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Summary

This note describes a generic, multi-component and multi-channel model for general, consistent and
simultaneous analysis of thermal, electric and hydraulic transients in superconducting cables. The
model is devised for most general situations, but reduces in limiting cases to commonly known models
without loss of efficiency. In the note we give details on the governing equations and describe the
solution method used to deal with the high numerical complexity of the coupled field problem.

1 Background

The transient behavior of superconducting cables is determined by intrinsically
coupled thermal, hydraulic and electric phenomena. The coupling among the
three fields makes analytical treatment of transient response of
superconductors exceedingly difficult. This is in particular true in kA-class, low-
Tc superconducting cables, where the coupling among the thermal, hydraulic
and electric phenomena takes place on comparable time scales [1]. On the other
hand understanding of the coupled behavior is presently recognized as
extremely important to guarantee optimal design at proper operating margin.
Furthermore new applications of high-Tc materials, e.g. power transmission
cables, call for an effort similar to the one already performed for low-Tc
material to understand and control thermal and electric performance. Present
models for thermal, hydraulic or electric analysis of cables are not consistent as
they generally lack proper coupling. In addition they have a specific and
restricted field of application, and are difficult to extend parametrically to
different cable geometries or operating conditions.

This note describes the general model that we have developed for consistent
and easy parametric analysis of superconducting cables. The model can be used
for a large variety of cable configurations and operating conditions. As model
we define the set of Partial Differential Equations (PDE’s) that describe the
evolution of the state variables of the coupled system. In the following sections
we present the concept of the model and the equations forming the system of
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PDE’s, detailing their derivation. We put then the system of equations in a form
suitable to numerical treatment, and we finally describe the solution strategy
which is based on a finite element discretization in space and finite differences
in time.

2 Model Generalities

To derive the model for the coupled analysis of thermal, hydraulic and electric
transients we ideally subdivide a superconducting cable in an assembly of
components. Components can be of thermal, hydraulic or electric nature. Thermal
components are all the solid cable components, structures, electrical barriers
where the state is described by the temperature field. Hydraulic components
are the cooling channels in a cable, whose state is described by the flow
velocity and by the temperature and pressure of the coolant. Electric
components are all current carrying elements, either super- or normal-
conducting, whose state is defined by the current field. Thermal and electric
domains can overlap, i.e. the same physical entity (e.g. a superconducting strand)
can be modelled both as a thermal and an electric component.

We make the assumption that a superconducting cable has a large ratio of
length to cross sectional dimension, so that all components can be considered as
1-D with good approximation. This is equivalent to saying that the state of each
component is uniform in the two dimensions in the cable cross section, and can
only change along the cable.

An example of subdivision of a cable in a set of components is given in Fig.1
for a fusion cable-in-conduit conductor. We have identified as thermal
components the cable bundle and the jacket. The hydraulic components are the
interstitial helium flow in the cable sub-units and the central cooling channel.
No electric components have been used, assuming a uniform currnt
distribution within the cable. This subdivision results in a model that is
identical to the one described in [8]. In Fig. 2 we show an analogous
subdivision for an accelerator Rutherford cable. In this case the thermal and
electric components are coincident with the single strands, while the hydraulic
component is a single and large channel that models the helium bath in which
the cable operates.

Both examples above are arbitrary, but are suited to illustrate the meaning of
the subdivision process. In addition they suggest that it is possible to take into
account gradients in the cable cross section by subdividing the cable in an
appropriate number of independent components. Therefore, although the
model is based on a 1-D assumption, the 3-D temperature, flow and current
fields in the cable can be topologically described by the equivalence with the
assembly of all components.
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Figure 1. Cable-in-conduit conductor with central cooling hole for fusion applications and
its schematic representation in term of thermal and hydraulic components. No electric
component has been considered in this representation. The strands in he cable are assumed at
uniform temperature and uniform current distribution, and are coupled to the jacket through
thermal resistance. Two cooling channels are modelled separately, coupled among themselves
through mass and heat transfer. Heat transfer couples the strand and the jacket to the helium in
the cable bundle.
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Figure 2. Accelerator Rutherford cable and its schematic representation in term of
thermal, hydraulic and electric components. Single strands are modelled using both thermal
and electric components coupled through current dependent heating and temperature
dependent resistance. For simplicity only 4 electric and thermal components are shown. The
electric components are coupled among themselves through inductance and transverse
conductance, while the thermal components are components are coupled through heat
resistances. All thermal components in addition are coupled to a single hydraulic components
modelling a helium bath through heat transfer.
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Once the subdivision process has taken place, our approach is to define the
partial differential equations that govern the evolution of the state variables for
each component in the cable. In the thermal components the temperature field is
described by a set of diffusion equations. For the hydraulic components the flow
velocity, pressure and temperature are described by mass, momentum and
energy conservation balances. Finally the current behaviour in the set of electric
components is described by a set of semi-continuum circuital equations.

One independent PDE is written for each state variable in a component. The
assembly of all PDE’s gives the system to be integrated in time and space
starting from a given initial condition and with a given set of boundary
conditions. The components are coupled to take in proper account the interaction
among the temperature, flow and current fields. The coupling can take place
among components of the same type (e.g. thermal coupling among the thermal
components, inductive coupling among the electric components) as well as
among components of different type (e.g. heat exchange between thermal and
hydraulic components). Coupling is either explicit, through relations among
the state variables, or implicit, through the dependence of the material
properties in a domain on the value of the state variables of other domains.

3 Thermal Components

The thermal components of a superconducting cable can be of various nature:
superconducting strands, structural components, electrical barriers, insulators
and others. All these material can generate Joule heat, transport heat by
conduction, and exchange heat at their mutual interface and at the interface
with a cooling medium. Assuming that the transverse dimension of each
component is small with respect to its length we can write a general 1-D heat
transport equation for each component i:
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where Ai is the cross section of the component, in principle a function of
position, ρi its density, Ci the specific heat, ki the thermal conductivity and Ti the
temperature. The total number of components is N. We allow each component
to have an internal structure, assuming that the temperature within the cross
section of the component is constant. This is for instance the case of a
superconducting strand composed of superconducting filaments embedded in a
stabilizer matrix. A schematic representation of a component with an internal
structure is given in Fig. 3.
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Figure 3. Schematic representation of a thermal component with several materials
forming its internal structure. In the picture a Nb3Sn single strand is ideally subdivided in its
single materials (Nb3Sn, copper, bronze, traces of other materials). The materials in the
component have the same temperature. For the subdivision the shape of the cross section is not
important, only the relative composition is of relevance in the calculation of the homogeneised
properties.

For each component the homogenised characteristics, used in Eq. (3.1), are
defined based on the following rules:
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where Mim is the number of different materials within the component i , and
superscript m indicates the characteristics of each material. In addition to the
rules above, it is useful to introduce here the rule for the homogeneisation of
the electrical resistivityηi, to be used later in the calculation of the Joule
heating:
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Heat is either generated by an external source iq′& , it is due to the Joule heat

iJouleq ,′&  if the component is carrying a current, is generated by the current
circulating among components through the transverse electrical resistance

itransverseq ,′& , or is exchanged with other thermal components or coolants as
modeled by the last two sums in Eq. (2.1).  In the case of heat exchange among
components we have introduced the thermal resistance per unit length Hij

between components i and j (this last at temperature Tj). The heat exchanged
with H different coolant channels depends on the wetted perimeter pih and heat
transfer coefficient hih with the coolant flowing in channel h at temperature Th.
We will discuss the details of the heat transfer coefficient when dealing with the
model for the hydraulic components.

