.01 m) and in time from 0 to Q_Tau (1 ms pulse).

 QModel window
 Q 10.0
 Q_Tau 1.0e-3
 Q_XBegin 0.99
 Q_XEnd 1.01

The initial conditions are of constant temperature.

 InitialCondition constant
 TInitial 4.2

The right and left boundary conditions are of prescribed heat flux at the boundary. The heat
flux is constant in time, and it is equal to zero. This corresponds to adiabatic boundary
conditions.

 BoundaryType heat heat
 BoundaryConditions constant constant
 qBoundary 0.0 0.0

end

Define the simulation parameters (numerics), storage and output.

Begin Simulation

The mesh is automatically generated using the given number of elements NrElements
uniformly distributed in space. The element type is determined by the number of nodes
ElementNodes and the interpolation order ElementOrder.

 MeshType uniform
 NrElements 200
 ElementOrder 2
 ElementNodes 3

The time integration starts at StartTime and ends at EndTime, with output of the results every
OutputStep.

 StartTime 0.0
 EndTime 5.0e-3
 OutputStep 0.1e-3

24 Chapter 3 Case Studies

© CryoSoft, 2021

The time integration uses the Crank-Nicolson method (2nd order accurate in time). The time
step is adapted automatically between the lower limit MinimumStep and the upper limit
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase,
performed depending on the comparison of the estimated integration error and the desired
tolerance Tolerance. The time integration error is estimated based on the change in the
solution during a time step. As the error control ErrorControl is on, the time step is iterated to
achieve the desired tolerance.

 TimeMethod CrankNicolson
 MinimumStep 1.0e-6
 MaximumStep 100.0e-3
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl on
 Tolerance 1.0e-2

Log output is directed to the file strand.log, while results are stored in the file strand.store for
later reporting and plots.

 LogFile strand.log
 StorageFile strand.store

end

At this point the input definition is complete and execution starts.

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs and plots using the post-processor THEAPOST.

strand.post

Define the file where results are stored.

StorageFile strand.store

Define the file for Postscript® output.

PostScriptFile strand.ps

The number of plots per page can be set to 1, 2, 3, 4 or 6.

set plotsperpage 2

Select the results of the simulation at the times closest to those below. All following plots are
as f(x), the selected times are parameters.

select time 0.0 0.1e-3 0.2e-3 0.5e-3 1.0e-3 1.5e-3 2.0e-3 5.0e-3

Plot various quantities as f(x) selecting the quantity first, the component next.

plot temperature thermal 1
plot QJoule thermal 1

Select the results of the simulation at the points with coordinate x closest to those below. All
following plots are as a f(t), the selected x are parameters.

select x 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0

Plot various quantities as f(t) selecting the quantity first, the component next.

 Chapter 3 Case Studies 25

© CryoSoft, 2021

plot temperature thermal 1
plot Resistance thermal 1

Plot now parametrically one variable versus a second variable in the middle of the domain
analysed.

select x 1.0

plot resistance thermal 1 vs temperature thermal 1
plot QJoule thermal 1 vs temperature thermal 1

The stop command terminates parsing, the post-processing session is finished.

stop

Results In this case the output of the post-processor THEAPOST is the PostScript file
strand.ps. The plots below show the first page in the PostScript output, and in particular
they show the evolution of the temperature of the strand and of the Joule heat power density.
Note the propagation of the normal zone from the center (the heated region) towards the ends.

26 Chapter 3 Case Studies

© CryoSoft, 2021

Current distribution in a two-strand cable
Physical definition of the problem In this case we model the current diffusion in a
cable formed by two strands with a transposition error localised over a short length and
subjected to an external field change. The conditions selected here are close to the
experimental conditions used by Krempaski and Schmidt, and reported in [5].

The cable has a total length of 4.7 m, and the transposition error is an additional loop placed in
the centre of the cable length. The loop has a cross section of 70 mm2, and it is assumed to be
smeared over a length of 10 mm. Over this length the change of the external magnetic field
causes a voltage difference between the two strands proportional to the cross section of the
loop and to the field ramp-rate. The effect of the field variation on the other regions of the
cable is neglected. For the loop we take a field ramp-rate of 0.26 T in 7.6 s, thus resulting in a
loop voltage of 2.4 µV. This voltage is applied over a length of 10 mm, so that the voltage per
strand unit length is then 240 µV/m. This voltage is applied to the first strand, taking as
reference (zero voltage) the second one.

The cable is soldered along its length, and the interstrand conductance is 52 MSiemens. The
self inductance of a strand is 0.836 µH/m, and the mutual inductance between the two strands
is 0.557 µH/m.

The problem is symmetric, and therefore only one half of the domain need to be analysed. The
symmetry axis is place at the middle of the central loop. The symmetry boundary condition
(left boundary) is expressed by a constant and zero voltage difference between the two strands
(the center of the cable is the electrical axis). The boundary condition at the cable end (right
boundary) models the fact that the strands are cut open and therefore no current can circulate
at the boundary.

Input file for the run Two electric components are needed in this case, modelling the two
strands. In the assumption of constant temperature, the two strands are superconducting. This
results in zero longitudinal resistance, which is the default for electric components not linked
to thermal components. Only the electric properties (transverse conductance and inductances)
need then to be defined. The total cable current is set to zero (no transport current), and this
condition is insured throughout the simulation. The input file is defined below.

twostrand.input

Lcable= 4.7 m

A= 70 mm2

dB/dt

B

time

0.26 T

7.6 s

 Chapter 3 Case Studies 27

© CryoSoft, 2021

Define the global model characteristics and parameters. These are title, length, total cable
current, field and strain.

Begin Model

 ModelName 'Current distribution'

The cable has a total length of 4.7 m. Here we assume symmetry in the center (see boundary
conditions for electrics) and we analyse only half of the length.

 Length 2.35

The total cable current is constant and equal to zero. Neither magnetic field nor strain are
defined. The effect of the magnetic field ramp is modeled as a voltage applied to the length of
cable with the transposition error (see electric model).

 CurrentModel constant
 InitialCurrent 0.0
 MagneticFieldModel none
 StrainModel none

end

Define details of electric model. These are electric parameters, voltage source, initial and
boundary conditions for the two components defined

Begin Electrics

 Components 2

The electric (link) parameters are constant in space. In this case the inductance matrix of the 2
components is built as follows:
 Self Mutual
 Mutual Self
while the transverse conductance among the couple of electric components is constant and
equal to Conductance, i.e. the matrix is built as follows:
 0.0 Conductance
 Conductance 0.0
The user should take care that the parameters are such that the resulting matrices are
physically consistent.

 Links_Model constant
 Self 8.36e-7
 Mutual 5.57e-7
 Conductance 5.20e+7

The voltage in the electric 1 has a given value Voltage between V_XBegin and V_XEnd in
space and between 0 and V_Tau in time. No voltage is applied to electric 2. Values for all
parameters are needed for BOTH components, although they are not used for electric 2.

 VModel window none

 Voltage 2.4E-4 0.0
 V_XBegin 0.0 0.0
 V_XEnd 0.005 0.0
 V_Tau 7.6 0.0

Both strands have initial current uniform in space, equal to zero.

 InitialCondition constant constant

28 Chapter 3 Case Studies

© CryoSoft, 2021

 IInitial 0.0 0.0

The type of boundary conditions to be imposed is defined for both sides of both electric
components - the order in the definition matters ! The left boundary of both components is of
imposed voltage type, while the right boundary is of imposed current type. Types, flags and
values are given in the following order:

left boundary, electric 1 right boundary, electric 1
left boundary, electric 2 right boundary, electric 2
left boundary, electric 3 right boundary, electric 3
left boundary, electric 4 right boundary, electric 4

and so on. The number of boundary conditions that can be imposed is equal to the total
number of electric components minus one. This is a must to guarantee that current is
conserved at the boundary as well.

 BoundaryType voltage current

The boundary conditions are constant in time. The values of the boundary currents and
voltage differences are all needed although only some values are used (e.g. voltage on left
boundary, current on right boundary). Note that repetition can be simplified using the
keyword Nx where N stands for the number of entries to be taken equal. The entry below:

 BoundaryConditions 2x constant

means that the interpreter expands it during reading to the following equivalent:

 BoundaryConditions constant constant

note also that repetition of assignment is not an error. Useful for testing.

 IBoundary 0.0 0.0
 VBoundary 0.0 0.0

end

Define the simulation parameters (numerics), storage and output.

Begin Simulation

The mesh is automatically generated using the given number of elements NrElements
uniformly distributed in space. The element type is determined by the number of nodes
ElementNodes and the interpolation order ElementOrder.

 MeshType uniform
 NrElements 1000
 ElementNodes 3
 ElementOrder 2

The time integration starts at StartTime 0 s and ends at EndTime 15 s, with output of the
results every OutputStep 0.5 s.

 StartTime 0.0
 EndTime 15.0
 OutputStep 0.5

The time integration uses the Crank-Nicolson method (2nd order accurate in time). The time
step is not adapted, as StepEstimate is set to none. No error estimate is provided
(ErrorEstimate set to none) and as a consequence no iterative error control is possible

 Chapter 3 Case Studies 29

© CryoSoft, 2021

(ErrorControl is set to none). The effect of this combination is to perform time integration with
a constant time step, equal to the minimum MinimumStep

 TimeMethod CrankNicolson
 MinimumStep 0.05
 MaximumStep 0.05
 StepEstimate none
 ErrorEstimate none
 ErrorControl none

Log output is directed to the file twostrand.log, while results are stored in the file
twostrand.store for later reporting

 LogFile twostrand.log
 StorageFile twostrand.store

end

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs and plots using the post-processor THEAPOST.

twostrand.post

Define the file where results are stored.

StorageFile twostrand.store

Define the file for PostScript® output.

PostScriptFile twostrand.ps

The number of plots per page can be set to 1, 2, 3, 4 or 6.

set plotsperpage 2

Select the results of the simulation at the points with coordinate x closest to those below. All
following plots are as a f(t), the selected x are parameters.

select x 0 0.1 0.2 0.5

Plot various quantities as f(t) selecting the quantity first, the component next. The same
quantity can be plotted on different components on the same plot

plot current electric 1 electric 2
plot VExternal electric 1 electric 2

Select the results of the simulation at the times closest to those below. All following plots are
as f(x), the selected times are parameters.

select time 1 2 5 10 15

Plot quantities as f(x).

plot current electric 1
plot current electric 2

The execution stops automatically at the end-of-file.

30 Chapter 3 Case Studies

© CryoSoft, 2021

Results The results of the post-processor THEAPOST is the PostScript file
twostrand.ps. The plots below show the first page in the PostScript output. The first plot
contains the current in both the electric components plotted as a function of time at different
locations x selected along the length of the cable. Note how the currents have been combined
in a single plot. Similarly the second plot reports the external longitudinal voltage applied in
the two components. According to the definition of this case a voltage is applied only to the
first component during a time window of 7.6 s.

 Chapter 3 Case Studies 31

© CryoSoft, 2021

Quench in a CICC with central cooling hole
Physical definition of the problem In this case we compute the evolution of the
temperature in the QUELL conductor during a quench. The QUELL (Quench on Long
Length) experiment was performed at EPFL/CRPP Villigen (CH) in the SULTAN test facility.
This conductor has a central cooling hole and is a downsized model of an ITER-EDA CICC.
Details on the experiment can be found in [6].

The QUELL cable can be modeled in first approximation as a bundle of strands forming the
cable, cooled by intimate flow of helium. A large cooling channel is present in the middle of
the conductor, separated by a loose spiral from the helium cooling the cable. The conductor
has a Titanium alloy jacket which is externally insulated and epoxy impregnated. The sample
length is approximately 100 m. The cable is supposed to operate at 8 kA current, in a 10 T
magnetic field. The helium has inlet conditions at 4.5 K and 5 bar, outlet at 4.75 bar. The
boundary are assumed to provide constant inlet and outlet helium state, while the cable, jacket
and insulation are assumed to be adiabatic.

Input file for the start-up run For this case we assume that the current distribution within
the cable is uniform, and we define three thermal components for the cable strands, the jacket
and the insulation. The total current is distributed resistively and instantaneously among them.
The thermal components are coupled among themselves through thermal resistance, and are
cooled by heat convection with the helium flow in the bundle and in the cooling hole. These
two flows are modelled as separate and coupled hydraulic components. The step-by-step
definition of the input file is given below.

quell.input

Define the global model characteristics and parameters: a title used for labeling output and
plots, total cable length 100 m, total current 8 kA, magnetic field 10 T and no strain.

Begin Model

 ModelName QUELL

 Length 100.0
 CurrentModel constant
 InitialCurrent 8000.0
 StrainModel none

A left and right values are defined for the magnetic field. The field is interpolated linearly in x
using the values below.

 MagneticFieldModel constant
 MagneticfieldSS 10.0 10.0

end

32 Chapter 3 Case Studies

© CryoSoft, 2021

Define the details of the thermal components.

Begin Thermals

Three thermal components are defined: the Cu/Nb3Sn superconducting strands that model the
cable bundle, a Ti jacket and a composite glass-epoxy insulation. The components have
constant cross section and properties along the length. The temperature evolution is computed
for each component separately. The first component, the strands, have a composite structure
made up of two materials, the Nb3Sn and the Cu stabilizer. The temperature is assumed to be
the same for all materials within a component. Cross sections are defined for all materials.
For Cu the value of the RRR (residual resistivity ratio) is needed (not necessary for other
materials). For the strand it is finally necessary to define the parameters of the power fit to the
V-I curve for the critical current transition: E0 (electric field) and nPower (power law
exponent). Note that values and properties must be given for all materials (e.g. RRR) or all
components (e.g. E0, nPower) although they may not be necessary for the physical description
(and are not used).

 Components 3

 Model constant constant constant

 NrMaterials 2 1 1
 Materials Cu Nb3Sn Ti GE-warp
 Area 60.8e-6 40.6e-6 73.5e-6 61.0e-6
 RRR 100.0 0.0 0.0 0.0
 E0 1.0e-4 0.0 0.0
 nPower 20 0 0

A heating power pulse with strength Q of 50 kW/m is applied in space between Q_XBegin and
Q_XEnd (45 and 55 m) and in time from 0 to Q_Tau (10 ms).

