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A theoretical investigation on current imbalance in flat
two layer superconducting cables
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1. Introduction

Superconducting cables are made of a number of multi filamentary composites
(strands) consisting of many superconducting filaments embedded in a matrix of
normal metal. The strands are then twisted or transposed together to build the final
cable. The application of current ramps or time dependent external fields to
multistrand cables generates screening currents in both the superconducting filaments
and the normal metal matrix. Several methods have been proposed to study the
resulting eddy currents and the corresponding AC losses [1-3]. The study of these
currents is beyond the scope of this work.

We focus our attention on the study of the eddy currents distribution which is induced
by time dependent magnetic fields in the paths formed by the contacts between the
different strands of the multistrand cable. These interstrand eddy currents are
superimposed to the intrastrand eddy currents, but the approximation to study the two
phenomena independently is widely accepted, because of the different time constants
of the two current distributions.
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Two main kinds of interstrand eddy currents can be distinguished, namely short and
long range coupling currents. The last ones are often indicated as "Boundary Induced
Coupling Currents" (BICC's) [4] or "Supercurrents" [5-7]. The short range coupling
currents have a typical loop length equal to the cable twist pitch and exhibit time
constants in the range from 0.01 to 1 s. The long range coupling currents can flow
along the whole cable length, and have very high time constants, in the range from 10
to 105 s in practical cables. Their amplitude can be orders of magnitude higher than
that of the short range coupling currents.

In the case of Rutherford cables, in which the strands are compressed to form a flat,
two layers, cable, a network model has been developed to study the current
distribution among the strands. One of the earliest presentations of this model was
given by Morgan in 1973 [8], and assumes that the strands in one layer have electrical
contacts with those in the other layer, but not between themselves. Morgan reports
that “a direct application of Maxwell ‘s equations to a flat metal-fill ed braid was
attempted but dropped owing to the non isotropic structure of the cable”. For this
reason he developed a lumped-constant circuit approach. In the Morgan’s model the
Faraday’s and Kirchhoff’ s equations are applied to all the loops formed by two
adjacent strands of one layer crossing any two adjacent strands of the other layer. The
braid is assumed to be infinitely long with uniform cross contact resistance and
uniform field along the cable length, even if f ield variations across the cable width are
allowed. In this way only N-1 independent loops have to be solved, where N is the
total number of strands (see Fig. 1). The solution found for the cross over currents at
an arbitrary position is then considered to be uniformly repeated along the cable
length.

In more advanced versions of the network model [4, 9-13] the N-1 loops considered
by Morgan become the components of the basic units for the calculation of the current
distribution (called ‘calculation bands’ [ 4] or ‘columns’ [ 9]), allowing to consider
longitudinal variations of the magnetic flux density along the cable length. A
complete set of equations is written for all the columns, applying Faraday’s laws to
the N-1 loops of each column. The cross over currents in each column can be
calculated step by step from the knowledge of the cross over currents in the previous
column [9]. The matrix approach, described in detail i n [10] consists in expressing
this relation in a matrix form.

In [9] it was shown that the Morgan's solution is only a particular solution of the
general system of equations, which can be obtained imposing that the cross over
currents of a certain column are all equal to the corresponding cross over currents of
the previous column. Instead, a general solution of the system equations is
characterised by the fact that the cross over currents of the (k+N)th column are equal to
those of the kth column, where k is the index of the column. This means that the cross
over currents between any two strands of the cable are the same after every pitch
length. The effects of sinusoidal distributions of the magnetic field along finite cables
samples was analysed in [11], with the conclusion that the eddy currents distribution
is pseudo-periodic if the period of the magnetic field oscill ations exactly coincides
with the cable twist pitch, and is periodic in the other cases.
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In [4] the network model was applied to the study of the generation and development
of the BICC's, due to longitudinal variations of the cross contact resistances or of the
magnetic field perpendicular to the broad face of the cable, obtaining a good
agreement with experimental data.
The network model describes in great detail every cross contact between the strands of
the two layers, and gives local information about the currents flowing in every strand
and in the cross contact resistances, and the power dissipated in the cable. It can take
into account variations of the cable parameters across the cable width and simulate the
generation and the development of short and long range coupling currents. The main
drawback of this model is that the number of unknowns is very high, growing quickly
with the cable size. This makes it very diff icult to study the problem of current
distribution in real long cables made of some tens of strands used in superconducting
accelerator magnets. Moreover, one needs to include a fit parameter (the strand
effective resistivity) in order to match the experimental data [4].