3.1 Joule Heat

The Joule heat term depends on the current carried by the cable component Ii

and on the electric field Ei developed along its length. In general terms we can
write that:

iiiJoule EIq =′ ,& (3.7)

where, for consistency with the 1-D approximation made so far, we have
assumed that current and electric field have the same direction. Note that this
assumption is no longer exact if the current redistributes along the length of the
cable. In this case additional heat is generated in the transverse resistance, as
will be discussed later dealing with the coupling of the thermal and electric
models.

In the case of a purely resistive material there is a linear relation between the
electric field and current density in the material:

iii JE η= (3.8)

where ηi is the average electrical resistivity of the component and Ji the current
density defined as:

i

i
i A

I
J = (3.9).
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For a component containing a superconducting material in parallel with a
stabilizing shunt the relation is more complex. The electric field in a
superconducting strand or cable is obtained experimentally and is usually fitted
using a power law:
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The constant E0 is the electric field set as the criterion to define the critical
current Ic. The typical range for E0 is 10-4 to 10-5 V/m (corresponding to more
common units of 1 to 0.1 µV/cm). The constant n in Eq. (3.10) defines the
electric field dependence on current in the proximity of the Ic transition. Strands
and cables with uniform properties are characterised by a large value of n, of
the order of 10 and above.

To obtain a general expression for the Joule heat dissipation in the composite
component containing a superconductor we distinguish the superconducting
cross section Asc from the other (stabilizing) materials, with a total cross section
Ast. For these last we define an equivalent resistrivety ηst in accordance with Eq.
(3.6). The total current in the component Ii splits in a part through the
superconductor Isc and a part in the stabilizer I st = Ii - Isc such that the
longitudinal electric field in both components is identical. The split itself
depends on the non linear voltage-current relation for the superconductor,
which could be different from Eq. (3.10) as the measurements used to establish
it contain the contributions of both superconductor and stabilizer to the
longitudinal voltage. In principle a relation of the type of Eq. (3.10) can be
obtained from measurements for the superconductor only, correcting for the
current sharing in the stabilizer. However it can be shown that in the range of
E0 and n parameters given above the current flowing in the stabilizer is small.
Therefore we can safely assume that Eq. (3.10) is valid for the superconductor
alone, substituting the total current in the component with the current in the
superconductor, i.e.:

n

c

sc
i I

I
EE 








= 0 (3.11).

The longitudinal voltage equality in the superconductor and in the stabilizer
can be therefore written as follows:
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Equation (3.12) can be solved by an iterative technique (see Appendix A) to
obtain Isc. The longitudinal electric field is then readily obtained using Eq.
(3.11), and the total Joule heat dissipation is given by Eq. (3.7).

Note finally that in accordance to the power law dependence in Eq. (3.11), the
electric field is small below the critical current density, rising very quickly to
large values above Ic. For this reason this dependence is often modelled as a
step function, with a step from zero to infinite electric field located at Ic. Here
we prefer to retain the non-linear expression above for generality, still with the
possibility to specialize it to the simpler case of a step in the electric field that
can be obtained choosing a very large n (ideally infinite).

3.2 Thermal Resistances

In Eq. (3.1) we have introduced the thermal resistance among two thermal
components Hij to model thermal coupling within a cable. The corresponding
values can be estimated in the case of soldered cables, where the thermal
coupling takes place through thermal conduction. Such an estimate is not
possible in the case when the thermal coupling takes place through contact
surfaces, such as in multi-strand Rutherford or bundled cables. Lacking
experimental measurements of thermal resistances, estimates can be obtained
assuming that the electrical and thermal contact resistances are correlated
through the Wiedeman-Franz-Lorenz law [2]:

TL

R
H ij
ij

0

= (3.13)

where Rij is the interstrand resistance per unit length, L0 is the Lorenz number
(2.45 10-8 [ΩW/K2]) and T is the average temperature of the two components. In
this manner we profit from the fact that the electrical resistance is a key
parameter for AC loss considerations, and is therefore often available through
measurements or estimates for multi-strand cables. We stress that the above
approximation is justified only to evaluate orders of magnitude. The analogy to
a conductive material is not necessarily verified, and important effects such as
surface contact nature (e.g. sintering) or the presence of stagnant helium
permeating a cable are not taken into account.

3.3 Boundary Conditions

Boundary conditions for the thermal problem can be of two types: prescribed
temperature or prescribed heat flux. The first case, prescribed temperature, is
expressed as:

boundaryi TT = (3.14)
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where Tboundary is the temperature at the boundary. In the case of prescribed flux
we write:

boundary
i

ii q
x

T
kA =−
∂
∂

(3.15)

where qboundary is the heating power at the boundary. Adiabatic conditions are
obtained if qboundary=0.

4 Hydraulic Components

The flow model is written for a set of parallel, 1-D channels that can exchange
mass, momentum and energy among them. The coupling of the channels can
happen either through convection heat transfer at the mutual interface, or
through direct mass transfer from one flow to the other. In Appendix B we
detail how to obtain the set of the three following equations for the volumetric
flow Vh = Ahvh, the pressure ph, and the temperature Th of the coolant:
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where Ah is the cross section of the channel (in principle variable along the
length), ρh, is the density and vh is the velocity of the coolant in the channel. The
total number of channels is H . The equations above are written using the
isentropic sound speed ch, the specific heat at constant volume Ch, the specific
enthalpy hh and the Gruneisen parameter ϕη. These are tabulated properties for
fluids, or can be obtained from the equation from state using known
thermodynamic relations [3]. The equations above do not contain any
approximations with respect to the conservative form and they are valid for
any coolant fluid.

The quantity Fh is the friction force defined using the friction factor fh and the
hydraulic diameter Dh as:
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The quantities ρ
hkΓ , v

hkΓ  and e
hkΓ  are the distributed sources of mass, momentum

and stagnation enthalpy per unit length of channel, originating from expulsion
(or injection) of helium into (or from) another channel with index k . The
convention assumed is that the fluxes are positive if they correspond to a net
massflow from channel h to channel k. Finally the source terms hq′&  and hcfq ,′&

represent respectively the heat that enters the channel h per unit length through
external sources and convection at the wetted perimeter and the heat flux due to
the counterflow mechanism in superfluid conditions.

4.1 External Source Terms

The external source for the flow are represented by a generic heat deposition
(retained for generality) and by the heat transfer at the wetted perimeter of the
channel, in contact with thermal components through wetted walls. We write
the generic source term as:
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where the first term on the r.h.s. is the external heating and the sum is extended
on the N thermal components of index i in thermal contact with the channel h,
pih is the wetted perimeter, hih is the heat transfer coefficient and Ti is the wall
temperature.

4.2 Counterflow Heat Exchange in Superfluid Helium

The counterflow heat transport mechanism is peculiar of heat transfer in
superfluid helium (or helium II). We can write generically that this term has a
form of a non-linear diffusion [4]:
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where hk
~

 is an equivalent thermal conductivity defined using the superfluid
thermal conductivity function κh as:
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4.3 Transverse Fluxes

To give an explicit expression for the transverse fluxes we indicate with vhk the
transverse velocity from channel h to channel k, and we assume that the two
channels have a boundary delimited by a perimeter phk of which the fraction πhk

is perforated. We can write:

hkhkhkhkhk mvp &==Γ ρπρ (4.8)
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where hkm&  is the massflow from channel h to channel k per unit channel length.
We assume that the transverse flow between the channels can be modelled as a
discharge between two volumes at different pressure. The transverse flow
velocity vhk is then given by:

( )khhkhk ppv −= α (4.11)

where the coefficient αhk is given by:

kh
hk pp −
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ρ
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(4.12)

The overbar quantities in the equations above are intended as upwinded, i.e.
taken from the upstream conditions of the transverse flow, or:
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In Eq. (4.10) the two terms take into account the fact that energy transfer
between the two channels can happen either through mass convection (first
term on the r.h.s.), or through heat transfer at the boundary (second term on the
r.h.s.). The heat transfer happens on the interface perimeter phk with an
equivalent heat transfer coefficient hhk.

mk

mh mhk

hhk

Figure 4. Schematic representation of the coupling between two parallel cooling channels
h and k. The channels exchange mass through a set of perforations, and can exchange heat
through the wall. The wall can be fictitious, and the shape of the channel and perforations is
irrelevant.