 QModel window none none
 Q 5.0e+4 0.0 0.0
 Q_Tau 10.0e-3 0.0 0.0
 Q_XBegin 45.0 0.0 0.0
 Q_XEnd 55.0 0.0 0.0

The initial conditions are of constant temperature in all components.

 InitialCondition constant constant constant
 TInitial 4.5 4.5 4.5

The boundary conditions are of prescribed heat flux at the boundary. The heat flux is constant
in time, and it is equal to zero. This corresponds to adiabatic boundary conditions.

 BoundaryType heat heat
 heat heat
 heat heat
 BoundaryConditions constant constant
 constant constant
 constant constant
 qBoundary 0.0 0.0
 0.0 0.0
 0.0 0.0

The thermal resistances define the thermal contact among the thermals and in this case they
are given as a matrix. The order matters, the thermal resistances are in the following
sequence:

 Thermal 1 <---> Thermal 2 Thermal 1 <---> Thermal 3

 Chapter 3 Case Studies 33

© CryoSoft, 2021

 Thermal 2 <---> Thermal 3

A value of 1 (K m / W) is taken between cable and jacket, and a value of 0.1 (K m / W) between
between jacket and insulation. The thermal
resistance among cable and insulation, on the other hand, is very high
(ideally infinite)

 Links_Model matrix

 ThermalResistanceMatrix 1.0 1.0e6
 0.1

end

Define the details of the hydraulic components.

Begin Hydraulics

Two hydraulic components are defined, the first in intimate contact with the cable bundle, and
the second contained in a cooling hole in the cable. The cross section Area, hydraulic
diameter Dh are defined for both as constant along the length. The Katheder correlation is
used for the friction factor of hydraulic 1, the Blasius correlation for hydraulic 2. The Dittus-
Boelter correlation is used for the heat transfer coefficient of both hydraulics.

 Components 2
 Fluid helium
 Model constant constant
 Area 71.4e-6 19.6e-6
 Dh 0.865e-3 5.0e-3

 fModel Katheder Blasius
 hModel DB DB

 Links_Model constant
 WettedPerimeter 15.7e-3
 Perforation 1.0e-2

The helium has 4.5 K initial temperature, 5 bar initial pressure and 5 g/s initial flow. These
conditions are constant along the length.

 InitialCondition constant constant
 TInitial 4.5 4.5
 pInitial 5.0e5 5.0e5
 mdotInitial 5.0e-3 5.0e-3

No heating power is input directly in the channels

 QModel none none

Boundary conditions are of prescribed pressure and temperature at both left and right side of
the length analysed (infinite reservoir). The value of pressure and temperature in the two
reservoirs is constant in time. On the left boundary the temperature is 4.5 K and the pressure 5
bar, on the right boundary the temperature is 4.5 K and the pressure 4.75 bar.

 BoundaryType reservoir reservoir
 reservoir reservoir
 BoundaryConditions constant constant
 constant constant
 TBoundary 4.5 4.5
 4.5 4.5

34 Chapter 3 Case Studies

© CryoSoft, 2021

 pBoundary 5.0e5 4.75e5
 5.0e5 4.75e5

end

Define the details of the wetted perimeter among thermal and hydraulic components.

Begin Links

The S_H_Links_Model determines that the wetted perimeter is a constant along the length.
The order matters, the links are in the following sequence:
 Thermal 1 <---> Hydraulic 1 Thermal 1 <---> Hydraulic 2
 Thermal 2 <---> Hydraulic 1 Thermal 2 <---> Hydraulic 2
 Thermal 3 <---> Hydraulic 1 Thermal 3 <---> Hydraulic 2
The wetted perimeter is then defined for each link, in the same sequence

 S_H_Links_Model constant constant
 constant constant
 constant constant
 WettedPerimeter 0.33 15.7e-3
 5.1e-2 0.0
 0.0 0.0

end

Define the simulation parameters (numerics), storage and output.

Begin Simulation

The mesh is automatically generated using the given number of elements NrElements
uniformly distributed in space. The element type is determined by the number of nodes
ElementNodes and the interpolation order ElementOrder.

 MeshType uniform
 NrElements 250
 ElementOrder 1
 ElementNodes 2

The time integration starts at StartTime and ends at EndTime, with output of the results every
OutputStep.

 StartTime 0.0
 EndTime 5.0e-3
 OutputStep 5.0e-4

The time integration uses the Galerkin algorithm (1st order accurate in time). The time step is
adapted automatically between the lower limit MinimumStep and the upper limit
MaximumStep. The step adaption method StepEstimate is based on smooth decrease/increase,
performed depending on the comparison of the estimated integration error and the desired
tolerance Tolerance. The time integration error is estimated based on the change in the
solution during a time step. As the error control ErrorControl is none, the time step is not
iterated to achieve the desired tolerance, thus reducing execution time.

 TimeMethod Galerkin
 MinimumStep 1.0e-5
 MaximumStep 1.0
 StepEstimate smooth
 ErrorEstimate change
 ErrorControl none
 Tolerance 3.0e-2

 Chapter 3 Case Studies 35

© CryoSoft, 2021

Log output is directed to the file quell.log, while results are stored in the file quell.store for
later reporting and plots.

 LogFile quell.log
 StorageFile quell.store

end

Input file for the restart run Below we give the step-by-step definition of the input file
for a restart of the simulation performed using the input given above.

quell.restart

In case of restart only the simulation parameters are needed. All other parameters are taken
from the storage file generated during the previous run.

Begin Simulation

The presence of the Restart keyword is necessary to trigger a restart run.

 Restart

The time integration starts at the last time stored on file quell.store (as specified below) and
proceeds to the new EndTime, with the prescribed OutputStep.

 EndTime 500.0e-3
 OutputStep 2.0e-3

Log output is directed to the file quell.log, while results are stored in the file quell.store for
later reporting and plots.

 LogFile quell.log
 StorageFile quell.store

end

Post-processing command file The following is an example of the sequence of
commands necessary to generate of print-outs and plots using the post-processor THEAPOST.

quell.post

Define the file where results are stored.

StorageFile quell.store

Define the file for Postscript® output.

PostScriptFile quell.ps

Define the file for printed output.

OutputFile quell.out

The number of plots per page can be set to 1, 2, 3, 4 or 6.

set plotsperpage 2

36 Chapter 3 Case Studies

© CryoSoft, 2021

Select the results of the simulation at the times closest to those below. All following plots are
as f(x), the selected times are parameters.

select time 0.0 5.0e-4 1.0e-3 2.0e-3 5.0e-3

Plot various quantities as f(x) selecting the quantity first, the component next. Note that
several components can be selected at the same time to overplot curves.

plot temperature thermal 1 thermal 2 thermal 3
plot specificresistance thermal 1 thermal 2

Changing the number of plots per page will automatically generate a new page

set plotsperpage 3

plot pressure hydraulic 1 hydraulic 2
plot temperature hydraulic 1 hydraulic 2
plot velocity hydraulic 1 hydraulic 2

Cause the present plot page to be completed and a new page to be open. This usually happens
automatically every PlotsPerPage plots, and can be done manually to separate plots.

newpage

The times can be re-selected to have a different sampling of results

select time 10.0e-3 50.0e-3 100.e-3

Plot various quantities as f(x) selecting the quantity first, the component next.

set plotsperpage 2
plot temperature thermal 1 thermal 2 thermal 3
plot resistance thermal 1 thermal 2 thermal 3
set plotsperpage 3
plot pressure hydraulic 1 hydraulic 2
plot temperature hydraulic 1 hydraulic 2
plot velocity hydraulic 1 hydraulic 2

The above cycle is repeated, opening a new page, selecting results at different times and
plotting results as f(x).

newpage
select time 200.0e-3 300.0e-3 400.0e-3 500.e-3
set plotsperpage 2
plot temperature thermal 1 thermal 2 thermal 3
plot resistance thermal 1 thermal 2 thermal 3
set plotsperpage 3
plot pressure hydraulic 1 hydraulic 2
plot temperature hydraulic 1 hydraulic 2
plot velocity hydraulic 1 hydraulic 2

Select a location in the middle of the cable and produce a print-out of the temperatures of all
components.

select x 50
print temperature thermal 1 thermal 2 thermal 3
print temperature hydraulic 1 hydraulic 2

stop

 Chapter 3 Case Studies 37

© CryoSoft, 2021

Results The results of the post-processor THEAPOST are in the PostScript file
quell.ps and in the ASCII output file quell.out. The plots below show the first page in
the PostScript output. The first plot contains the temperature evolution in the thermal
components, plotted as a function of space at different locations times. The initiation of the
quench is clear in the plot. The second plot reports the distribution of the resistance per unit
length of the two conducting thermal components. Also there we can see clearly the normal
zone with increased temperature, where the resistance grows.

The file quell.out contains the output requested. In our case the output requested is the
temperature of the thermal and hydraulic components in the middle of the cable (x=50 m). We
report here only an abridged version of the full file.

quell.out

The following is the output of the results. In our case first the temperatures of the thermal
components at x=50 m, in the middle of the cable, as a function of time for all times stored in
the binary storage file.

 thermal 1 thermal 2 thermal 3
Time temperature temperature temperature
[s] [K] [K] [K]
 5.00E+01 m 5.00E+01 m 5.00E+01 m
--
 0.00E+00 4.50E+00 4.50E+00 4.50E+00
 5.00E-04 1.82E+01 4.62E+00 4.58E+00
 1.00E-03 2.14E+01 4.76E+00 4.70E+00
 1.50E-03 2.34E+01 4.89E+00 4.82E+00

..... (lines omitted)

 4.97E-01 2.58E+01 1.95E+01 1.44E+01
 4.99E-01 2.58E+01 1.95E+01 1.44E+01
 5.00E-01 2.58E+01 1.95E+01 1.44E+01

Followed by temperatures of the hydraulic components at x=50 m.

38 Chapter 3 Case Studies

© CryoSoft, 2021

 hydraulic 1 hydraulic 2
Time temperature temperature
[s] [K] [K]
 5.00E+01 m 5.00E+01 m

 0.00E+00 4.50E+00 4.50E+00
 5.00E-04 4.58E+00 4.54E+00
 1.00E-03 4.69E+00 4.61E+00
 1.50E-03 4.82E+00 4.68E+00
 2.00E-03 4.97E+00 4.77E+00
 2.50E-03 5.12E+00 4.86E+00

..... (lines omitted)

 4.97E-01 1.88E+01 1.53E+01
 4.99E-01 1.89E+01 1.54E+01
 5.00E-01 1.89E+01 1.54E+01

 Chapter 3 Case Studies 39

© CryoSoft, 2021

Critical current measurement in a Nb-Ti CICC (External Routines)
Physical definition of the problem The example considered is the analysis of a critical
current run in the PF Conductor Insert (PFCI) for ITER. This was a coil test that took place in
2008 in the CS Model Coil Test Facility at JAEA (Naka, Japan) to characterize the
performance of one of the Nb-Ti CICC cables to be used in the ITER PF coils. A description
of the test and its main results can be found in [12], which also contains reference dimensions
for the insert coil. The figure below shows a cross section of the PFCI conductor, a dual-flow
CICC with Cu/Nb-Ti strands in a steel jacket, and the 3-D rendering of the insert winding,
which contains a joint not considered in this simple test case. The total cable length in the
insert was 48.77 m (inlet to outlet).

The aim of this case study is to reproduce a critical current measurement, and more
specifically run 27-2. During this run the temperature at inlet was set at 6.28 ± 0.05 K, the
background field was 5.4 T, and the current was increased with a slow linear ramp till a
quench was detected.

A complete simulation of the run, including all features of the PFCI, is beyond the scope of
this simplified case study. This is why we focused here only on a few interesting
customizations that are necessary to capture the main features of the experiment. Specifically:

• The conductor geometry has been reproduced based on the data reported in [12], and
references therein;

• The critical current density of the NbTi material used was calibrated against an
extensive set of measurements referenced in [12]. This required defining a specific
material property using External Routines;

• Constant inlet and outlet conditions for the He flow were imposed, resulting in
approximate flow conditions as measured in the experiment, using standard
definitions for the friction factor and heat transfer coefficients (not calibrated to the
conductor);

• The current was defined as a linear ramp lasting 300 s, attempting to reach 45 kA. A
check is performed on the resistive voltage, and a quench dump with an exponential
decay constant of 1 s is triggered if the resistive voltage exceeds 100 mV. This
required defining a specific material property using External Routines;

• The magnetic field is taken as the sum of the background field imposed by the CS
Model Coil (5.4 T) and the self field proportional to the PFCI current, with a
proportionality constant of 15.7 mT/kA. The field profile along the length was
ignored (in reality the field increases in the few meters of the insert), and the self field

40 Chapter 3 Case Studies

© CryoSoft, 2021

quoted above corresponds to the peak field in the cable, which was found to match
well the measured performance [12]. This definition of the magnetic field required
defining a specific material property using External Routines.

Input files for the test case All files necessary to recreate the above conditions are
contained in the directory:

~/CryoSoft/xample/thea/code_x.x/PFCI

which has been created to contain customized External Routines, a customized makefile, and
(after compilation and link-editing) the customized executable code. This is the recommended
way to organize specific work on parts of the External Routines, so to maintain a reference
version of the code, and only modify local copies. The directory contains the following files:

PFCI.input input file with standard format (described earlier in the manual), as

well as reference to user definitions of operating current, magnetic
field and a specific NbTi material;

PFCI.make customized makefile, based on the standard THEA makefile, used
to create a local version of THEA, including the desired customized
features;

PFCI.post post-processing command file, used to obtain plots after the
simulation;

obj a directory containing the object files of the External Routines, after
compilation with the makefile script;

usr a directory containing the source files of the External Routines, to
be compiled using the makefile script. This directory contains the
following files:

 userCurrent.f the External Routine for the current waveform;
 userMagneticField.f the External Routine for the field profile;
 userSolids.f External Routine for solids material properties.