4.4 Heat Transfer Models

The heat transfer coefficients hih between the coolant in channel h and the solid
wall i, or hhk between coolant flows h  and k  are computed using empirical
correlations. At present this is the most general approach as it relies on
experimental data. The correlation models for the heat transfer coefficient have
typical data fitting accuracy in the range of some 10 %, and predictive capability
within a factor 2. See [5] for a database of heat transfer correlations that apply to
helium.

4.5 Friction Factor Models

Similarly to the heat transfer coefficient, the friction factor of the flow is
computed based on empirical correlations. The correlation models for the
friction factor coefficient have data fitting accuracy within a factor 2. See [6] for
a database of friction factor correlations that apply to helium.

4.6 Boundary Conditions
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The imposition of boundary conditions to the fluid flow is a delicate matter,
that should take into account the characteristics at the boundary [7]. We have
found that in the non-conservative form described above it is possible to
impose accurate boundary conditions in a simpler manner if we limit our
choice to a a closed pipe condition, or alternatively to in- and outflow into a
volume at given pressure and temperature [8]. The first case (closed pipe) is
imposed setting:

0=hV (4.16).

In the second case, volume in- and out-flow, we match the number of
conditions imposed to the number of characteristics entering or exiting the
boundary surface. Separate treatment is necessary in the case of a normal or
superfluid flow, as in the case of superfluid the equations have a parabolic
term. We have the following possibilities:

4.6.1 Subsonic inflow (vh < ch).

In this case we have 2 entering characteristics, 1 exiting characteristic. Two
variables are specified

boundaryh pp = (4.17)

boundaryh TT = (4.18)

where pboundary and Tboundary are the values of pressure and temperature at the
boundary.

4.6.2 Supersonic inflow (vh > ch).

For supersonic inflow we have 3 entering characteristics and no exiting
characteristic. Three variables must be specified:

boundaryh pp = (4.19)

boundaryh TT = (4.20)

boundaryboundaryh cAV = (4.21)

where cboundary is the sound speed at the boundary.
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4.6.3 Subsonic outflow (vh < ch).

In this case we have 1 entering characteristic, 2 exiting characteristics. For a
flow of normal fluid only one variable can be specified:

boundaryh pp = (4.22).

In the case of superfluid it is in addition necessary to specify the boundary
temperature:

boundaryh TT = (4.23).

4.6.4 Supersonic outflow (vh > ch).

For supersonic outflow there is no entering characteristic and 3 exiting
characteristics. In this case no boundary condition can be specified in the case of
a normal flow. For convenience this rare case is dealt in the same manner also
in case of superfluid.

5 Electric Components

The electric model describes a cable subdivided in E  parallel, electrically
conductive components characterised by a non-linear longitudinal resistance,
mutual and self inductance. Within the frame of the model the generic
component can be a single strands, a cable subunit, a segregated stabilizer, or
any electrically conducting structural component. Each component has a
constant current density in its cross section, and current transfer happens along
the length of the cable in a continuous manner through distributed electrical
conductances.

The equations governing the evolution of the currents in the components are
derived in Appendix C. They are written in the following matrix form:
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∂
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∂
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where the unknowns are the currents Ie in the components, packed in the array
I. The matrices and vectors depend on the cable geometry (e.g. inductance), its
properties (e.g. transverse conductivity) and on the operating conditions (e.g.
parallel resistance and flux changes).

5.1 Coupling with Thermal Components
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The electric model is coupled to the heat conduction model described earlier.
Unlikely the cases examined so far, the electric-thermal coupling is largely
implicit. The main coupling between the two domains is based on the fact that
the longitudinal resistance appearing in the matrix r of the electric model
depends on the temperature computed in the heat conduction model, while the
current Ii and thus the Joule heat generation in the thermal component depends
on the current distribution computed in the electric model. In addition the
current transfer among the components takes place in the transverse electrical
conductances. This is associated with a Joule heating etransverseq ,′&  in each electric
component as described in Appendix E.

N=4 E=5

E1S1

E2

E3

E4

S2

S3

S4 E5

Figure 5. Schematic view of possible coupling of N thermal components (on the left) and E
electric components (on the right). The thermal components can be coupled to one, several or no
electric components, and similarly electric components can be coupled to one, several or no
thermal component. Ordering is inessential. The electric components E1 and E2 are grouped, and
it is not possible to couple them to other thermal components than S1. Similarly, the thermal
components S2 and S3 are grouped, and cannot be coupled to any other electric component in
addition to E3.

The coupling in the frame of our model is obtained matching a set of electric
components to corresponding thermal components. For generality we assume
that the matching is not necessarily one-to-one, i.e. a single electric component
can model the current flow in several parallel thermal components, or
conversely one thermal component can model the temperature evolution in
several parallel electric components. The components of one domain (thermal
or electric) that are associated to a single component in the other domain
(electric or thermal) are said to be grouped. To avoid inconsistencies in the total
power dissipation between the thermal and electric models we prevent the
possibility of coupling the same grouped components to more than one
component in the other domain. The most general case of a set of N  thermal
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components associated with E electric components is shown schematically in
Fig. 5. As we prevent multiple coupling of groups, we can only have the
following three cases:

• coupling of a single thermal and electric component (e.g. S4 coupled to E4 in
Fig. 5)

•  a group of electric components is coupled to a thermal component
component (e.g. S4 coupled to E1 and E2 in Fig. 5)

• a group of solid components is coupled to an electric component (e.g. S2 and
S3 coupled to E3 in Fig. 5)

In the case of coupling of a single thermal and electric components, the current
is transferred directly from one to the other:

ei II = (5.2)

as well as the transverse Joule power per unit length:

etransverseitransverse qq ,, ′=′ && (5.3).

The resistance per unit length of the electric component is calculated as:

i

i
e A
r

η
= (5.4).

If a group of Ei of electric components is coupled to the thermal component i we
compute the current in the thermal component as the sum of all the currents in
the coupled electric components:

∑
∈

=
Eie

ei II (5.5)

where the index e scans the group Ei. The same sum is used for the transverse Joule
heat per unit length:

∑
∈

′=′
Eie

etransverseitransverse qq ,, && (5.6).

The resistance of the electric components is obtained assuming a regular
subdivision of the cross section:

i
i

i
e E

A
r

η
= (5.7)
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which guarantees that the parallel of the longitudinal resistances is identical in
the thermal and electric model, but does not necessarily guarantee that the
Joule heat associated with the longitudinal electric field is the same in the two
models.

In the third case, of a group of thermal components Ne coupled to a single
electric component e, we distribute the current assuming that the current
sharing among thermal components is purely resistive. To achieve this we
compute first the parallel resistance per unit length of the group of thermal
components, and transfer it to the electric component:

∑
∈

=
Nei i

i

e

A

r η
1

(5.8).

The current Ie is then obtained:

Nee
i

i
i rI
A

I
η

= (5.9).

In case of a parallel of superconducting thermal components the resistance of
each component is zero, and the total resistance is also zero. The weighting in
Eq. (5.9) becomes singular. In this case we choose to assign a small but finite
resistance ε to each superconducting component, thus achieving a equal
distribution of the total current among all superconducting components
without affecting the evolution of the current. Finally, the transverse Joule heat
is distributed equally among all thermal components:

e

etransverse
itransverse N

q
q ,

,

′
=′

&
& (5.10).

Note that this assumption conserves the total transverse power generated, but
it is not necessarily consistent with the split of current among the thermal
components.

5.2 Boundary Conditions

We ideally consider that all electric components are singularly powered at the
cable ends. The boundary conditions that can be applied to the electric model
are of two types: imposed current or voltage difference.

The first condition corresponds to having a current source for each electric
component, resulting in a boundary condition:
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boundarye II = (5.11)

where Iboundary is the current at the boundary. In any case the total current must
be conserved at the boundaries, and this implies for consistence that the above
boundary condition can only be imposed on E-1 of the E electric components
(see Appendix D). An open circuit condition can be obtained from this
boundary type setting Iboundary=0.

In the second case a voltage source is applied among all couples of electric
components, i.e. the following condition is used at the boundary:

boundary
ext
e

ext
e vvv Δ+Δ=Δ (5.12)

where the applied voltage term Δvboundary modifies all boundary entries in the
applied voltage vector Δvext. If all components are in short, the voltage
differences are by definition zero and the boundary condition Eq. (5.12) is
equivalent to (see Appendix D):

0=
x

Ie
∂
∂

(5.13).

6 Matrix Form

The equations presented so far are numerous and cumbersome to treat
singularly. It is much more convenient to write in the following compact form
for a system of Partial Differential Equations (PDE’s) amenable of unified
treatment:

qsu
u

g
u

a
u

m =+







−+

xxxt ∂
∂

∂
∂

∂
∂

∂
∂

(6.1)

where the vector of unknowns u(x,t) is defined assembling the unknowns of
each PDE as derived for heat conduction in the N solids, conservation balances
in the H  cooling channels and current distribution among E  conducting
materials, i.e.:























=

e

h

h

h

i

I

T

p

V

T

u (6.2).



This document is intellectual property of CryoSoft, and cannot be reproduced or distributed without written approval.

19

The vector u has therefore size N+H+E. The matrices appearing in Eq. (6.1)  have
a general block structure that we can define using the matrix m as an example:

















=

e

hhi

ihi

m

mm

mm

m

00

0

0

(6.3).

Each block is intended as a matrix itself, blocks on the diagonal are the
contributions from the three different coupled problems (thermal, hydraulic
and electric) and blocks outside the diagonal represent coupling between the
problems. Note that with the structure chosen above we have decoupled the
electric problem, as indicated by the zero coupling terms on the last row and
column in the matrix. Each matrix block can be built by identification of Eqs.
(6.1) with the corresponding terms in the models discussed previously.
Explicitly, we obtain (the matrix entry is written for a single component):

[ ]iiii CAρ=m (6.4)

[ ]0=ihm (6.5)

[ ]0=him (6.6)

















=

hhh

h

h

h

CA

A

ρ

ρ

00

00

00

m (6.7)

lm =e (6.8)

[ ]0=ia (6.9)

[ ]0=iha (6.10)

[ ]0=hia (6.11)

















=

hhhhhhhh

hhhh

hhh

h

CvATC

vAc

Av

ρϕρ

ρ

ρ

0

0

0
2a (6.12)

[ ]0=ea (6.13)



This document is intellectual property of CryoSoft, and cannot be reproduced or distributed without written approval.

20

[ ]iii kA=g (6.14)

[ ]0=ihg (6.15)

ghi = 0[ ] (6.16)

















=

hh

hhhh

kA

kA
~

00

~
00

000

ϕg (6.17)

g e = c
−1 (6.18)










−

−
=

ijijijij

ijijijij
i hphp

hphp
s (6.19)

[ ]ihihihihih hphp −= 00s (6.20)
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
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ϕϕs (6.21)

s h = sh
f + sh

Δp + s h
ΔT (6.22)
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

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s (6.23)
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where we have used for convenience:

χ hk = αhkπ hk phkρ (6.25)
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rs =e (6.27)

[ ]ii q′=q (6.28)










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





′

′=

h

hhh

q

qϕ

0

q (6.29)

ext
e vq Δ= (6.30)

7 Solution Strategy

For the solution of the system of PDE’s of Eq. (6.1) we have chosen to use
independent space and time discretizations. The discretization in space is done
using variable order lagrangian finite elements, while in time we discretize
using a multi-step finite difference algorithm.
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7.1 Space Discretization

For the discretization in space we subdivide the 1-D domain in an arbitrary
number of finite elements[9]. Each node of the mesh has a number of degrees of
freedom (DOF’s) equal to the total number of variables in the system Eq. (6.1).  

Meshing in space is automatic and adaptive, to resolve fine details with space
scale in the range of 1 mm in a mesh that can be as long as 1 km. Adaptivity is
based on:

• user specified refinements;
• tracking of discontinuities and travelling fronts;
• minimization of the interpolation error.

The algorithm for meshing is an extension of the one described in [8]. The new
mesh is generated at each time step based on a mesh density profile established
on the mesh used for the solution at the previous time step. We have chosen to
use a pure ‘h’ refinement (element size), rather than a combination with ‘p’
refinement (element order). Therefore the mesh consists of only one type of
element. Furthermore, within each element the nodes spacing is uniform in x in
order to avoid singularities in the transformation between the parent plane and
the physical plane. The definition of the mesh density profile and the procedure
for mesh generation are described in Appendix F.

On the 1-D mesh we approximate the system variables using shape functions N:

NUu ≈ (7.1)

where U is the vector formed by the values of the variables at the nodes of the
finite element mesh. See Appendix G for details on the shape functions of the
finite elements chosen. The space discretization is obtained by weighted
integration, using weight functions equal to the shape functions (Bubnov-
Galerkin method). As a result the system of PDE’s (6.1) gives origin to the
following system of ODE’s:

[ ] QUSGA
U

M =+++
t∂

∂
(7.2)

where the matrices appearing above are obtained by assembly of the element
contributions of the following integrals:

∫= dxTmNNM (7.3)

∫= dx
x

T

∂
∂N
aNA (7.4)
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G =
∂N T

∂x
g ∂N
∂x

dx∫ (7.5)

S = NTsN dx∫ (7.6)

Q = NT q dx∫ (7.7).

The integrals are performed using Gauss integration, which is necessary to deal
with non-linearities in the matrices of coefficients as well as variable order
interpolation in the mesh. The detailed procedure for the Gauss integration of
the matrices above is given in Appendix H.

7.2 Time Discretization

The system of ODE’s Eq. (7.2) is solved with a multi-step algorithm of the Beam
and Warming family [10].  We write the system in the following simpler form:

QHU
U

M =+
t∂

∂
(7.8)

where we have introduced the matrix H equal to the sum of the matrices A, G
and S. The time discretization is performed as follows:

( ) ( ) ( ) QUUHHUUUH
UU

M
UU

M =−++−+
Δ

−
−

Δ

−
+ −+

−

−+
11

1

11

1 nnnnn
n

nn

n

nn

tt
φθξξ (7.9)

where superscripts n-1, n and n+1 indicate variables at the corresponding time
stations during integration, Δtn-1 and Δtn are the time steps from time stations n-
1 to n and from n to n+1 respectively. To linearise the solution of Eq. (7.9) all
matrices and loads are evaluated from the known value Un and at a time t*:

1* −Δ−Δ+= nnn tttt φθ (7.10).

We now introduce the increments of the variable U between the time stations:

11 −− −=Δ nnn UUU (7.11)

and

nnn UUU −=Δ +1 (7.12)

and we rewrite the system of algebraic equations Eq. (7.9) as follows:
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( )[ ] QHUUHMUHM nnnnn
n

n
nn ttt

t

t
t Δ+Δ−Δ








Δ−

Δ

Δ
=ΔΔ++ −

−
1

1
1 φξθξ (7.13).