We refer the reader to the specific files for comments on the actual inputs and programming
solutions.

Running test case Before running this test case, please insure that a standard installation
of THEA has been completed successfully. This is required because of the configuration
settings (compilers, compiler options, libraries). All standard code segments should have been
compiled (linked if available by the makefile script) and a standard code version available and
tested (this a pre-requisite to verify that this THEA version can run in your installation). To
run this test case the user will follow these steps:

Compile and link-edit the customized version of the code by using the makefile provided,
using the command:

make –f PFCI.make

The script compiles the External Routines, generates three object files in the obj/ directory,
and links the standard objects into a new executable file, PFCI.thea, that contains all custom
features required. At this point the case can be run as a standard THEA run, using the new
executable, as follows:

./PFCI.thea

the program will prompt for the input file, as in the case of a standard execution:

THEA Enter input file name

 Chapter 3 Case Studies 41

© CryoSoft, 2021

PFCI.input

Which can be followed by a standard post-processing run, using the command file
PFCI.post.

Once again, as can be inferred from this brief explanation, and by examining the input and
makefile, all customization, new executable, inputs and results are local to the directory of the
test case, and in no ways they affect the standard code.

Results The results of the test case are shown below, where we report the first page of
the PostScript® plot file generated by THEAPOST. The upper-left plot is the current
waveforms, linear until a quench is triggered, at approximately 42 kA, and followed by the
exponential fast dump.

42 Chapter 4 Input Reference

© CryoSoft, 2021

CHAPTER 4

Input Reference

Structure and syntax
The input file is read by the input interpreter that parses and analyzes the syntax and the
grammar of the various entries. In general the file contains a series of blocks that are
structured as follows:

 Begin BlockName
 VariableName value(s)
 VariableName value(s)

 ………………..
 ………………..

 VariableName value(s)
 End

where BlockName is a keyword indicating the block type, and must be one of the following
valid choices:

 Model define the general properties of the model
 Thermals define the number and properties of the thermal components
 Hydraulics define the number and properties of the hydraulic components
 Electrics define the number and properties of the electric components
 Links define the thermals-hydraulics and thermals-electrics links
 Simulation define the simulation parameters
 Variables define user variables for use in routines and functions

The content of a block is a series of assignations of a set of values to a generic variable
VariableName. VariableName must be chosen among the set of keywords described in the
following sections.

The structure and content of the input file must comply with the following rules and
conventions:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;

 Chapter 4 Input Reference 43

© CryoSoft, 2021

§ a character ‘;’ in any position of the command line indicates that the remainder of the line
must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored;

§ for an array of variables, the exact number of elements must follow the keyword. The
expected number of elements is reported in the description of the variables below. If a
keyword or a numeric entry entry is repeated N times within an array the alternative
implicit syntax Nx entry can be used to shorten the input. In the case of matrices of
entries, described below as arrays with 2 dimensions (e.g. boundary condition definitions)
the implicit multiple definition applies to the first dimension of the matrix only;

§ the variables in the block are read sequentially and are checked at read-in time. For this
reason the order of precedence of the variables must be respected whenever a value is
needed to proceed with the interpretation of a block (i.e. the total number of components
must be available to read the physical characteristics of all components within a block);

§ repeated variable assignation overrides previous values and is not checked at read-in time;
§ the blocks in the file are read sequentially and are checked at read-in time. This means

that, if Electrics-Thermals and/or Hydraulics-Thermals links are requested, then the
Electrics/Hydraulics and Thermals blocks must be assigned before the Links block. The
same BlockName can appear more than once in a file

Parsing of the input file is finished as soon as an end-of-file is found. At this point the
execution control is passed to the main program that executes checks on data consistency,
configures the run and launches the simulation. For sample input files see Chapter 3.

Input variables reference
The following table contains, in alphabetical order, the keywords defining the input variables,
their physical dimensions and meanings for each block type. Predefined possible values are
reported in Courier. The default value is indicated in the table and underlined.

Note In the tables below we use the following convention for the type of variables:

 C character (a string delimited by blanks, tabs or apices)
 R real (a number in floating point or engineering notation)
 I integer (an integer number)

Typing must be respect in the input file to avoid errors or mis-interpretation by the parser.

Model
The model block describes general quantities that apply to all components in the model being
prepared. These are in particular total length and local elevation of the components (for the
calculation of buoyancy effects), operating conditions such as total current, magnetic field and
longitudinal strain. A title can be defined to identify the case. The title appears in plots and
print-outs generated by THEAPOST.

Variable Type Units Meaning

CurrentModel C (-) Flag describing the behaviour of the current in time.

Possible values:
user user defined through the function

UserCurrent (see Chapter 6).
none no current defined (default).
constant constant in time, equal to

InitialCurrent

44 Chapter 4 Input Reference

© CryoSoft, 2021

linear combination of constant in time, equal
to InitialCurrent, between 0 and
TauDetection, followed by linear
decay between TauDetection and
TauDetection + TauDump.

exponential combination of constant in time, equal
to InitialCurrent, between 0 and
TauDetection, followed by
exponential decay after
TauDetection with TauDump time
constant.

External the current is obtained from one of the
other CryoSoft simulators, through
explicit coupling at each time step. This
coupling requires execution under the
SuperMagnet environment, and leads to
an error in case it is used in stand-alone
mode. See the SuperMagnet manual for
more details.

InitialCurrent R (A) Initial current, used for scaling the value of the current

in time and also as a reference for scaling of the
magnetic field and strain.

Length R (m) Total length of the 1-D domain analysed (e.g. cable

length)

Height R (m) Array of 2 elements containing the elevation of the

components at the left and right boundary.

HeightModel C (-) Flag describing the definition of the local elevation z of

the components along the length x. Possible values:
user user defined through the function

UserHeight (see Chapter 6).
none no height defined (default to z=0)
linear varying linearly in space. The value is

obtained through linear interpolation
along the total length between the left
value Height(1) and the right value
Height(2).

MagneticFieldAngle R (T) Array of 2 elements containing the value of the
magnetic field angle at the left and right boundary, in
degrees. The convention is an angle of 0 degrees for a
field normal to the current direction, and an angle of 90
degrees for a field parallel to the current direction.

MagneticFieldModel C (-) Flag describing the behaviour of the magnetic field in

time and space. Possible values:
user user defined through the function

UserMagneticField and
UserMagneticFieldAngle (see
Chapter 6).

none no magnetic field defined (default)
constant constant in time and linear in space.

The value is obtained through linear
interpolation along the total length

 Chapter 4 Input Reference 45

© CryoSoft, 2021

between the left value
MagneticFieldSS(1) and the right
value MagneticFieldSS(2). The
field angle is obtained by linear
interpolation along the total length
between the left value
MagneticFieldAngle(1) and the
right value MagneticFieldAngle
(2).

proportional scaled proportionally to the cable
current, linear in space. The magnetic
field value is obtained as the sum of a
component identical to the one
described above, and a transient
component obtained interpolating
linearly in space between the left
value MagneticFieldTr(1) and
the right value
MagneticFieldTr(2). The
transient component is scaled linearly
with the ratio of instantaneous current
to the initial current. The field angle
remains always constant.

MagneticFieldSS R (T) Array of 2 elements containing the steady state value of

the magnetic field at the left and right boundary.

MagneticFieldTr R (T) Array of 2 elements containing the transient value of

the magnetic field at the left and right boundary.

ModelName C (-) Model name, used for labeling plots and print-outs.

StrainModel C (-) Flag describing the behaviour of the longitudinal strain

in time and space. Possible values:
user user defined through the function

UserStrain (see Chapter 6).
none no strain defined (default)
constant constant in time and linear in space.

The value is obtained through linear
interpolation along the total length
between the left value StrainSS(1)
and the right value StrainSS(2).

proportional scaled proportionally to the square of
the cable current, linear in space. The
strain value is obtained as the sum of
a component identical to the one
described above, and a transient
component obtained interpolating
linearly in space between the left
value StrainTr(1) and the right
value StrainTr(2). The transient
component is scaled quadratically
with the ratio of instantaneous current
to the initial current.

46 Chapter 4 Input Reference

© CryoSoft, 2021

StrainSS R (-) Array of 2 elements containing the steady state value of
the longitudinal strain at the left and right boundary.

StrainTr R (-) Array of 2 elements containing the transient value of

the longitudinal strain at the left and right boundary.

TauDetection R (s) Delay time (detection) before the current dump.

TauDump R (s) Dump time constant for the current decay.

 Chapter 4 Input Reference 47

© CryoSoft, 2021

Thermals
The thermals block describes the configuration and detailed properties for the thermal
components. Thermal components are heat conducting solids, possibly superconducting,
carrying a current and generating Joule heat. This block defines their number, material
composition, cross sections and material properties. Heating can be set on a component-by-
component basis. Thermal links within thermal components are defined through thermal
resistances. In addition this block gives initial temperature and boundary conditions for the
thermal components.

Note In the case of keywords associated with an array, all elements of the array must follow
in the input file, even if these are not defined or are not used. Dummy values can be used.

Variable Type Units Meaning

Area R (m2) Array of (NrMaterials,Components) elements

containing the cross sections of all materials in each
component.

 The entries must be in the following order:
 (mi,Tj) (mi+1,Tj) (mi+2,Tj) …
 (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) …
 end so on, where mi stands for the i-th material and Tj

for the j-th thermal component.

BoundaryConditions C (-) Array of (2,Components) elements containing the

flag defining the time dependence of the boundary
value.

 The entries must be in the following order:
 (b1,Tj) (b2,Tj)
 (b1,Tj+1) (b2,Tj+1)
 end so on, where bi stands for the i-th boundary and Tj

for the j-th thermal component.
 Possible values:

user user defined through the functions
UserSTBoundary and UserQBoundary
(see Chapter 6).

constant constant boundary value in time
(default).

BoundaryType C (-) Array of (2,Components) elements containing the

flag defining the type of boundary.
 The entries must be in the following order:
 (b1,Tj) (b2,Tj)
 (b1,Tj+1) (b2,Tj+1)
 end so on, where bi stands for the i-th boundary and Tj

for the j-th thermal component.
 Possible values:

temperature prescribed temperature at the boundary
(default).

heat prescribed heating power at the
boundary.

Components I (-) Number of thermal components defined.

E0 R (V/m) Array of Components elements containing the electric

field used as reference for the definition of the critical

48 Chapter 4 Input Reference

© CryoSoft, 2021

current Jc in the superconducting components. The
longitudinal electric field (V-I curve) is computed
using the power law fit with scaling field E0 and power
exponent nPower.

InitialCondition C (-) Array of Components elements containing the flags

defining the initial conditions of temperature in each
thermal component. Possible values:
user user defined through the function

UserSTInitial (see Chapter 6).
constant constant in space, equal to TInitial

(default).

Links_Model C (-) Flag defining the thermal links (thermal resistances)

among thermal components. Possible values:
user user defined for each couple of thermal

components through the function
UserThermalResistance (see Chapter
6).

none no links among thermal components
(default).

constant all componentsd are thermally linked, and
a single value ThermalResistance is
used for all couples of thermal
components, constant in space.

matrix the components are thermally linked, and
the thermal resistance for each couple of
thermal components is given in
ThermalResistanceMatrix.

Materials C (-) Array of (NrMaterials,Components) elements

containing the material names. Details on the material
properties can be found in the CryoSoft Solids Library
[7]. The material name can be one of the predefined
standard names or any user specified names.

 In the case of a user’s specified name the material
properties and types are computed by the functions:

 UserConductivity
 UserDensity

 UserResistivity
UserCriticalCurrentDensity

 UserSpecificHeat
 UserCriticalTemperature,

UserCurrentSharing
 UserMaterialType
 that must be provided by the user (see Chapter 6). At

most one superconductor material per thermal
component is allowed. The entries must be in the
following order:

 (mi,Tj) (mi+1,Tj) (mi+2,Tj) …
 (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) …
 end so on, where mi stands for the i-th material and Tj

for the j-th thermal component.

Model C (-) Array of Components elements containing the flags

defining the property variation in space. Possible
values:

 Chapter 4 Input Reference 49

© CryoSoft, 2021

user cross sections and material propertis are
user defined through the functions
UserSArea, UserConductivity,
UserDensity, UserRRR, UserE0,
UsernPower, UserSpecificHeat,
UserCriticalCurrent,
UserCriticalTemperature,
UserCurrentSharing,
UserResistivity (see Chapter 6).

constant constant in time and space, as read-in from
input (default).

nPower I (-) Array of Components elements containing the

exponent used for the power-law description of the
longitudinal electric field in a superconductor (V-I
curve). For a value of nPower larger than 250, a sharp
transition is assumed.

NrMaterials I (-) Array of Components elements defining the number of

materials in the same component.

RRR R (-) Array of (NrMaterials,Components) elements

containing the Residual Resistivity Ratio of each
material

 The entries must be in the following order:
 (mi,Tj) (mi+1,Tj) (mi+2,Tj) …
 (mi,Tj+1) (mi+1,Tj+1) (mi+2,Tj+1) …
 end so on, where mi stands for the i-th material and Tj

for the j-th thermal component.

Q R (W/m) Array of Components elements defining the linear

heat flux density, and used depending on the heating
model QModel (see below).

QBoundary R (W) Array of (2,Components) elements defining the heat

flux in the left and right boundaries, used when the
corresponding BoundaryType = heat

 The entries must be in the following order:
 (b1,Tj) (b2,Tj)
 (b1,Tj+1) (b2,Tj+1)
 end so on, where bi stands for the i-th boundary and Tj

for the j-th thermal component.