The parameters ξ, θ and φ must be chosen so that the method is consistent and
achieves the desired accuracy. Depending on the choice of the set of parameters,
several known numerical schemes can be obtained. A list of possible choices is
given in Tab. 1, together with the numerical accuracy order achieved.

Table 1. Choice of numerical parameters for the time integration scheme and
corresponding time accuracy.

ξ θ φ order of
accuracy

method

0 1 0 1 Euler-backward
0 1/2 0 2 Crank-Nicolson

1/2 1 0 2 Backward differences
-1/6 1/3 0 3 3rd order implicit

0 5/12 1/12 3 Adams-Moulton
-1/2 1/6 -1/6 4 Milne

7.3 Artificial Viscosity

The system Eqs. (6.1) has a mixed parabolic-hyperbolic nature, and is known to
generate oscillatory solutions whenever the hyperbolic character dominates.
This can happen in practice in two instances. At low Mach numbers oscillations
can appear in the vicinity of temperature and density discontinuities that are
propagated at the speed of the flowing coolant. In this case the oscillations tend
to grow only in the presence of strong non-linearities such as a quench front.
These oscillations can be effectively reduced using denser meshes and mesh
adaptivity.

The second situation in which the flow equations are dominatd by the
hyperbolic terms is in the presence of pressure and shock waves at high Mach
numbers. In this case the oscillations appear at the propagating pressure front,
and tend to grow in time due to the non-linear interaction among the mass,
momentum and energy balance in the coolant. These non-physical oscillations
can lead to wrong wave or shock propagation speed, and can cause divergence
of the solution. Experience has shown that in this case the addition of a
diffusive term of the form due to Lapidus [11]:









Δ−

x

V

x

v
xC

x
hh

Lapidus ∂
∂

∂
∂

∂
∂ 2L (7.14)
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to the momentum balance gives monotonic results with acceptable smoothing
and maintaining second order accuracy in space. In Eq. (7.14) the constant CLapidus

is in the range of unity, and Δx is the element size. The gradient is evaluated
only for the variables that have hyperbolic character, i.e. the flow variables. As
the term above is only added to the momentum balance, the group

x

v
xC h

Lapidus ∂
∂2Δ  is often referred to as artificial viscosity. The term in Eq. (7.14)

results in the addition of the following modification to the matrix gh:
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7.4 System Solution

The system of equations Eq. (7.13) is in the form of a standard algebraic system
for the increment of the unknowns ΔUn. The matrix products and vectors on the
r.h.s. can be obtained during assembly at the element level. Therefore they do
not require the complete assembly of the matrices M and H. The system matrix
on the l.h.s. on the other hand needs to be built for the system solution.
However, owing to the sparse structure of the finite element mesh and
interpolation functions, this matrix is not full. This feature is exploited storing
the system matrix as a non-symmetrical banded matrix. Matrix scaling and
double accuracy are necessary to achieve a stable system solution.
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9 Current Sharing Between Superconductor and Stabilizer

We consider in detail the case of a solid component consisting of a
superconducting material with cross section Asc in parallel with a stabilizing
shunt with cross section Ast. The component carryes a total current I. We model
the non-linear relation between the longitudinal electric field in the
superconducting material Esc and the current density Jsc with the following
power law:

n

c

sc
sc J

J
EE 








= 0 (A.1)

where the constant E0 is the electric field cryterion that defines the critical
current density Jc, and the constant n  is empirical. For large values of the
expoonent n we see that the longitudinal electric field in the superconductor is
small below the critical current, and increases rapidly above. In correspondance
to the change of electric field, the total current flowing in the component I splits
in a current Isc flowing in the superconductor and a current Ist flowing in the
stabilizer. Indicating the stabilizer resistivity with η st we have that the
longitudinal field in the stabilizer is given by:

st

st
stst A

I
E η= (A.2).

Because superconductor and stabilizer are equipotential, the longitudinal
electric field along both must be the same and therefore we can write that:

n

c

sc

st

st
st I

I
E

A

I








= 0η (A.3)

where we have used for convenience the critical current Ic=Asc J sc. We now
impose that the total current in the component is conserved, so that we can
finally derive the following implicit equation for the current in the
superconductor:

n

c

sc

st

sc
st I

I
E

A

II








=

−
0η (A.4).

To solve Eq. (A.4) we firstly introduce the following normalization:
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c

sc

I

I
x = (A.5),

cI

I
i = (A.6).

Using the definitions above, Eq. (A.4) is finally put in the following form:

( ) 0=−+ ixaxn (A.7)

where we have defined the constant:

0EA

I
a

st

cstη
= (A.8).

Equation (A.7) is of order n, and has therefore in principle n complex roots. In
practice we are looking for the single root x in the closed interval [0…i] . The
root can be found by the following Newton iteration (subscript i indicates
iterated values):

( )
( )i
i

ii xJ

xR
xx −=+1 (A.9).

The residual R(x) and Jacobian J(x) of the iteration are defined as follows:

( ) ( )ixaxxR n −+= (A.10)

( ) axnxxJ n += −1 (A.11)

The starting point of the iteration x0 is very critical to ensure fast convergence,
especially for large values of the exponent n. In practice we found that fast
convergence can be obtained starting with the following approximation of the
root sought:

{ }n aiix ,min0 = (A.12).

Once Eq. (A.7) is solved, the current in the superconductor and in the stabilizer
can be obtained from Eq. (A.5) and from the condition on the conservation of
the total current. The longitudinal electric field E is then calculated either using
Eq. (A.1) or Eq. (A.2). Both equations should lead to the same value, and
therefore a comparison of the two results gives a good check on the quality of
the iterative solution.
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The heat dissipated in the superconductor and in the stabilizer are finally given
by

scsc EIq =′ (A.13)

stst EIq =′ (A.14)

and the total heat dissipated is the sum of the two, or:

EIq =′ (A.15).

As a complement to the above discussion, it is useful to give the limiting case
of the above procedure for a very large (ideally infinite) value of the exponent
n. In this case the longitudinal field in the superconductor is zero till the critical
current, and is undetermined above it. Correspondingly Eq. (A.7) degenerates,
but still has a usable solution:





>

≤
=

11

1

ifor

ifori
x (A.16)

from which again we can compute the longitudinal field and the Joule heating.
Note finally that in the case of a linear dependence of the critical current on
temperature and constant stabilizer resistivity the limiting case of infinite n
results in the approximation commonly made of linear Joule heating
dependence between current sharing and critical temperature [Wilson].
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10 Non-Conservative Flow Equations

We start from the conservative form of the mass, momentum and energy
conservation in a 1-D channel identified by the index h:
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For convenience in the following treatment we introduce the volumetric flux:

hhh vAV = (B.4)

The three conservation balances (B.1), (B.2) and (B.3) can be written:
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To derive a convenient non-conservative form we make use of the following
thermodynamic relations between specific internal energy i, pressure p, density
ρ and temperature T:
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didpd
p

c ϕρρ
ρ
ϕ

−=







−2 (B.9).

The relations involve the isentropic sound speed c, the specific heat at constant
volume C and the Gruneisen parameter ϕ. In addition we remember that the
relation between total and internal specific energy is:
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2

2v
ie += (B.10)

while the specific enthalpy h is related to the internal specific energy by:

ρ
p

ih += (B.11)

 We start now with the momentum balance, Eq. (B.6), subtracting the continuity
equation, Eq. (B.5), multiplied by the velocity, and we obtain the momentum
balance in non-conservative form:
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We now take the energy equation, and we explicitate the two terms forming
the total energy:
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and we subtract the continuity equation multiplied by ih+vh2/2, to obtain:
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that has been already grouped conveniently. The term underlined can be
further reduced using the momentum balance (B.12), obtaining:
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We can now use the relation (B.8) to substitute for the dih differentials in Eq.
(B.15), and we obtain:
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that can be reduced using the continuity equation (B.5) to substitute the terms
underlined and to obtain the desired energy balance in non-conservative form:
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A third equation is needed, the non-conservative form of the continuity
balance. This is obtained substituting the dρ h differenmtial using the
thermodynamic identity (B.9) in the continuity equation (B.5):
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We reduce further the equation above, in particular the terms underlined,
adding the non-conservative intermediate form of the energy equation Eq.
(B.15) multiplied by ϕh, and we obtain:
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that is the desired non-conservative continuity balance.
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11 Derivation of the Electric Model

To derive the equations that govern the diffusion of current in a cable formed
by E  parallel electrically conductive we start examining the current and
voltages on an elemental length dx. Figure C.1 schows schematically this length
for the particular case of 3 electric components. Over this length the generic
component e has longitudinal resistance Re=re dx, where re is the resistance per
unit length (zero if the component is in superconducting state). The E
components have self inductance Le,e and are inductively coupled through
mutual inductances Le,f. For reason of convenience in the following derivation
we write the inductances on a unit length basis as Le,f=le,f dx. It must be noted
here that, unlike the case of longitudinal resistance, the inductance coefficients
per unit length are not independent on dx and care should be taken in their use,
as we will discuss later. Finally each component can have an external voltage
source Vexte=vexte dx that can be originated, for instance, by changes of the
magnetic flux linked with the component.

R 1

V1
ext

L1,1

C1,2

V1

V1+dV1

I12

I1

R 2

V2
ext

L2,2

V2
V2+dV2

I2

R 3 V3
ext

L3,3

V3
V3+dV3I3

I23

C2,3

C1,3

I13

x x + dx

I3+dI3

I2+dI2

I1+dI1

Figure C.1. Element dx of a three strand circuit used to demonstrate the derivation of the
electric model. It is assumed that the structure represented repeats along the cable length with
period dx.

The generic component has a current Ie and voltage Ve at the coordinate x. Over
the elemental length dx the current will change by dIe because of the current
transfer through the transverse resistances with all other components Re,f = 1 /
Ce,f where Ce,f is the transverse conductance among components e and f. As for
other quantities we define Ce,f on a unit length basis as  ce,f dx introducing the
the transverse conductance per unit length ce,f.

The voltage will change over the length dx by d Ve because of the parallel
resistance, inductance and the voltage source along the component. We can
write the following equation for the voltage of component e  along the
elemental mesh identified (Kirchhoff Voltage Law):
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where the integral term gives the inductive contribution from the total cable
length L and expresses the fact that in principle the whole cable length will
contribute through inductive coupling to the equations for the element dx
located at x along the cable. We assume for simplicity that the coupling is weak
for all sections, except for the length dx  located at x , and we obtain the
following simpler expression:
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which is local to the elemental length examined. From Eq. (C.2) we can write the
following differential equation for each of the E components:
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that provides the balance for the voltage change along each component. It is
however more convenient to combine all equations introducing voltage
differences with respect to a single component that we take as reference. The
choice of the reference is arbitrary, and we choose to take the last component.
Equation (C.3) gives origin to the following set of E-1 equations involving the
E currents in the components:
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where we note that in the inductive term the inductance coefficients appear
only as differences. At this point we remark that while the inductance of a
single line depends on the line length, and diverges as the length goes to
infinite, the differences appearing in Eq. (C.4) have a finite limit for infinite
length.

The voltage relations above must be complemented by equations for the
current conservation in the system. The current balance in each component is
written (Kirchhoff Current Law):

∑
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where we have introduced the transverse current Ief between components e and f
. A suitable expression for the current transfer among two components can be
written using the transverse conductance as follows:

( ) ( )fefefefeef VVdxcVVCI −=−= ,, (C.6)

and using Eq. (C.6) to substitute in Eq. (C.5) we obtain:
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Once more it is more convenient to write the above current balance taking one
component (e.g. component E) as voltage reference and arranging terms to
have only the E-1 voltage differences with respect to this component:
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From the above balance we obtain finally the following E differential equation
for the variation of the current in all components:
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In the absence of current sinks and sources, which is the case in a cable, the total
current in the cable Itotal is constant along the whole cable length. Therefore at
any positionx the single currents in the components must satisfy the condition:

total
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e
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(C.10).

The condition Eq. (C.10) implies in addition that:

0
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e
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(C.11).

Note that the condition Eq. (C.11) can be obtained adding all the E  equations of
the system of Eqs. (C.9). This means also that using the condition Eq. (C.10)
automatically reduces the rank of the system of Eqs. (C.9).
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We wish now to eliminate the voltage differences from the system of Eqs. (C.4)
and (C.9). To ease further algebra we write Eqs. (C.4), (C.9) and (C.10) in matrix
notation as follows:
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totalI=bI (C.14).

where we have defined the following vectors and matrices:
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[ ]11111 LL=b (C.21).

The vector I~  is obtained from the vector I removing the last row. If the inverse
of the matrix c~  exists (this is always the case for finite values of the
conductivity), it is possible to take the space derivative of Eq. (C.13)  as follows:
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and substitute in Eq. (C.12) leading to the following system of E-1 equations for
the E currents:
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We complement the system above with the condition on the total current, Eq.
(C.14), and we finally obtain the desired system:
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where the matrices and vectors in Eq. (C.24) have been obtained by block
assembly of the matrices and vectors defined previously:
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and the symbol 0 indicates zero filling.
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12 Boundary Conditions for Electric Model

The system of Eqs. (C.24) is a parabolic PDE for the currents in the strands and
requires therefore two boundary conditions. In analogy with a diffusion
problems, we define two types of boundary conditions: given current at the
boundary (Dirichlet condition) and given voltage (Von Neumann condition).
To clarify the meaning of the two conditions we can imagine that the cable is
spread at the ends as shown in Fig. D.1. The current boundary condition
corresponds to placing a current generator in series with each component. The
current flowing at the boundary in component e is then given simply by:

boundarye II = (D.1)

where Iboundary is the current flowing in the current generator attached to the
component.

The voltage boundary condition corresponds to placing a voltage generator at
the boundary between the components e  and E , the last component among
those defined. This follows from the definition of the voltage difference in Eq.
(C.8). The voltage generator at the boundary adds to the external voltage
difference. In particular for any component e the voltage difference at the
boundary node is given by:

boundary
ext
E

ext
e

ext vvvv Δ+−=Δ~ (D.2)

where Δvboundary is the voltage from the boundary voltage generator. This
modifies the entries in the vector of voltage differences defined in Eq. (C.17)
and Eq. (C.25). Note finally that using the voltage boundary condition and
setting Δvboundary=0 we can model the case of shorted electric components at the
boundary.

The boundary conditions of the two types described above can be set
independently on each other on both boundaries, i.e. voltage condition on one
boundary and current condition on the other boundary or different current
conditions on the two boundaries. In addition they can be mixed for different
components on the same boundary, i.e. a current condition on one component
and a voltage condition on another one on the same boundary. They are
however mutually exclusive, i.e. the imposition of a current boundary
condition on one component prevents the simultaneous imposition of a voltage
boundary condition on the same component. In addition, as we have stated in
Appendix C, the total current in the cable must satisfy Eq. (C.10) at any position
along the cable length, therefore also at the boundary. This implies that the
number of  independent boundary conditions that can be applied to a set of E
electric components is E-1, and the missing boundary condition is implied by
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the use of Eq. (C.10) in the system Eq. (C.24). This is consistent with the
structure of the system of PDE, where we have assembled E-1 differential
equations and one integral condition.