QModel C (-) Array of Components elements containing the flag

defining the model for heating along the length.
Possible values:
user user defined through the function

UserSHeating (see Chapter 6).
none no heating (default)
constant linear power density equal to Q within

the space frame between Q_XBegin
and Q_XEnd, constant in time, zero
otherwise.

window linear power density equal to Q within
the space frame between Q_XBegin

50 Chapter 4 Input Reference

© CryoSoft, 2021

and Q_XEnd, from time 0 to Q_Tau,
zero otherwise.

exponential linear power density equal to Q within
the space frame between Q_XBegin
and Q_XEnd, exponential decay in time
with time constant Q_Tau, zero
otherwise.

external the linear power density is obtained
from one of the other CryoSoft
simulators, through explicit coupling at
each time step. This coupling requires
execution under the SuperMagnet
environment, and leads to an error in
case it is used in stand-alone mode. See
the SuperMagnet manual for more
details.

Q_Tau R (s) Array of Components elements containing the heating

time constant.

Q_XBegin R (m) Array of Components elements containing the start

coordinate of the heating window.

Q_XEnd R (m) Array of Components elements containing the end

coordinate of the heating window.

TBoundary R (K) Array of (2,Components) elements defining the

temperature at the left and right boundaries, used when
the corresponding BoundaryType = temperature.

 The entries must be in the following order:
 (b1,Tj) (b2,Tj)
 (b1,Tj+1) (b2,Tj+1)
 end so on, where bi stands for the i-th boundary and Tj

for the j-th thermal component.

ThermalResistance R (K m/W) Thermal resistance among all couples of thermal

components, used il Links_Model is constant. All
thermal components are thermally linked through the
value given.

ThermalResistanceMatrix
 R (K m/W) array of (Components,Components) elements

defining the thermal resistance among all possible
couples of thermal components (used if Links_Model
is matrix). The thermal resistance for the thermal
couple (i,j) is the same as the thermal resistance of the
couple (j,i). For this reson only the upper triangle of the
matrix is given in input, in the following order:

 (1,2) (1,3) ... (1,N-1) (1,N)
 (2,3) ... (2,N-1) (2,N)
 ...
 ... (N-1,N)
 for a total of Components*(Components-1)/2

entries.

 Chapter 4 Input Reference 51

© CryoSoft, 2021

TInitial R (K) Array of Components elements containing the initial
temperature in each thermal component (uniform in
space).

52 Chapter 4 Input Reference

© CryoSoft, 2021

Hydraulics
The hydraulics block describes the configuration and detailed properties for the hydraulic
components. Hydraulic components are channels where the fluid flows. This block defines the
fluid flowing in the channels, their number, cross sections, hydraulic properties and turbulent
correlations. Heating can be set on a component-by-component basis. Links within hydraulic
components are defined through heat and/or mass transfer among channels. In addition this
block sets initial temperature, pressure, flow and boundary conditions for all hydraulic
components.

Variable Type Units Meaning

Area R (m2) Array of Components elements containing the cross

sections of all hydraulic components.

BoundaryConditions C (-) Array of (2,Components) elements containing the

flag defining the time dependence of the boundary
value.

 The entries must be in the following order:
 (b1,Hj) (b2,Hj)
 (b1,Hj+1) (b2,Hj+1)
 end so on, where bi stands for the i-th boundary and Hj

for the j-th hydraulic component.
 Possible values:

user user defined through the functions
UsermdotBoundary , UserpBoundary
and UserHTBoundary (see Chapter 6).

constant constant boundary value in time
(default).

External the boundary conditions are obtained
from one of the other CryoSoft
simulators, through explicit coupling at
each time step. This coupling requires
execution under the SuperMagnet
environment, and leads to an error in
case it is used in stand-alone mode. See
the SuperMagnet manual for more
details.

BoundaryType C (-) Array of (2,Components) elements containing the

flag defining the type of boundary.
 The entries must be in the following order:
 (b1,Hj) (b2,Hj)
 (b1,Hj+1) (b2,Hj+1)
 end so on, where bi stands for the i-th boundary and Hj

for the j-th hydraulic component.
 Possible values:

reservoir prescribed temperature and pressure as
provided by a large (infinite) volume
reservoir connected at the end of the
channel (default).

closed closed pipe boundary (zero flow).

Components I (-) Number of hydraulic components defined.

 Chapter 4 Input Reference 53

© CryoSoft, 2021

CModel C (-) Array of Components elements containing the flag
defining the model for convection along the length.
Possible values:
user user defined, through the heat transfer

coefficient of the flow (see hModel),
the wetted perimeter T0_WP and a wall
temperature given by the function
UserHT0 (see Chapter 6).

none no convection heating (default)
constant convection heat transfer as computed

from the heat transfer coefficient of the
flow (see hModel), the wetted
perimeter T0_WP and a constant wall
temperature T0, within the space frame
between T0_XBegin and T0_XEnd,
zero otherwise.

external the convection heat transfer is obtained
from one of the other CryoSoft
simulators, through explicit coupling at
each time step. This coupling requires
execution under the SuperMagnet
environment, and leads to an error in
case it is used in stand-alone mode. See
the SuperMagnet manual for more
details.

Note Hydraulic heating either through surface convection (CModel different from None) or
direct heating (QModel different from None) is mutually exclusive. Only one of the two input
definitions is allowed.

Dh R (m) Array of Components elements containing the

hydraulic diameter of all hydraulic components.

Fluid C (-) Name of the fluid flowing in all channels defined.

Details on the material properties can be found in the
CryoSoft Fluids Library [8]. The fluid name can be one
of the following predefined standard names:
Helium Single phase 4He in any state,

including superfluid
Nitrogen Single phase N2.

 Only one fluid can be defined for all channels defined,
to avoid inconsistencies in case that flow mixing
among channels is allowed through non-zero
perforation of the channel walls.

fModel C (-) Array of Components elements containing the flag
defining the friction factor model. In general the
friction factor is defined as the maximum value
between the correlation chosen and the laminar flow
limit. This limiting procedure is not used in the case of
fModel user or none. Possible values:
user user defined through the function

UserFrictionFactor (see Chapter
6)

none no friction factor (default)

54 Chapter 4 Input Reference

© CryoSoft, 2021

constant constant in time and space, equal to
FrictionFactor as defined in
input.

Blasius Blasius correlation.
Katheder Katheder correlation for CICC’s with

40 % void fraction.
Nikuradse Nikuradse-von Karman correlation.
Smooth smooth tube correlation.
Westinghouse Westinghouse correlation for CICC’s.

 Details on the correlations can be found in [9].

FrictionFactor R (-) Array of Components elements containing a constant

value of the friction factor of the flow, used if fModel
is constant.

HTC R (W/m2 K) Array of Components elements containing a constant

value of the heat transfer coefficient of the flow, used if
hModel is constant.

hModel C (-) Array of Components elements containing the flag

defining the heat transfer coefficient model. Possible
values:
user user defined through the function UserHTC

(see Chapter 6).
none no heat transfer coefficient (default).
constant constant in time and space.
BLQ Boundary layer filling with step in wall

heat flux.
BLT Boundary layer filling with step in wall

temperature.
DB Dittus-Bölter correlation.
DBG Dittus-Bölter-Giarratano correlation for

supercritical helium.
Kapitza Kapitza thermal resistance.

 Details on the correlations can be found in [10].

InitialCondition C (-) Array of Components elements containing the flags

defining the initial conditions of temperature, pressure
and flow in each hydraulic component. Possible values:
user user defined through the function

UserHTInitial UserpInitial and
UsermdotInitial (see Chapter 6).

constant constant in space, equal to TInitial ,
pInitial and mdotInitial (default).

Links_Model C (-) Flag defining the nature of the thermal and mass links

among hydraulic components. Possible values:
user user defined for each couple of hydraulic

components through the function
UserWettedPerimeter and
UserPerforation (see Chapter 6).

none no links among hydraulic components
(default).

constant the hydraulic components are linked by
heat and mass exchange through the wetted
perimeter and perforation of the hydraulic

 Chapter 4 Input Reference 55

© CryoSoft, 2021

channels. A single value of
WettedPerimeter and Perforation is
used for all couples of hydraulic
components, constant in space.

matrix the hydraulic components are linked by
heat and mass exchange through the wetted
perimeter and perforation of the hydraulic
channels. The values of the wetted
pertimeter and perforation for each couple
of hydraulic channels are given in the
WettedPerimeterMatrix and in the
PerforationMatrix, constant in space.

mdotBoundary R (kg/s) Array of (2,Components) elements defining the

massflow at the left and right boundaries, not used.
 The entries must be in the following order:
 (b1,Hj) (b2,Hj)
 (b1,Hj+1) (b2,Hj+1)
 end so on, where bi stands for the i-th boundary and Hj

for the j-th hydraulic component.

mdotInitial R (kg/s) Array of Components elements containing the initial

massflow in each hydraulic component (uniform in
space).

Model C (-) Array of Components elements containing the flags

defining the cross section and properties variation in
space. Possible values:
user cross sections and hydraulic diameter are

user defined through the functions
UserHArea, UserDh, (see Chapter 6).

constant constant in time and space, as read-in
from input (default).

pBoundary R (Pa) Array of (2,Components) elements defining the

pressure at the left and right boundaries, used when the
corresponding BoundaryType=reservoir.

 The entries must be in the following order:
 (b1,Hj) (b2,Hj)
 (b1,Hj+1) (b2,Hj+1)
 end so on, where bi stands for the i-th boundary and Hj

for the j-th hydraulic component.

Perforation R (-) Perforation factor of the wetted perimeter for each

couple of hydraulic components, used if Links_Model
is constant. The perforation factor is between 0 (no
perforation) and 1 (full perforation) and governs mass
transfer at the wetted perimeter of two channels.

PerforationMatrix R (-) Matrix of (Components,Components) elements

containing the perforation factor of the wetted
perimeter for each couple of hydraulic components,
used if Links_Model is matrix. The perforation
factor is between 0 (no perforation) and 1 (full
perforation) and governs mass transfer at the wetted
perimeter of two channels. The perforation factor for

56 Chapter 4 Input Reference

© CryoSoft, 2021

the couple (i,j) of hydraulic i and hydraulic j is the
same as the perforation factor of the couple (j,i). For
this reason only the upper triangle of the matrix is
given, in the following order:

 (1,2) (1,3) ... (1,N-1) (1,N)
 (2,3) ... (2,N-1) (2,N)
 ...
 ... (N-1,N)
 for a total of Components*(Components-1)/2

entries.

pInitial R (Pa) Array of Components elements containing the initial

pressure in each hydraulic component (uniform in
space).

Q R (W/m) Array of Components elements defining the linear

heat flux density, and used depending on the heating
model QModel (see below).

QModel C (-) Array of Components elements containing the flag

defining the model for heating along the length.
Possible values:
user user defined through the function

UserHHeating (see Chapter 6).
none no heating (default)
constant linear power density equal to Q within

the space frame between Q_XBegin
and Q_XEnd, constant in time, zero
otherwise.

window linear power density equal to Q within
the space frame between Q_XBegin
and Q_XEnd, from time 0 to Q_Tau,
zero otherwise.

exponential linear power density equal to Q within
the space frame between Q_XBegin
and Q_XEnd, exponential decay in time
with time constant Q_Tau, zero
otherwise.

external the linear power density is obtained
from one of the other CryoSoft
simulators, through explicit coupling at
each time step. This coupling requires
execution under the SuperMagnet
environment, and leads to an error in
case it is used in stand-alone mode. See
the SuperMagnet manual for more
details.

Note Hydraulic heating either through surface convection (CModel different from None) or
direct heating (QModel different from None) is mutually exclusive. Only one of the two input
definitions is allowed.

Q_Tau R (s) Array of Components elements containing the heating

time constant.

 Chapter 4 Input Reference 57

© CryoSoft, 2021

Q_XBegin R (m) Array of Components elements containing the start
coordinate of the heating window.

Q_XEnd R (m) Array of Components elements containing the end

coordinate of the heating window.

T0 R (m) Array of Components elements containing the wall

temperature used for the calculation of the convection
heat transfer, depending on the convection model
CModel.

T0_WP R (m) Array of Components elements containing the wetted

perimeter used for the calculation of the convection
heat transfer.

T0_XBegin R (m) Array of Components elements containing the start

coordinate of the convection heat transfer window,
depending on the convection model CModel.

T0_XEnd R (m) Array of Components elements containing the end

coordinate of the convection heat transfer window,
depending on the convection model CModel.

TBoundary R (K) Array of (2,Components) elements defining the

temperature at the left and right boundaries, used when
the corresponding BoundaryType=reservoir.

 The entries must be in the following order:
 (b1,Hj) (b2,Hj)
 (b1,Hj+1) (b2,Hj+1)
 end so on, where bi stands for the i-th boundary and Hj

for the j-th hydraulic component.

TInitial R (K) Array of Components elements containing the initial

temperature in each hydraulic component (uniform in
space).

WettedPerimeter R (m) Wetted perimeter for each couple of hydraulic

components, used if Links_Model is constant. The
wetted perimeter governs heat transfer and mass
transfer (through the relative Perforation) between
two channels.

WettedPerimeterMatrix
 R (m) Matrix of (Components,Components) elements

containing the wetted perimeter for each couple of
hydraulic components, used if Links_Model is
matrix. The wetted perimeter governs heat transfer
and mass transfer (through the relative Perforation)
between two channels. The wetted perimeter for the
couple (i,j) of hydraulic i and hydraulic j is the same as
the wetted perimeter of the couple (j,i). For this reson
only the upper triangle of the matrix is given, in the
following order:

 (1,2) (1,3) ... (1,N-1) (1,N)
 (2,3) ... (2,N-1) (2,N)
 ...
 ... (N-1,N)

58 Chapter 4 Input Reference

© CryoSoft, 2021

 for a total of Components*(Components-1)/2
entries.

 Chapter 4 Input Reference 59

© CryoSoft, 2021

Electrics
The electrics block describes the configuration and detailed properties for the electric
components. Electric component carry current. This block defines their number and electrical
properties. Voltage sources can be chosen for each component. Finally this block is used to
define initial current and boundary conditions for the electric components.

Variable Type Units Meaning

BoundaryConditions C (-) Array of (2,Components-1) elements containing the

flag defining the time dependence of the boundary
value for all the electric components up to the last one.
No boundary condition can be prescribed for the last
electric component as this equation is used to guarantee
the total current conservation.