Figure D.1 Principle of application of boundary conditions to an assembly of electric
components. Dirichlet conditions (left) correspond to a current generator in series with each
component, Von Neumann conditions (right) correspond to a voltage generator between each
component and the last component.
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13 Joule Power Dissipated by Transverse Current Transfer
Among Electric Components

The current transfer that takes place between components through the
transverse conductance is necessarily associated with Joule heat generation. The
heat generated by currents flowing in superconducting components and closing
across the transverse resistances in a cable is generally referred to as AC losses.
Although the order of magnitude of AC losses is small compared to Joule
heating in a strand above current sharing, its contribution to the temperature
increase and eventually the transition of a superconductor can be significant. It
is therefore important to quantify it. We compute first the heat generated in
each transverse conductance. To do this we start calculating the voltage
differences among each component and the reference component. From Eq.
(C.13) we have that:

x∂
∂I

cV
~

~ 1−−=Δ (E.1)

 where the derivative of the currents along the length of the cable is supposed
to be known from the solution of the electric problem. Once the vector ΔV is
known, it is possible to compute the voltage difference ΔVe,f between each
couple of components e and f as follows:

( ) ( ) feEfEefefe VVVVVVVVV Δ−Δ=−−−=−=Δ , (E.2)

where ΔVe and ΔVf are the entries e and f in the vector ΔV. The power generated
per unit length by the current flowing between components e andf is then given
by:

2
,,, fefefe Vcq Δ=′& (E.3).

We now make the simplified assumption that this power is equally distributed
among the two components. The total power in each component can be
obtained adding all contributions as follows:

∑
≠
=

′=′
E

ef
f

feetransverse qq
1

,, 2

1
&& (E.4).
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14 Adaptive Meshing

Mesh adaptivity is the key to achieving accurate solution avoiding the
unnecessary memory and computation time overhead associated with the use
of a uniform, fine mesh. We have implemented an h-adaptivity algorithm that
consists of three steps. The first step is the generation of an ideal mesh density
profile that satisfies specified error criteria, where the mesh density d is defined
as the inverse of the element size Δx, or:

x
d

Δ
=
1

(F.1).

The density profile is defined on the existing (old) mesh. In the second step a
new mesh is generated in accordance with the desired mesh density profile.
Finally, in the third step, the variables are interpolated from the old mesh to the
new mesh.

The new mesh generated consists of elements of the same type (number of
nodes and interpolation order). We therefore do not perform p-adaptivity
(variable order elements), which would add a considerable complication in
mesh generation and book-keeping.

14.1 Mesh Density

The mesh density is defined so that all elements have a size Δx in the interval
[Δxmin…Δxmax], where the minimum and maximum element sizes are specified
by the user. We have considered three possible criteria to define the ideal mesh
density, as given below.

14.1.1 User’s specified refined region.

The region has a given center xrefined and a refined mesh length Lrefined. The mesh
density profile for this case is shown schematically in Fig. F.1. The region Lrefined

centered around xrefined has a uniform mesh density dmax (corresponding to the
minimum element size Δxmin). Outside this region the mesh density decreases
gradually to the minimum dmin (corresponding to the minimum element size
Δxmax). We can write the density profile as follows:

( ) ( ) ( )[ ] ( )[ ]{ }2maxmax
2

minmax
maxmaxmaxminmaxmin ;;,,max xxdxxd ededxxxWddxd −−−−+= (F.1).
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where the function W(x,xmin,xmax) is a window which has value 1 between xmin

and xmax, and 0 outside. The two boundaries of the window are the beginning
and end of the refined region:

2min
refined

refined

L
xx −= (F.2)

2max
refined

refined

L
xx += (F.3).

The exponential functions are built to achieve a transition from the minimum
element size in the refined region to  the maximum element size in the outside
region over a sufficient number of elements.

xrefined

Lrefined

dmin

dmax

dmin

Figure F.1 Density profile in the case of a user’s refined region centered at xrefined and with
length Lrefined. The profile in the transition region outside the refinement is a gaussian.

14.1.2 Tracking of physical discontinuities and propagating fronts

Physical discontinuities and propagating fronts can be the lambda transition
region from normal to superfluid helium, or the transition from
superconducting to normal conducting state at the fronts of the normal zone in
a quenching superconducting cable. The front is located at the position xfront. The
mesh density profile for this case is shown schematically in Fig. F.2, and has the
following equation:

( ) ( )[ ]{ }2max

maxmin ;max frontxxdeddxd −−= (F.4).
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xfront

dmin

dmax

dmin

Figure F.2 Density profile in the case of a front centered at xfront. The profile around the
front is a gaussian.

14.1.3 Interpolation error

A final way to determine the mesh density profile is to estimate the
interpolation error in the solution. The principle in this case is to estimate the
error on an element-by-element basis and to define a mesh density that would
make the interpolation error uniform throughout the complete mesh. To
estimate the interpolation error we recall that for an element of order n  any
function u(x) is interpolated with an error of order O(Δxn+1) given locally by:

1

1
1

+

+
+Δ=

n

n
n

x

u
xce

∂
∂

(F.5)

where c is an arbitrary constant. Taking for simplicity c  = 1, and setting a
maximum reasonable interpolation error emax for the mesh, the requirement that
e = emax can be written in terms of the desired mesh density as follows:

1

max

1
+

Δ
= n

e

e

x
d (F.6).

The difficulty in this process  is in the evaluation of the derivative in Eq. (F.5). A
possible method is to evaluate the first derivative of the variable u(x) using the
shape functions in the element (see Appendix G) and the nodal values U:

U
N

Jx

u

∂ξ
∂

∂
∂ 1

≈ (F.7)

The jacobian of the element J is defined as:
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x
Nx

J
∂ξ
∂

∂ξ
∂

≈= (F.8).

Note that if the internal nodes are equally spaced the Jacobian is constant in the
element. The first order derivative is evaluated at the nodes in the mesh, and

we denote it with 
x

U

∂
∂

. 
x

U

∂
∂

 is discontinuous at the boundary among elements,

i.e. it has a left and a right value. We produce a smoothed, single valued

distribution 
x

U

∂
∂ *

 averaging the nodal values at the inter-element boundaries.

We finally recover the derivative of order n+1 by using again the shape
function derivatives:

x

UN

Jx

u
n

nn

n

n

∂
∂

∂ξ

∂

∂

∂ *1
1

1

1 +

+

+








≈ (F.9)

where we have made use of the fact J is constant. Because the derivatives of
order n of the shape functions are non-zero and constant (see Appendix G), the

value obtained for  
1

1

+

+

n

n

x

u

∂

∂
 is a constant in the element, and can be use to

estimate the interpolation error.

In the case of a vector function u(x) the above procedure can be applied either to
a control component (e.g. temperature) or to all components of the vector. The
result is  a set of mesh density distribution whose upper envelope is the desired
mesh density.

14.2 Mesh Generation

The mesh is generated based on the upper envelope of the mesh density
profiles defined using the methods described above. To do this we first
compute the integrated density function D(x) defined as:

( ) ( ) xdxdxD
x

′′= ∫
0

(F.10).

This function has the property that D(L) is the total number of elements to be
generated. The extremes of the elements are placed using the inverse mapping
x(D), subdividing the D interval in D(L) equispaced elements. The nodes within
an element are placed so that they are equispaced in x, thus avoiding possible
problems with the finite element Jacobian in the case of non-uniform mapping



This document is intellectual property of CryoSoft, and cannot be reproduced or distributed without written approval.

46

of coordinates. This procedure achieves quickly and without iteration the
desired mesh density.