 The entries must be in the following order:
 (b1,Ej) (b2,Ej)
 (b1,Ej+1) (b2,Ej+1)
 end so on, where bi stands for the i-th boundary and Ej

for the j-th electric component.
 Possible values:

user user defined through the functions
UserVBoundary and UserIBoundary
(see Chapter 6).

constant constant boundary value in time (default).

BoundaryType C (-) Array of (2,Components-1) elements containing the

flag defining the type of boundary for all the electric
components up to the last one. No boundary condition
can be prescribed for the last electric component as this
equation is used to guarantee the total current
conservation.

 The entries must be in the following order:
 (b1,Ej) (b2,Ej)
 (b1,Ej+1) (b2,Ej+1)
 end so on, where bi stands for the i-th boundary and Ej

for the j-th electric component.
 Possible values:

current prescribed current at the boundary.
voltage prescribed voltage difference with respect

to the last electric component at the
boundary(default).

Components I (-) Number of electric components defined.

Conductance R (1/Wm) Conductance per unit length among electric

components (used if Links_Model is constant).

ConductanceMatrix R (1/Wm) Array of (Components,Components) elements

defining the conductance per unit length among electric
components (used if Links_Model is matrix). The
conductance factor for the couple (i,j) of electric i and
electric j is the same as the conductance of the couple
(j,i). For this reason only the upper triangle of the
matrix is given, in the following order:

 (1,2) (1,3) ... (1,N-1) (1,N)

60 Chapter 4 Input Reference

© CryoSoft, 2021

 (2,3) ... (2,N-1) (2,N)
 ...
 ... (N-1,N)
 for a total of Components*(Components-1)/2

entries.

IBoundary R (A) Array of (2,Components-1) elements defining the

current in the left and right boundaries, used when the
corresponding BoundaryType = current. No
boundary condition can be prescribed for the last
electric component as this equation is used to guarantee
the total current conservation.

 The entries must be in the following order:
 (b1,Ej) (b2,Ej)
 (b1,Ej+1) (b2,Ej+1)
 end so on, where bi stands for the i-th boundary and Ej

for the j-th electric component.

IInitial R (A) Array of Components elements containing the initial

current in each electric component (uniform in space).

InductanceMatrix R (H/m) Array of (Components,Components) elements

defining the inductance per unit length among electric
components (used if Links_Model is matrix). The
inductance for the couple (i,j) of electric i and electric j
is the same as the inductance of the couple (j,i). For this
reason only the diagonal and the upper triangle of the
matrix are given, in the following order:

 (1,1) (1,2) ... (1,N-1) (1,N)
 (2,2) ... (2,N-1) (2,N)
 ...
 ... (N-1,N-1) (N-1,N)
 ... (N,N)
 for a total of Components*(Components+1)/2

entries.

InitialCondition C (-) Array of Components elements containing the flags

defining the initial conditions of current for each
electric component. Possible values:
user user defined through the function

UserIInitial (see Chapter 6).
constant constant in space, equal to IInitial

(default).

Links_Model C (-) Flag defining the electric links (transverse conductance

and inductance) among electric components. Possible
values:
user user defined for each couple of thermal

components through the functions
UserConductance and
UserInductance (see Chapter 6).

constant the transverse conductance and inductance
matrices are built using the input values of
Conductance, Self and Mutual. The
matrices are the same for all possible
couples of components, and are constant in
space (default).

 Chapter 4 Input Reference 61

© CryoSoft, 2021

matrix the transverse conductance and inductance
matrices are given in
ConductanceMatrix and
InductanceMatrix.

Mutual R (H/m) Mutual inductance per unit length for any couple of

electric components (used if Links_Model is
constant).

Self R (H/m) Self inductance per unit length for any electric

component (used if Links_Model is constant).

RLongitudinal R (Ohm/m) Array of Components elements containing the

constant longitudinal resistance per unit length in each
electric component (used if RModel is constant).

RModel C (-) Array of Components elements containing the flag

defining the model for longitudinal electric resistance
of the electric component. Possible values:
user the longitudinal resistance is user

defined through the function
UserResistance (see Chapter 6).

none the longitudinal resistance is taken to
be zero throughout the simulation.

constant the longitudinal resistance is constant
in space and time, as defined by the
value of the variable RLongitudinal.

standard the longitudinal resistance is computed
consistently using the properties of the
coupled thermal components. The
default result when the electric
component is not linked to a thermal
component, or when no thermal
components are present in the model, is
zero longitudinal resistance, i.e. as if
option none were chosen.

VBoundary R (V) Array of (2,Components-1) elements defining the

voltage difference among all components and the last
component defined in the left and right boundaries,
used when the corresponding BoundaryType =
voltage. No boundary condition can be prescribed for
the last electric component as this equation is used to
guarantee the total current conservation.

 The entries must be in the following order:
 (b1,Ej) (b2,Ej)
 (b1,Ej+1) (b2,Ej+1)
 end so on, where bi stands for the i-th boundary and Ej

for the j-th electric component.

VModel C (-) Array of Components elements containing the flag

defining the model for the longitudinal voltage source
along the length. Possible values:
user user defined through the function

UserVoltage (see Chapter 6).

62 Chapter 4 Input Reference

© CryoSoft, 2021

none no voltage (default)
constant linear voltage per unit length equal to

Voltage within the space frame
between V_XBegin and V_XEnd,
constant in time, zero otherwise.

window linear voltage per unit length equal to
Voltage within the space frame
between V_XBegin and V_XEnd, from
time 0 to V_Tau, zero otherwise.

exponential linear voltage per unit length equal to
Voltage within the space frame
between V_XBegin and V_XEnd,
exponential decay in time with time
constant V_Tau, zero otherwise.

Voltage R (V/m) Array of Components elements defining the

longitudinal voltage per unit length in the component,
and used depending on the voltage model VModel (see
above).

V_Tau R (s) Array of Components elements containing the

longitudinal voltage source time constant.

V_XBegin R (m) Array of Components elements containing the start

coordinate of the window of longitudinal voltage
source.

V_XEnd R (m) Array of Components elements containing the end

coordinate of the window of longitudinal voltage
source.

 Chapter 4 Input Reference 63

© CryoSoft, 2021

Links
The links block determines the coupling among different components. Such couplings are
between thermal and hydraulic components (through heat transfer at the wetted perimeter) and
between thermal and electric components (through Joule heat in the thermal components and
resistance in the electric components). Coupling can be determined component by component
in a structure of matrices containing either the type of coupling, the components coupled and
the properties of the coupling.

Note All components must be defined before defining their mutual links. This means that the
links block must come after the thermal, hydraulic and electric blocks in the input file. A
parsing error is generated if this is not the case.

Variable Type Units Meaning

S_E_Links I (-) Matrix with size (NrOfThermalsComponents,

NrOfElectricComponents) containing the entries
for coupling thermal and electric components. The
entry (i,j) for the thermal component i and the electric
component j contains 0 for no coupling and 1 for
coupling. The matrix is entered in the following order

 (T1,E1) (T1,E2) … (T1,ENE)
 (T2,E1) (T2,E2) … (T2,ENE)
 …
 (TNT,E1) (TNT,E2) … (TNT,ENE)
 where (Ti,Ej) stands for the entry (0 or 1) of thermal

component Ti and electric component Ej.

S_H_Links_Model C (-) Matrix with size (NrOfThermalsComponents,

NrOfHydraulicComponents) containing the flags
determining the type of links among thermal and
hydraulic components. The flags can be different for
each couple. Possible values:
user the thermal coupling happens on a wetted

perimeter defined by the user for each
couple of thermal and hydraulic
component through the function
UserSHWettedPerimeter (see Chapter
6).

none no coupling (default).
constant the thermal coupling takes place as defined

by the WettedPerimeter and is
constant in space.

 The matrix is entered in the following order
 (T1,H1) (T1,H2) … (T1,HNH)
 (T2,H1) (T2,H2) … (T2,HNH)
 …
 (TNT,H1) (TNT,H2) … (TNT,HNH)
 where (Ti,Hj) stands for the flag entry of thermal

component Ti and hydraulic component Hj.

WettedPerimeter R (m) Matrix with size (NrOfThermalsComponents,

NrOfHydraulicComponents) containing in the
location (i,j) the wetted perimeter for each couple of a
thermal component i and an hydraulic component j.

 The matrix is entered in the following order

64 Chapter 4 Input Reference

© CryoSoft, 2021

 (T1,H1) (T1,H2) … (T1,HNH)
 (T2,H1) (T2,H2) … (T2,HNH)
 …
 (TNT,H1) (TNT,H2) … (TNT,HNH)
 where (Ti,Hj) stands for the wetted perimeter between

thermal component Ti and hydraulic component Hj.

 Chapter 4 Input Reference 65

© CryoSoft, 2021

Simulation
The simulation block describes the numerical parameters for meshing, space and time
integration, logging and storage of results.

Variable Type Units Meaning

AdaptivityMethod C (-) Switch for mesh adaptivity method. Possible values:

none no adaptivity method selected
Threshold the mesh is adapted based on a threshold

condition on a value, i.e. the variable
AdptVariable in the component
AdptIndex of type AdptComponent
crossing a pre-defined value AdptValue.
The syntax of the command is:

Threshold AdptVariable AdptComponent AdptIndex AdptValue

 The combination of the variable selection

AdptVariable and of component
AdptComponent can be one of the
following:

 Temperature Thermal
 Temperature Hydraulic
 Pressure Hydraulic
 Velocity Hydraulic
 Current Electric

Front the mesh is adapted based on a threshold

condition on a derivative, i.e. the space
derivative of the variable
AdptVariable in the component
AdptIndex of type AdptComponent
crossing a pre-defined value AdptValue.
The syntax of the command is:

Front AdptVariable AdptComponent AdptIndex AdptValue

 The same combination of the variable

selection AdptVariable and of
component AdptComponent is
possible as in the case of Threshold
tracking (see above).

Note The Front tracking option is presently available for compatibility with future
developments. The input is correctly parsed and checked, but no mesh adaptivity is performed
at run time.

Lambda the mesh is adapted to track the lambda

transition (He-I to He-II) in the
component AdptIndex of type hydraulic
(i.e. in this case AdptComponent must
be hydraulic). The syntax of the
command is:

Lambda Hydraulic AdptIndex

66 Chapter 4 Input Reference

© CryoSoft, 2021

Quench the mesh is adapted to track the quench

front in the component AdptIndex of
type thermal (i.e. in this case
AdptComponent must be thermal).
The syntax of the command is:

Quench Thermal AdptIndex

ArtificialViscosity C (-) Switch to control the amount of artificial viscosity

added in the solution of the compressible fluid flow
equations. Artificial viscosity is always needed to
stabilize the solution of compressible flow at sharp
discontinuities and moving fronts in the fluid. Possible
values:
none no artificial viscosity is applied. This

choice can lead to large oscillation in
flow quantities (velocity, pressure,
temperature) especially at sharp fronts
such as moving normal zones.

Lapidus Second-order artificial viscosity as
defined by Lapidus. The artificial
viscosity is proportional to the velocity
gradient and to the square of the element
size through an empirical coefficient.
This choice provides good smoothing for
velocity and pressure at fronts, but is not
effective for temperature fronts.

Upwind First-order upwind. The artificial
viscosity is proportional to the fluid
speed and the the element size, resulting
in optimal balancing of the hyperbolic
transport term at high Peclet number.
This choice is effective for velocity at
fronts and large temperature gradients,
but can lead to pressure oscillations
during transients.

ElementNodes I (-) Number of nodes per element. This is in the range of 2

(linear element) to 6 (quintic element). The same
number of nodes is used for all elements in an
automatic mesh.

ElementOrder I (-) Interpolation order of the element. This parameter

defines the order of the shape functions. At the moment
only Lagrangian finite elements are implemented,
meaning that the order of interpolation is equal to
ElementNodes-1. Any other choice results in a run-
time error.

EndTime R (s) End time to be reached with the simulation.

ErrorControl C (-) Switch for iterative error control during time

integration. Possible values:
none the time step is not iterated.

 Chapter 4 Input Reference 67

© CryoSoft, 2021

on at each time step a check is performed to verify
that the integration error is below the specified
Tolerance. If this is not the case the time step
is changed and the integration is tried again,
iterating until the tolerance error is reached
(default). ErrorControl on requires that an
ErrorEstimate method is provided (change
or halving) and that a StepEstimate is
allowed (smooth or power). The iteration can
significantly increase CPU time.

ErrorEstimate C (-) Flag for the method used to estimate the time

integration error control during a time step. Possible
values:
none no error estimate is provided
change the error is estimated based on the change of

the system solution during a time step
(default).

halving the error is estimated comparing the result
obtained with a time step with the result
obtained using two subsequent time steps of
halved magnitude. This method can
significantly increase CPU time.

H0Extrapolate C (-) Switch for higher-order extrapolation of the results of a

time step. The order of accuracy of the time stepping
method chosen is used to extrapolate the solution to a
higher order. Possible values:
none no higher-order extrapolation applied (default).
on at each time step the solution is extrapolated

using the result of a time step and of two
subsequent time steps of halved magnitude. The
higher-order extrapolation can significantly
increase CPU time and in pathological situations
it leads to numerical instabilities.

LogFile C (-) Log file name. This file contains the echo of the input

and the log of the run, including error messages. If not
given the default log file name is thea.log.

MaximumSize R (m) Maximum element size allowed during automatic mesh

adaptivity.

MaximumStep R (s) Maximum time step allowed during adaptive time

integration.

MeshAdaptivity C (-) Switch for mesh adaptivity. Possible values:

none the initial mesh is steady
on adaptive mesh refinement, as defined by

AdaptivityMethod

MeshType C (-) Flag defining the initial mesh type. Possible values:

uniform uniform initial mesh. The mesh consists of
NrElements elements with ElementNodes
nodes

68 Chapter 4 Input Reference

© CryoSoft, 2021

refined refined initial mesh. The mesh consists of a
total of NrElements elements with
ElementNodes nodes, of which
NrRefined elements are placed in a region
between BeginRefined and EndRefined

user user’s defined initial mesh. This option is
active but not documented in the present
version

MinimumSize R (m) Minimum mesh size allowed during automatic mesh

adaptivity.