14.3 Variable Interpolation

The final step is to interpolate variables from the old mesh to the new mesh.
For consistency reasons the interpolation is performed using the finite element
representation of the variables. For the interpolation of a vector variable Uold at
any point x it is firstly necessary to determine the normalised position of the
point ξx in the parent element. This is a straightforward matter for elements
with uniformly spaced internal nodes:

12 1 −
Δ

−
=

x

xx
xξ (F.11)

where x1 is the coordinates of the first node of the element, and Δx is its size.
Once the normalised position in the element is known, the interpolation is
performed using the shape functions:

( ) old
x

new UNU ξ≈ (F.12).
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15 Finite Element Shape Functions

The finite element discretization in space requires the definition of shape
functions N and of their derivatives dN/dx. We report here the shape functions
and derivatives for a 1-D Lagrangian element with interpolation order from
linear to quintic. The finite element is defined in the parent space as shown in
Fig. G-1. The local coordinate ξ is centered in the element and spans the interval
[-1…+1]. The tables G-1 through G-5 report the location of the nodes in the
parent space for lagrangian elements of order 1 to 5, the shape functions N(ξ)
and their first derivative dN/dξ (i.e. with respect to ξ). Finally we also report
the last non-zero derivative of the shape functions, dnN/dξn, useful for the
calculation of the interpolation error in an element.

-1 0 +1 ξ

Node 1 Node 2 Node 3 Node 4 Node 5

Figure G-1. Definition of a finite element (5 nodes) and its local coordinate ξ in the parent
plane.

Table G-1. Linear element.

node ξ N dN/dξ dnN/dξn

1 -1

2

1 ξ−
2

1
−

-1/2

2 1

2

1 ξ+
2
1 1/2

Table G-2. Quadratic element.

node ξ N dN/dξ dnN/dξn

1 -1 ( )
2

1−ξξ
2

1
−ξ

1

2 0 21 ξ− ξ2− -2

3 1 ( )
2

1+ξξ
2

1
+ξ

1
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Table G-3. Cubic element.

node ξ N dN/dξ dnN/dξn

1 -1
( )1

9

1

16

9 2 −






 −− ξξ 






 −−−
9

1
23

16

9 2 ξξ
-27/8

2 -1/3
( ) 







 −−
3

1
1

16

27 2 ξξ 






 −− 1
3

2
3

16

27 2 ξξ
81/8

3 1/3
( ) 







 +−−
3

1
1

16

27 2 ξξ 






 −+− 1
3

2
3

16

27 2 ξξ
-81/8

4 1
( )1

9

1

16

9 2 +






 − ξξ 






 −+
9

1
23

16

9 2 ξξ
27/8

Table G-4. Quartic element.

node ξ N dN/dξ dnN/dξn

1 -1
( )1

4

1

3

2 2 −






 − ξξξ 






 +−−
4

1

2

1
34

3

2 23 ξξξ
16

2 -1/2
( ) 







 −−−
2

1
1

3

8 2 ξξξ 






 +−−−
2

1
2

2

3
4

3

8 23 ξξξ
-64

3 0
( )1

4

1
4 22 −







 − ξξ 






 − ξξ
2

5
44 3

96

4 1/2
( ) 







 +−−
2

1
1

3

8 2 ξξξ 






 −−+−
2

1
2

2

3
4

3

8 23 ξξξ
-64

5 1
( )1

4

1

3

2 2 +






 − ξξξ 






 −−+
4

1

2

1
34

3

2 23 ξξξ
16
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Table G-5. Quintic element.

node ξ N dN/dξ dnN/dξn

1 -1
( )1

25

1

25

9

768

625 22 −






 −






 −− ξξξ 







++−−−
625

9

25

20

25

30
45

768

625 234 ξξξξ
-3125/32

2 -3/5 ( ) 






 −






 −−
5

3

25

1
1

768

3125 22 ξξξ 







++−−
25

1

125

156

25

78

5

12
5

768

3125 234 ξξξξ
15625/32

3 -1/5 ( ) 






 −






 −−
5

1

25

9
1

384

3125 22 ξξξ 







+−−−
25

9

125

68

25

102

5

4
5

384

3125 234 ξξξξ
15625/16

4 1/5 ( ) 






 +






 −−−
5

1

25

9
1

384

3125 22 ξξξ 







++−+−
25

9

125

68

25

102

5

4
5

384

3125 234 ξξξξ
-15625/16

5 3/5 ( ) 






 +






 −−−
5

3

25

1
1

768

3125 22 ξξξ 







+−−+−
25

1

125

156

25

78

5

12
5

768

3125 234 ξξξξ
-15625/32

6 1
( )1

25

1

25

9

768

625 22 +






 −






 − ξξξ 






 +−−+
625

9

25

20

25

30
45

768

625 234 ξξξξ
3125/32
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16 Gauss Integration

The matrices in Eqs. (7.3) through (7.6) and the vector Eq. (7.7) need numerical
evaluation as the arguments of the integrals are notnecessarily known or
integrable analytical functions. To perform the integration we resort on the
local character of the shape functions over the finite elements. Any integral
over the complete domain of integration can be obtained by assembly of
integrals over the single elements. Integration over each element is in turn
obtained using the Gauss rule, which offers the best compromise between the
number of points he evaluation of the integrand and the accuracy of the result.
We take as a general example the integral of the function f(x) over an element
of length Δx:

( )∫
Δ

=
x

dxxfF (H.1)

The function f(x) can be a vector function of the coordinate x, as indeed is the
case for Eqs. (7.3) through (7.7). In this case the integration is intended to be
performed on each component of the vector. We can write the integral Eq. (H.1)
in an alternative form that makes use of the coordinate transformation between
a finite element in the physical and in the parent space:

( )( ) ξ
ξ

ξ d
d

dx
xfF ∫

−

=
1

1

(H.2)

where ξ is the normalised coordinate in the parent space (see Appendix G). The
derivative dx/dξ is also called the Jacobian J of the transformation. We can now
apply the Gauss integration method to the integral above:

( ) ( )( )∑
=

≈
Ng

g
ggg xfJWF

1

ξξ (H.3)

where we note that the integral has been approximated by a sum of Ng terms.
The terms of the sum consist of the integrand evaluated at the Gauss points ξg,
weighted by the Gauss weights Wg. The coordinates of the Gauss points and the
values of the Gauss weights depend only on the total number of points (i.e. the
rule) used, and are found tabulated as shown in Tab. H1.

It is a known property of Gauss integration that the method described above
can integrate exactly a polynomial of order 2 Ng-1. Therefore depending on the
order of the integrand it is possible to fix the number of Gauss points to be
used. In our case we use systematically a number of Gauss points Ng = n  + 1
where n  is the order of the shape function of the element. This choice



This document is intellectual property of CryoSoft, and cannot be reproduced or distributed without written approval.

51

guarantees that the integrals in Eqs. (7.3) to (7.7) do not give origin to singular
matrices.

Table H-1. Gauss point coordinates and Gauss weights for the integration rules
implemented.

±ξg Wg

Ng=1
0.000 000 000 000 000 2.000 000 000 000 000

Ng=2
0.577 350 269 189 626 1.000 000 000 000 000

Ng=3
0.774 596 669 241 483 0.555 555 555 555 556
0.000 000 000 000 000 0.888 888 888 888 889

Ng=4
0.861 136 311 594 953 0.347 854 845 137 454
0.339 981 043 584 856 0.652 145 154 862 546

Ng=5
0.906 179 845 938 664 0.236 926 885 056 189
0.538 469 310 105 683 0.478 628 670 499 366
0.000 000 000 000 000 0.568 888 888 888 889

Ng=6
0.932 469 514 203 152 0.171 324 492 379 170
0.661 209 386 466 265 0.360 761 573 048 139
0.238 619 186 083 197 0.467 913 934 572 691