MinimumStep R (s) Minimum time step allowed during adaptive time

integration.

NrElements I (-) Total number of elements in the mesh.

OutputStep R (s) Time step for storage of the results. The results are

written to the output binary file every OutputStep
seconds of simulation.

Restart Flag triggering a restart. If this key is present in this

block THEA reads the content of the specified
StorageFile until the last stored time is found. The
simulation begins then from this time. Storage of
results continues on StorageFile (appended). All
input will be ignored, except for EndTime,
ErrorControl, ErrorEstimate, LogFile,
MaximumStep, MinimumStep, OutputStep,
StepEstimate, TimeMethod and Tolerance.

StartTime R (s) Start time for the begin of the simulation.

StepEstimate I (-) Flag for the method used to estimate the time step

based on the time integration error and the requested
Tolerance. Possible values:
none no estimate of the time step is performed. The

time step taken is equal to the MinimumStep
specified.

smooth the time step is increased/decreased smoothly
by means of fixed percentage change (default).
A StepEstimate smooth requires that an
ErrorEstimate method is provided
(change or halving).

power the time step is increased/decreased scaling
the ratio of the time integration error to the
required Tolerance using the order of
accuracy of the time integration method. A
StepEstimate power requires that an
ErrorEstimate method is provided
(change or halving).

StorageFile C (-) Binary storage file name. This file contains the results

stored at the user’s specified times, and is used for
restarts or post-processing. If not given the default file
name is thea.store.

 Chapter 4 Input Reference 69

© CryoSoft, 2021

TimeMethod I (-) Flag for the selection of the time integration method.

Possible values:
EulerBackward Euler-backward, or full

implicit, or q=1 method. 1st
order accurate (default).

Galerkin Galerkin, or q=2/3 method, 1st
order accurate.

CrankNicolson Crank-Nicolson, or
trapezoidal, or q=1/2 method,
2nd order accurate.

BackwardDifference Two-stage backward
differences method, 2nd order
accurate.

ImplicitDifference Two-stage, implicit third order
differencing method, 3rd order
accurate (mildly unstable).

AdamsMoulton Adams-Moulton method, 3rd
order accurate (mildly
unstable)

Milne Milne method, 4th order
accurate (strongly unstable).

Tolerance R (-) Relative error to be achieved at each time step during

time integration, used to control the time step.

70 Chapter 4 Input Reference

© CryoSoft, 2021

Variables
The variables block is used to define user variables, with given name and type, stored
internally and shared among routines and procedures. The value of these user-defined
variables is accessible through a simple calling protocol in FORTRAN, which greatly
simplifies the preparation and parameterization of External Routines. Variables can be seen as
an extension of the standard input parameters, i.e. a facility for easy customization.

Variables are defined with the following syntax:

 VariableType VariableName Value

where VariableType is one of the types defined in the table below, VariableName is the name
assigned to the variable, and used later to retrieve its value, and Value is the value, of the
appropriate type, assigned to the variable.

Note We report below a short form of the variables syntax. For further reference, and for
explanations on how to access variables from customized External Routines, consult the
Variables manual [11]

VariableType Meaning

Character VariableName is a string, whose Value is read as a text,

delimited by apexes if the text contains a blank (not
recommended)

Integer VariableName is an integer, whose Value is read
according to FORTAN READ conventions

Real VariableName is a real, whose Value is read according
to FORTAN READ conventions (floating point or
scientific notation)

The variables defined in the variables block are accessed from the External Routines (and
elsewhere in subroutines and functions linked at run time) through calls to the function
getXVariable(VariableName,Value), where X stands for the variable type (i.e. C, I or R)
as described in [11].

 Chapter 5 Post-processing Language Reference 71

© CryoSoft, 2021

CHAPTER 5

Post-processing Language Reference

Structure and syntax
The post-processing command file is read by the post-processor interpreter of THEAPOST.
This parses and analyzes the syntax and the grammar of the various entries. In general the file
contains a series of commands that are executed in sequence during a post-processing session.

The structure and content of the post-processing command file is similar to that of the input
file already described in Chapter 4. In particular the following rules and conventions apply:

§ the identifier of a variable and the corresponding value(s) can appear at any position on

the line, they can carry on to several lines and must be separated by blanks or tabs;
§ the interpretation is case insensitive;
§ abbreviations of the keys are not allowed;
§ a character ‘;’ in any position of the command line indicates that the remainder of the line

must be considered as a comment. If the ‘;’ is the first character in a line, then the whole
line is ignored.

Parsing of the input file is finished as soon as an end-of-file or the stop command are found.
At this point the post-processor completes all pending print-outs and plots and closes the
session. For sample input files see Chapter 3.

Commands reference
Post-processing commands In this section we report the list of the postprocessing
commands and their meaning in alphabetical order. The keywords identifying commands and
options are given in Courier. Parameters and values for the commands are given in italic.

Note The selection of the items to plot or to print is done identifying first the target, i.e.
quantity to be plotted/printed, and then the support, i.e. the component over which the quantity
is defined. Each support must be followed by its identification number, coherent with the input
simulation file (e.g. Thermal 2 for the second thermal component defined in the input for the
simulation with THEA).

NewPage

Force a new plot page to be generated

72 Chapter 5 Post-processing Language Reference

© CryoSoft, 2021

OutputFile name

Set the name of the file for printed output (generated with the command Print). The
default file name for printed output is theapost.out. The file name can be changed
only before the first printed output is generated. The command is ignored if a printed
output has already been generated on another file or on the default file.

Plot target support1 support2 … supportn

Generate n plot frames of target for the specified support(s) as a function of time or
space according to the selection done (see the Select command).
Example: plot current electric 1 electric 2

Plot target1 support1 vs target2 support2

Plot target1 of support1 versus target2 of support2 at all times or space positions
selected (see the Select command).
Example: plot temperature hydraulic 1 vs temperature hydraulic 2

PostScriptFile name

Set the name of the file containing Postscript® output. The default file name for printed
output is theapost.ps. The file name can be changed only before the first plot is
generated. The command is ignored if a PostScript® output has already been generated
on another file or on the default file.

Print target1 target2 … targetn support1 support2 … supportm

Generate a table of n x m columns of the target(s) in the support(s) for every time or
space coordinate selected (see the Select command). Note that several targets and
supports can be printed simultaneously.
Example: print temperature pressure hydraulic 1 hydraulic 2

Query query option

List to standard output the input setting of query option, this can be one of the
BlockName identifiers as for the input simulation file (Model, Thermals,
Hydraulics, Electrics, Simulation) or All to list the complete input set.

Reset EndTime

Reset the end time for plots and listings to the last simulation time stored in the binary
storage file.

Reset EndX

Reset the end spatial coordinate for plots and listings to the Length as specified in the
simulation input.

Reset StartTime

Reset the start time for plots and listings to the first simulation time stored in the binary
storage file.

Reset StartX

 Chapter 5 Post-processing Language Reference 73

© CryoSoft, 2021

Reset the start spatial coordinate for plots and listings to 0.

Select Time t1 t2 … tn

Select from the binary storage file the results at times closest to the specified times. The
following Plot and Print commands will report the results as function of the spatial
coordinate at the n requested times. The selection is overridden by a following Select
command.

Select X x1 x2 … xn

Select from the binary storage file the results at the positions specified. Interpolation is
performed if the specified positions fall between nodes. The following Plot and
Print commands will report the results as function of the time at the n requested
positions. The selection is overridden by a following Select command.

Set Color on/off

Switch among color coding and dashed-line coding (B/W) for curves plotted for
different supports in the same plot frame, default is off (i.e. dashed-line coding).

Set EndTime t

Set the end time for plots and listings, default is the last time stored in the binary
storage file.

Set EndX x

Set the end spatial coordinate for plots and listings, default is the simulated Length.

Set PlotsPerPage n

Set the number of plots per page. The number n must be an integer equal to 1, 2, 3, 4 or
6, 6 being the default. Changing the number of plots per page will automatically
generate the plots to a new page

Set StartTime t

Set the start time for plots and listings, default is the first time stored in the binary
storage file.

Set StartX x

Set the start spatial coordinate for plots and listings, default is the simulated 0.

Stop

Stop execution and close the session. An end-of-file during parsing of the command
file results in the same effect.

StorageFile name

Set the name of the file containing the binary stored results from THEA. The default
file name for printed output is thea.store. Opening and reading of the binary storage
file is automatic after parsing the first command. Therefore this command, if present,
must be the first in the post-processing command file.

74 Chapter 5 Post-processing Language Reference

© CryoSoft, 2021

Supports and targets All plotting and print-out actions of the post-processor THEAPOST
need the selection of a target to be plotted/printed and the relative support. A target is a
variables or an auxiliary quantity computed in the simulation (e.g. temperature). A support is
the component on which the quantity is defined (e.g. thermal component number 2). Target
and support must be selected from a valid combination (e.g. temperature of thermal
component number 2). In the following table we report the keys for the valid combinations of
targets and supports. Note that a void support is allowed for variables that are overall cable
quantities (e.g. cable current). Any invalid selection or combination of target and support
results in a syntax error during parsing.

Support Target Units Meaning

 Current (A) Total cable current
 Height (m) Local elevation of the cable/channel
 Mesh (1/m) Mesh density
 Resistance (W) Total cable resistance
 TotalQExternal (W) Total external heat
 TotalQJoule (W) Total Joule heat
 TotalQTransverse (W) Total Joule heat generated by the current

transfer among thermal and electric
components

Electric Current (A) Current of the electric component
 DeltaV (V) Voltage difference between the electric

component and the last electric component
 ElectricField (V/m) electric field of the electric component
 QLongitudinal (W/m) Joule heat due to current transfer among

electric components and power due to
external longitudinal voltage source

 QTransverse (W/m) Joule heat due to current transfer among
electric components

 SpecificResistance (W/m) Resistance per unit length of the electric
component

 VExternal (V/m) External longitudinal voltage per unit
length on the electric component

 Voltage (V) Voltage of the electric component

Hydraulic Conductivity (W/m K) Thermal conductivity of the fluid in the

hydraulic component
 Cp (J/kg K) Specific heat of the fluid in the hydraulic

component
 Density (kg/m3) Density of the fluid in the hydraulic

component
 Friction (-) Friction factor of the flow
 HTC (W/m2 K) Heat transfer coefficient of the flow
 IntegratedQexternal (W) Total external heat in the hydraulic

component
 Massflow (kg/s) Massflow in the hydraulic component
 PrandtlNr (-) Prandtl number of the flow
 Pressure (Pa) Pressure in the hydraulic component
 QExternal (W/m) External heat flux per unit length in the

hydraulic component
 CExternal (W/m) Convection heat flux per unit length in the

hydraulic component

 Chapter 5 Post-processing Language Reference 75

© CryoSoft, 2021

 T0External (K) Convection wall temperature for the
hydraulic component

 ReynoldsNr (-) Reynolds number of the flow
 Temperature (K) Temperature of the hydraulic component
 Velocity (m/s) Velocity in the hydraulic component
 Viscosity (Pa/s) Viscosity of the fluid in the hydraulic

component

Thermal Current (A) Current in the thermal component
 Field (T) Magnetic field
 IntegratedQExternal (W) Total external heat in the thermal

component
 IntegratedQJoule (W) Total Joule heat in the thermal component
 IntegratedQTransverse(W) Total Joule heat in the thermal component

generated by the current transfer among
the electric components coupled

 Ic (A) Critical current of the superconducting
material in the thermal component

 Jc (A/m2) Critical current density of the
superconducting material in the thermal
component

 QExternal (W/m) External heat flux per unit length in the
thermal component

 NormalLength (m) Total normal length in the thermal
component

 QJoule (W/m) Joule heat flux per unit length in the
thermal component

 QVExternal (W/m) Heat per unit length in the thermal
component generated by the longitudinal
external voltage source in the electric
components coupled

 QTransverse (W/m) Joule heat per unit length in the thermal
component generated by the current
transfer among the electric components
coupled

 Resistance (W) Total resistance of the thermal component
 SpecificResistance (W/m) Resistance per unit length of the thermal

component
 Strain (-) Longitudinal strain
 Tc (K) Critical temperature of the

superconducting material in the thermal
component

 Tcs (K) Current sharing temperature of the
superconducting material in the thermal
component

 Temperature (K) Temperature of the thermal component
 Tmargin (K) Temperature margin in the thermal

component (Tcs-Temperature)

76 Chapter 6 External Routines

© CryoSoft, 2021

CHAPTER 6

External Routines

Although the modeling power of THEA is above that of any previously developed computer
code for the analysis of superconducting cables, situations may arise when you may like to
customize the code to use special functions, correlations, material properties or to read
measured quantities to provide initial or boundary data. To this purpose THEA provides a very
powerful customization mechanism through the External Routines, a wide set of procedures
that gives access to low level functionalities within the code. You should be well familiar with
FORTRAN programming, the operation of the code and input data before you use the
additional capability provided by External Routines.

Warning External Routines give unlimited access to the data structure used by the main
program. Improper programming of External Routines can therefore corrupt operation and
lead to evident or concealed malfunctions and generate manifest or hidden errors in the
computed results. IN NO EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR
UNAUTHORISED USE OF THIS FEATURE, even if advised of the possibility of such damages.

Linking external routines

The External Routines for THEA are FORTRAN functions packaged in a series of files
contained in the directory:

~/CryoSoft/usr/thea/code_x.x

(where x.x stands for the version you received) which you will have received with the
standard installation. In order to customize the code you will need to write modified version of
these files. We strongly suggest to create your own directory tree within the above directory,
and to modify only copies of the External Routines in order to be able to safely retrieve the
standard version at your wish. Once the modified routines are ready, you will need to compile
them and link them to the standard part of the code, to produce a customized version of the
executable of THEA. For this purpose you can use the standard makefile

~/CryoSoft/etc/thea.make

that can be copied and modified. Once more we strongly suggest that you modify only a copy
of the standard makefile. Refer to the installation guide [4] for more details on the use of the
makefiles, compilation and link-editing of the program.

 Chapter 6 External Routines 77

© CryoSoft, 2021

Calling protocol

The following sections describe the calling protocol for the External Routines. For clarity we
have subdivided the description in sections that are either associated with the type of function
or with the type of component involved. The convention followed for the definition of the
FORTRAN type of variables is the same as described in Chapter 4.

The External Routines for THEA are defined as FORTRAN functions. The function
returns a single real or integer value that must be computed by the user within the routine.
All parameters passed to the function must be regarded as input parameters and cannot be
modified.

Note FORTRAN unit numbers above 50 are reserved by the CryoSoft library for internal
use, and should not be allocated for read/write operations. Any allocation or use of units above
50 can result in I/O errors or malfunctions.

Boundary conditions
The following routines are used to set boundary conditions for thermal, hydraulic or electric
components. All THEA simulations require specification of both left and right boundary
conditions. In all routines below the two boundaries are identified as follows:

Boundary = 1 left boundary
Boundary = 2 right boundary

The routines described in this section are contained in the file userBoundary.f.

real function UserSTBoundary (Time, Boundary, Thermal, Tboundary)

Returns the boundary temperature (K) for the thermal component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=temperature.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Thermal I (-) index of the thermal component
TBoundary R (K) boundary temperature as read-in from input

real function UserSQBoundary (Time, Boundary, Thermal, Qboundary)

Returns the boundary heating power (W) on the thermal component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=heat.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Thermal I (-) index of the thermal component
QBoundary R (W) boundary heat flux as read-in from input

78 Chapter 6 External Routines

© CryoSoft, 2021

real function UserHTBoundary (Time, Boundary, Hydraulic, Tboundary)

Returns the boundary temperature (K) for the hydraulic component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=reservoir.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Hydraulic I (-) index of the hydraulic component
TBoundary R (K) boundary temperature as read-in from input

real function UserpBoundary (Time, Boundary, Hydraulic, pBounbdary)

Returns the boundary pressure (Pa) for the hydraulic component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=reservoir.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Hydraulic I (-) index of the hydraulic component
pBoundary R (Pa) boundary pressure as read-in from input

real function UsermdotBoundary (Time, Boundary, Hydraulic,
 mdotBoundary)

Returns the boundary temperature (K) for the hydraulic component. At present not called.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Hydraulic I (-) index of the hydraulic component
mdotBoundary R (kg/s) boundary massflow as read-in from input

real function UserIBoundary (Time, Current, Boundary, Electric,
 IBoundary)

Returns the boundary current (A) for the electric component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=current.

Parameter Type Units Meaning

Time R (s) time
Current R (s) total operating current
Boundary I (-) boundary index (left/right boundary)
Electric I (-) index of the electric component
IBoundary R (A) boundary current as read-in from input

 Chapter 6 External Routines 79

© CryoSoft, 2021

real function UserVBoundary (Time, Boundary, Electric, VBoundary)

Returns the boundary voltage (V) for the electric component. Called if
BoundaryConditions(Boundary)=user and BoundaryType=voltage.

Parameter Type Units Meaning

Time R (s) time
Boundary I (-) boundary index (left/right boundary)
Electric I (-) index of the electric component
VBoundary R (V) boundary voltage as read-in from input

Cable current
The following routine is used to set the total cable current as a function of time. The routine
described in this section is contained in the file userCurrent.f.

real function UserCurrent (Time, Resistance, InitialCurrent,
 TauDetection, TauDump)

Returns the total cable current (A). Called if CurrentModel=user.

Parameter Type Units Meaning

Time I (s) time
Resistance R (W) total cable resistance
InitialCurrent R (A) initial cable current as from input
TauDetection R (s) detection time constant as from input
TauDump R (s) dump time constant as from input

Electric components
The electric characteristics of the electric components are customized through the External
Routines described in this section. Two electrical characteristics are needed, namely the
transverse conductance cij and the mutual inductance lij per unit length for any couple (i,j) of
electric components. Both can be defined as a function of position. The values returned for the
conductance (in 1/Wm) and inductance (in H/m) are assembled in two matrices. Note that the
two matrices of transverse conductance and inductance cannot to be singular. The user should
take care that this is the case.

The routines described in this section are contained in the file userElectrics.f

80 Chapter 6 External Routines

© CryoSoft, 2021

real function UserConductance (Electric1, Electric2, X, Conductance)

Returns the conductance per unit length (1/Wm) between any two components. Called if
Links_Model=user.

Parameter Type Units Meaning

Electric1 I (-) index of the first electric component
Electric2 I (-) index of the second electric component
X R (m) nodal coordinate
Conductance R (1/Wm) conductance as from input

real function UserInductance (Electric1, Electric2, X, Self, Mutual)

Returns the inductance per unit length (H/m) between any two components. Called if
Links_Model=user

Parameter Type Units Meaning

Electric1 I (-) index of the first electric component
Electric2 I (-) index of the second electric component
X R (m) nodal coordinate
Self R (H) self inductance as from input
Mutual R (H) mutual inductance as from input

real function UserResistance (Electric, X, Resistance, I0, Current)

Returns the longitudinal resistance per unit length (W/m). Called if RModel=user.

Parameter Type Units Meaning

Electric I (-) index of the electric component
X R (m) nodal coordinate
Resistance R (W/m) resistance per unit length as from input
I0 R (A) initial current in the electric component (IInitial)
Current R (A) current

Properties of fluids
The thermophysical properties of the fluids can be customized using the routines described in
this section. These routines are called if the fluid name used in the hydraulic block is not
within the set of standard fluids. The properties computed are density r, specific heat at
constant pressure Cp, specific heat at constant volume Cv, specific enthalpy h, specific
entropy s, viscosity n, thermal conductivity K, sound speed c, Gruneisen factor f, superfluid
effective conductivity function F. All properties are computed as a function of pressure p and
temperature T

The routines described in this section are contained in the file userFluids.f

 Chapter 6 External Routines 81

© CryoSoft, 2021

real function UserFluidDensity (FluidName,p,T)

Returns the density of the fluid (kg/m3). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidCp (FluidName,p,T)

Returns the specific heat at constant pressure of the fluid (J/kg K). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidCv (FluidName,p,T)

Returns the specific heat at constant volume of the fluid (J/kg K). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidEnthalpy (FluidName,p,T)

Returns the specific enthalpy of the fluid (J/kg). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidEntropy (FluidName,p,T)

Returns the specific entropy of the fluid (J/kg). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

82 Chapter 6 External Routines

© CryoSoft, 2021

real function UserFluidViscosity (FluidName,p,T)

Returns the dynamic viscosity of the fluid (Poise). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidConductivity (FluidName,p,T)

Returns the thermal conductivity of the fluid (W/m K). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidSound (FluidName,p,T)

Returns the sound speed of the fluid (m/s). Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserFluidGruneisen (FluidName,p,T)

Returns the Gruneisen factor of the fluid (-), defined as r/T (dT/dr)s. Called if Fluid=user.

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

real function UserSuperFluid (FluidName,p,T)

Returns the superfluid thermal conductance function of the fluid (W3/m5 K). Called if
Fluid=user. Only applies to superfluid conditions (should be set to zero)

Parameter Type Units Meaning

FluidName C (-) name of the fluid
p R (Pa) fluid pressure
T R (Pa) fluid temperature

 Chapter 6 External Routines 83

© CryoSoft, 2021

Friction factor
The routine described in this section allows the customization of the friction factor as a
function of the Reynolds number, position and the hydraulic component. The friction factor f
is defined following the US convention, so that the pressure drop along a channel is given by:

where symbol notation is conventional. The friction factor can be defined for all hydraulic
components independently.

The routine is contained in the file userFriction.f.

real function UserFrictionFactor (Hydraulic, X, ReynoldsNr,
 FrictionFactor)

Returns the friction factor (-) of the component. Called if fModel=user.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
ReynoldsNr R (-) Reynolds number
FrictionFactor R (-) friction factor as from input

Heating of hydraulic components
The heating of the hydraulic components can be defined using the routine described in this
section. The heating power density (in W/m) or the wall temperature (in K) are defined as a
function of space and time for all hydraulic components independently.

The routines are contained in the file userHHeating.f.

real function UserHHeating (Time, Hydraulic, X, Temperature, Q,
 Q_XBegin, Q_XEnd, Q_Tau)

Returns the heat flux (W/m) for the component Called if QModel=user.

Parameter Type Units Meaning

Time I (s) time
Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
Temperature R (K) temperature of the hydraulic component at the given
 coordinate
Q R (W/m) heat flux as from input
Q_XBegin R (m) start coordinate of the heating space, as from input
Q_XEnd R (m) end coordinate of the heating space, as from input
Q_Tau R (s) end heating time, as from input

∂p
∂x

= −2 f ρv
2

Dh

84 Chapter 6 External Routines

© CryoSoft, 2021

real function UserHT0 (Time, Hydraulic, X, Temperature, T0, T0_WP,
 T0_XBegin, T0_XEnd)

Returns the wall temperature (K) for the component Called if CModel=user.

Parameter Type Units Meaning

Time I (s) time
Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
Temperature R (K) temperature of the hydraulic component at the given
 coordinate
T0 R (K) wall temperature, as from input
T0_WP R (m) wall wetted perimeter, as from input
T0_XBegin R (m) start coordinate of the convection space, as from input
T0_XEnd R (m) end coordinate of the convection space, as from input

Heat transfer coefficient
The routine described in this section allows the customization of the heat transfer coefficient
as a function of the Reynolds number, fluid state, average wall temperature, position and the
hydraulic component. The friction factor can be defined for all hydraulic components
independently.

The routine is contained in the file userHTC.f.

real function Userhtc (Hydraulic, X, Temperature, Pressure, Density,
 Twall, Dh, ReynoldsNr, HTC)

Returns the heat transfer coefficient (W/m2K) of the component. Called if hModel=user.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
Temperature R (K) temperature
Pressure R (Pa) pressure
Density R (kg/m3) density
Twall R (K) average wall temperature
Dh R (m) hydraulic diameter
ReynoldsNr R (-) Reynolds number
HTC R (W/m2K) heat transfer coefficient as from input

 Chapter 6 External Routines 85

© CryoSoft, 2021

Local elevation
The following routine is used to set the local elevation (height) of the components as a
function of position. The height can be set for each hydraulic component in the cable. The
routine described in this section is contained in the file userHeight.f.

real function UserHeight (X, Height)

Returns the height (m) of the hydraulic components. Called if HeightModel=user.

Parameter Type Units Meaning

X I (m) coordinate
Height R (m) array containing the left and right value of the
 elevation as from input

Hydraulic components
The geometric characteristics of the hydraulic components can be customized through the
External Routines described in this section. In particular the cross section of the channel and
its hydraulic diameter can be set for each hydraulic component as a function of position.

The routines described in this section are contained in the file userHydraulics.f

real function UserHArea (Hydraulic, X, Area)

Returns the area (m2) of the component. Called if Model=user.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
Area R (m2) area as from input

real function UserDh (Hydraulic, X, Dh)

Returns the hydraulic diameter (m) of the component. Called if Model=user.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
Dh R (m) hydraulic diameter of the component, as from input

Initial conditions
The following routines are used to set initial conditions for the three type of components. The
initial conditions are the starting point for a simulation. Care should be taken that they are
physically consistent and that they follow the boundary conditions. Numerical instabilities can
be generated should this not be the case.

86 Chapter 6 External Routines

© CryoSoft, 2021

Different variables must be set depending on the type of component. Thermal components
require setting of the temperature, hydraulic components require the pressure, temperature and
massflow, and electric components require the current. The setting of the variables is required
at all locations X within the domain of analysis.

The routines described in this section are contained in the file userInitial.f.

real function UserSTInitial (Thermal, X, TInitial)

Returns the initial temperature (K) of the thermal component. Called if
InitialCondition=user in the Thermals block.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
X R (m) nodal coordinate
TInitial R (K) initial temperature as from input

real function UserHTInitial (Hydraulic, X, TInitial)

Returns the initial temperature (K) of the hydraulic component. Called if
InitialCondition=user in the Hydraulics block.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
TInitial R (K) initial temperature as from input

real function UsermdotInitial (Hydraulic, X, mdotInitial)

Returns the initial mass flow (kg/s) of the hydraulic component. Called if
InitialCondition=user in the Hydraulics block.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
mdotInitial R (kg/s) initial massflow as from input

real function UserpInitial (Hydraulic, X, pInitial)

Returns the initial pressure (Pa) of the hydraulic component. Called if
InitialCondition=user in the Hydraulics block.

Parameter Type Units Meaning

Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
pInitial R (Pa) initial pressure as from input

 Chapter 6 External Routines 87

© CryoSoft, 2021

real function UserIInitial (Electric, X, IInitial)

Returns the initial current (A) of the electric component. Called if InitialCondition=user
in the Electrics block.

Parameter Type Units Meaning

Electric I (-) index of the electric component
X R (m) nodal coordinate
IInitial R (A) initial current as from input

88 Chapter 6 External Routines

© CryoSoft, 2021

Links
The characteristics of the thermal/hydraulic links can be defined through the External Routines
described in this section. The links among thermal elements are defined by thermal resistances
that can be function of position. The links among hydraulic components depend on the wetted
perimeter of two channels (i.e. the common perimeter) and on the degree of perforation of the
common wall. Both can be defined as functions of position. Links among thermal and
hydraulic components depend on the wetted perimeter, which can be defined as a function of
position.

The corresponding routines are contained in the file userLinks.f.

real function UserThermalResistance (Thermal1, Thermal2, X,
 ThermalResistance)

Returns the thermal resistance (K m/W) between two components. Called if
Links_Model=user in the thermals block.

Parameter Type Units Meaning

Thermal1 I (-) index of the first thermal component
Thermal2 I (-) index of the second thermal component
X R (m) nodal coordinate
ThermalResistance R (K m/W) thermal resistance as from input

real function UserPerforation (Hydraulic1, Hydraulic2, X, Perforation)

Returns the perforation (m) of two components. Called if Links_Model=user in the
hydraulics block.

Parameter Type Units Meaning

Hydraulic1 I (-) index of the first hydraulic component
Hydraulic2 I (-) index of the second hydraulic component
X R (m) nodal coordinate
Perforation R (m) perforation factor as from input

real function UserWettedPerimeter (Hydraulic1, Hydraulic2, X,
 WettedPerimeter)

Returns the wetted perimeter (m) between two components. Called if Links_Model=user in
the hydraulics block.

Parameter Type Units Meaning

Hydraulic1 I (-) index of the first hydraulic component
Hydraulic2 I (-) index of the second hydraulic component
X R (m) nodal coordinate
WettedPerimeter R (m) wetted perimeter as from input

 Chapter 6 External Routines 89

© CryoSoft, 2021

real function UserSHWettedPerimeter (Thermal, Hydraulic, X,
 WettedPerimeter)

Returns the wetted perimeter (m) between thermal and hydraulic component. Called if
S_H_Links_Model=user.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
Hydraulic I (-) index of the hydraulic component
X R (m) nodal coordinate
WettedPerimeter R (m) wetted perimeter as from input

Magnetic field
The following routine is used to set the magnetic field in the cable as a function of position,
time and current. The magnetic field can be set for each thermal component in the cable.

The corresponding routines are contained in the file userMagneticField.f.

real function UserMagneticField (Time, Thermal, X, Current,
 InitialCurrent, MagneticFieldSS,
 MagneticFieldTr)

Returns the magnetic field (T) of the component. Called if MagneticFieldModel=user.

Parameter Type Units Meaning

Time I (s) time
Thermal I (-) index of the thermal component
X I (m) coordinate
Current R (A) cable current as from input
InitialCurrent R (A) initial cable current as from input
MagneticFieldSS R (T) array containing the left and right value of the
 steady-state magnetic field as from input
MagneticFieldTr R (T) array containing the left and right value of the transient
 magnetic field as from input

Heating of thermal components
The heating of the thermal components can be defined using the routine described in this
section. The heating power density (in W/m) is defined as a function of space and time for all
thermal components independently.

The routine is contained in the file userSHeating.f.

90 Chapter 6 External Routines

© CryoSoft, 2021

real function UserSHeating (Time, Thermal, X, Temperature, Q,
 Q_XBegin, Q_XEnd, Q_Tau)

Returns the heat flux (W/m) of the component. Called if QModel=user.

Parameter Type Units Meaning

Time I (s) time
Thermal I (-) index of the thermal component
X R (m) nodal coordinate
Temperature R (K) temperature of the thermal component at the given
 coordinate
Q R (W/m) heat flux as from input
Q_XBegin R (m) start coordinate of the heating space, as from input
Q_XEnd R (m) end coordinate of the heating space, as from input
Q_Tau R (s) end heating time, as from input

Properties of solid materials
The thermophysical and electrical properties of the solid materials can be customized using the
routines described in this section. These routines are called if the material name used in a
thermal component is not within the set of standard materials, or in the case that the thermal
model is explicitly set to user. The properties computed are thermal conductivity K, heat
capacity C, density r, electrical resistivity h, critical current density Jc, critical temperature
Tc, current sharing temperature Tcs. The routine UserMaterialType in addition identifies
the type of material. The types allowed are reported in the table below. The properties used for
the simulation depend on the type of material, as also defined in the table below where a
symbol ✔ indicates that the corresponding property is needed.

Material type K C r h Jc Tc Tcs
SuperConductor ✔ ✔ ✔ ✔ ✔ ✔
Alloy ✔ ✔ ✔ ✔
Metal ✔ ✔ ✔ ✔
Insulator ✔ ✔ ✔
Composite ✔ ✔ ✔

Note In any case for a user’s defined material all routines below must be provided.
Depending on the type of material (SuperConductor, Alloy, Metal, Insulator or Composite)
some of the routines can return dummy values (e.g. zero critical current density if the material
is not a superconductor).

The routines described in this section are contained in the file userSolids.f

 Chapter 6 External Routines 91

© CryoSoft, 2021

character*72 function UserMaterialType (MaterialName)

Returns the type of the material: “SuperConductor”, “Alloy”, “Metal”, “Insulator” or
“Composite”. Called for user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material

real function UserConductivity (MaterialName, X, Temperature, B, RRR)

Returns the thermal conductivity (W/m K) of the material. Called if the Model=user or for
user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
Temperature R (K) temperature
B R (T) magnetic field
RRR R (-) residual resistivity ratio

real function UserCriticalCurrent (MaterialName, X, Temperature, B,
 Epslon)

Returns the critical current density (A/m2) of the material. Called if the Model=user or for
user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
Temperature R (K) temperature
B R (T) magnetic field
Epslon R (-) longitudinal strain

real function UserCriticalTemperature (MaterialName, X, B, Epslon)

Returns the critical temperature (K) of the material. Called if the Model=user or for user
specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
B R (T) magnetic field
Epslon R (-) longitudinal strain

92 Chapter 6 External Routines

© CryoSoft, 2021

real function UserCurrentSharing (MaterialName, X, B, Jop, Epslon)

Returns the current sharing temperature (K) of the material. Called if the Model=user or for
user specified materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
B R (T) magnetic field
Jop R (A/m2) operating current density
Epslon R (-) longitudinal strain

real function UserDensity (MaterialName, X, Temperature)

Returns the density (kg/m3) of the material. Called if the Model=user or for user specified
materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
Temperature R (K) temperature

real function UserResistivity (MaterialName, X, Temperature, B, RRR)

Returns the resistivity (W m) of the material. Called if Model=user or for user specified
materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
Temperature R (K) temperature
B R (T) magnetic field
RRR R (-) residual resistivity ratio

real function UserSpecificHeat (MaterialName, X, Temperature, B, Tcs,
 Epslon)

Returns the specific heat (J/kg K) of the material. Called if Model=user or for user specified
materials.

Parameter Type Units Meaning

MaterialName C (-) name of the material
X R (m) nodal coordinate
Temperature R (K) temperature
B R (T) magnetic field
Tcs R (K) current sharing temperature
Epslon R (-) longitudinal strain

 Chapter 6 External Routines 93

© CryoSoft, 2021

Longitudinal strain
The following routine is used to set the longitudinal strain on the cable as a function of
position, time and current. The strain can be set for each thermal component in the cable.

The routine described in this section is contained in the file userStrain.f.

real function UserStrain (Time, Thermal, X, Current, InitialCurrent,
 StrainSS ,StrainTr)

Returns the longitudinal strain (-) of the component. Called if StrainModel=user.

Parameter Type Units Meaning

Time I (s) time
Thermal I (-) index of the thermal component
X I (m) coordinate
Current R (A) cable current as from input
InitialCurrent R (A) initial cable current as from input
StrainSS R (T) array containing the left and right value of the
 steady-state longitudinal strain as from input
StrainTr R (T) array containing the left and right value of the transient
 longitudinal strain as from input

Thermal components
The External Routines described in this section can be used to customize the characteristics of
the thermal components. They are called when the thermal model is set to user. General
characteristics of a component, such as its cross section, RRR or the parameters for the
superconducting transition, can be varied as a function of position.

The routines described in this section are contained in the file userThermals.f:

real function UserE0 (Thermal, X, E0)

Returns E0 (V/m) of the component. Called if Model=user.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
X R (m) nodal coordinate
E0 R (V/m) E0 as from input

integer function UsernPower (Thermal, X, nPower)

Returns n (-) of the component. Called if Model=user.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
X R (m) nodal coordinate
nPower I (-) nPower as from input

94 Chapter 6 External Routines

© CryoSoft, 2021

real function UserRRR (Thermal, MaterialName, X, RRR)

Returns the residual resistivity ratio (-) of the material. Called if Model=user.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
MaterialName C (-) name of the material
X R (m) nodal coordinate
RRR R (-) residual resistivity ratio as from input

real function UserSArea (Thermal, MaterialName, X, Area)

Returns the area (m2) of the component. Called if Model=user.

Parameter Type Units Meaning

Thermal I (-) index of the thermal component
MaterialName C (-) name of the material
X R (m) nodal coordinate
Area R (m2) area as from input

Voltage source in electric components
The voltage source in the electric components can be defined using the routine described in
this section. The longitudinal voltage density (electric field in V/m) is returned as a function of
space and time for all electric components independently.

The routine is contained in the file userVoltage.f.

real function UserVoltage (Time, Electric, X, Voltage, V_XBegin,
 V_XEnd, V_Tau)

Returns the voltage (V/m) of the component. Called if Links_Model=user

Parameter Type Units Meaning

Time I (s) time
Electric I (-) index of the electric component
X R (m) nodal coordinate
Voltage R (V/m) voltage as from input
V_XBegin R (m) start coordinate for setting the voltage as from input
V_XEnd R (m) end coordinate for setting the voltage as from input
V_Tau R (s) end time for setting the voltage as from input

 Chapter 7 Troubleshooting and Errors 95

© CryoSoft, 2021

CHAPTER 7

Troubleshooting and Errors

Error messages are reported to the output ASCII log file and to the standard output. The form
of a typical error report is the following

ERROR in procedure <procedure name>: <error message>
called by <calling procure> at position <n>
called by <calling procure> at position <m>
......

where <procedure name> is the name of the routine where the error occurred and <error
message> reports a short description of the error situation. This line is followed by the trace of
the <calling procedure> up to the main program. In case of queries about error conditions,
please take care to report error messages completely, including the calling trace.

Errors can be generated at four different levels in the code:

§ input parsing and syntax errors;
§ data consistency errors;
§ runtime errors;
§ internal consistency errors.

Input parsing errors
Input parsing and syntax errors are detected during the interpretation of the input file. They
indicate that the variable naming, the command syntax or the type and number of numerical
data in the input file are incorrect. Verify syntax in the input file in this case.

Data consistency errors
Data consistency errors are detected when input data are not coherent among themselves and
would result in a model that cannot be analyzed. Typical cases are selection of incompatible
options, or input data out-of-range. Verify the consistency of the input data in this case.

Runtime errors
Runtime errors are detected either when the solver enters a physical or numerical instability, or
when the size of the problem exceeds the maximum allowed. Physical instabilities can be
triggered by improper setting of physical conditions (e.g. initial conditions or boundary
conditions), excessive transient conditions (e.g. very large heating powers or pressure

96 Chapter 7 Troubleshooting and Errors

© CryoSoft, 2021

differences), or because of incorrect values from fluid and solid properties. Verify input
conditions in this case.

Numerical instabilities can be triggered by the use of very large time steps, coarse mesh, and
algorithms with little to no damping. In case of numerical instability, attempt at reducing the
maximum time step (value of MaximumStep in input), reducing the allowed integrator
tolerance (value of Tolerance in input), or choosing a time integration method that is more
robust (choose EulerBackward as TimeMethod).

The maximum size of the problem that can be solved is determined by the requested memory
allocation in the FORTRAN include file:

~/CryoSoft/src/thea/code_x.x/includes/parameters.inc

where a number of parameters are set statically. The main parameters affecting memory
allocation are the following, with the associated meaning:

Parameter Meaning

MaxSComp maximum number of thermal components
MaxMatOfSComp maximum number of materials in a thermal component
MaxHComp maximum number of hydraulic components
MaxEComp maximum number of electric components
MaxElements maximum number of finite elements in the mesh

The additional parameters MaxWork4 and MaxWork8 are set to accommodate the bandwidth
system matrix in the equation solver, and may need adjustment in case the PDE solver needs
more work space.

The version of the code you received can be modified by adjusting these parameters as
desired. The code then needs to be compiled and link-edited as explained in the installation
manual you received [4].

Warning Modifying the code dimensioning parameters requires understanding of the
memory allocation for the system variables, and of the internal structure of the code. IN NO
EVENT WILL CRYOSOFT BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY AUTHORISED OR UNAUTHORISED USE OF THIS
FEATURE, even if advised of the possibility of such damages.

Internal consistency errors
Internal consistency errors indicate corruption of the internal data structure of the program. An
internal consistency error cannot be generated using the standard program and reading data
from input only. However, they can be detected in case that customized External Routines
with improper data handling are used. They diagnose a severe fault within the code. If you are
using External Routines, verify their consistency with the calling protocol. In case you are not
using External Routines, report internal consistency errors to us.

 Chapter 8 References 97

© CryoSoft, 2021

CHAPTER 8

References

[1] Bottura L., Modelling Stability in Superconducting Cables, Physica C, 310, 316-326,

1998.

[2] Bottura L., Rosso C., Breschi M., A General Model For Thermal, Hydraulic and Electric

Analysis of Superconducting Cables, Cryogenics, 40, 617-626, 2000.

[3] Bottura L., Rosso C., Thermal, Hydraulic and Electric Analysis of Superconducting

Cables: Model Description, CryoSoft Internal Note CRY0/00/017, 2000.

[4] CryoSoft Installation Manual, Version 8.2, 2021.

[5] Krempaski L., Schmidt C., Experimental Verification of “Supercurrents” in

Superconducting Cables Exposed to AC-Fields, Cryogenics, 39, 23-33, 1999.

[6] Anghel A., QUELL Experiment: Analysis and Interpretation of the Quench Propagation

Results, Cryogenics, 38, 459-466, 1998.

[7] CryoSoft Solids Manual, Version 4.0, 2021.

[8] CryoSoft Fluids Manual, Version 3.0, 2002.

[9] Bottura L., Friction Factor Correlations, CryoSoft Internal Note CRY0/98/009, 1998.

[10] Bottura L., Heat Transfer Correlations, CryoSoft Internal Note CRY0/98/010, 1998.

[11] CryoSoft Variables Manual, Version 1.0, 2016.

[12] D. Bessette, et al, Test Results From the PF Conductor Insert Coil and Implications for

the ITER PF System, IEEE Trans. Appl. Sup., 19(3), 1525-1531, 2009.