To overcome these drawbacks, we have developed a complete “continuum model” of
multistrand superconducting cables [14, 15].
Our aim in the present work is to model correctly and in an optimised way the time
dependent long range coupling currents, neglecting an accurate evaluation of the short
range coupling currents. The way to calculate the steady state “supercurrents” in
multistrand cables was suggested in [5]. The approach adopted there was to compute
the total flux linked to two generic strands as the product of the area of the elementary
loop formed by the two strands and the local value of the magnetic flux density. The
steady state current in each strand can then be calculated considering the N-1
contributions given by the driving voltages induced in the loops formed by the strand
considered and all the others. If the magnetic flux density change is applied to more
than one loop a superposition of the effects of the different loops is calculated and the
final currents in the strands are found.

The diff iculty increases when all the cable strands are considered together, and the
mutual dynamic interactions of the strand currents are taken into account to evaluate
their time dependence. A simpli fied modelli ng of this situation was proposed in [16],
where a single strand is considered and all the rest of the cable is lumped in another
idealised strand, with which the current exchange takes place. An equivalent
inductance of the strand and of all the rest of the cable, as well as an equivalent
conductance between these two elements is evaluated, and the equation of current
diffusion between the strand and the rest of the cable is then solved.

In this paper we introduce a complete “continuum” representation of the Rutherford
cables, based on a distributed parameters circuit. In the next sections the model is
developed and applied to the calculation of the current distribution in the presence of
different longitudinal profiles of the magnetic flux density perpendicular to the cable
axis.
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2. Model description

2.1. Equations of the model

The model assumes that each strand carries a current distributed in a uniform way in
its cross section, neglecting the influence of interfilament coupling currents flowing
inside each strand between different superconducting filaments. We also assume that
the current transfer between different strands happens along the length of the cable in
a continuous manner. Under these assumptions we can derive approximate equations
governing the current distribution in the cable.

To do so, we consider a superconducting cable made by N strands, and we examine
the elemental length dx. Over this length the strands have parallel resistances Ri = ri

dx, (i=1, N), where ri are the longitudinal resistances per unit length of cable (zero if
the strand is in the superconducting state). The self inductances of the strands are
indicated with Lii = lii dx where lii (i=1,N) are artificial parameters which we
temporarily introduce. In the final equations only differences between these
parameters appear, which have the physical meaning of per unit length induction
coeff icients. Finally, each strand can have an external voltage source Vext

i = vext

i dx, that
can be originated, for instance, by changes of the magnetic field flux due to external
sources linked to a couple of strands. This idealised situation is represented
schematically in Fig. 2.

The strands have initial currents ii and voltages Vi at the coordinate x. Over an
elemental length dx the currents will change by dii because of the current transfer
through the interstrand contact resistances Rhk = 1/(ghk dx), where ghk is the interstrand
conductance per unit length. Similarly the voltages will drop by dVh due to the parallel
resistance, inductance and the voltage source. Applying the Kirchhoff’ s current law to
the N nodes, we obtain the following N dependent equations for the current variations:
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where Vh is the voltage of strand h at position x.

Applying the Kirchhoff’ s voltage law to evaluate the voltage drops along the
elemental mesh identified, and neglecting the inductive coupling for all sections, but
for the one of length dx located at x, we obtain the following equations:
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In addition, the solution is subject to a condition that expresses the conservation of the
total operation current iop(t) in the cable cross section. We can write this condition as:
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that must hold at any point in time and space. The equations above can be
conveniently put in the following matrix form to ease the further algebra:
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where we have defined the following vectors and matrices:
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(5b).

If we calculate the space derivative of equation (4b) assuming that the interstrand
conductances are uniform along the cable axis, so that the spatial derivative of the
interstrand conductances matrix g is nil , we obtain the following differential equations
for the currents in the strands:
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These are parabolic differential equations that describe the processes of current
diffusion along the cable. The N equations in system (6) are linearly dependent, due to
the application of the Kirchhoff 's current law to all the nodes of the distributed circuit
in the elemental mesh of length dx. However we can arbitrarily consider N-1
equations for the currents in the first N-1 strands and couple them to equation (3). In
this way we obtain a complete set of N independent partial differential equations for
the currents in the strands at any time and position:
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where we indicate with (gl)i, j the element i, j of the result of the matrix product gl.
These equations are in general not linear because the strand resistance depends on the
current flowing in the strands, so that an appropriate model for the strand behaviour
has to be chosen. Finally the appropriate length for the smearing of the system
parameters (resistance, inductance and external voltage) has to be chosen. As
multistrand superconducting cables have an intrinsic periodicity related to the twist
pitch, good choices of the length for the smearing of electric parameters are
appropriate multiples or fractions of the pitch. Once the parameters for matrices g and
l are experimentally evaluated or calculated, the finite element method can be applied
to solve system (7). The equations of the model developed in [7] for a two strands
cable can be easily derived as a particular case of system (6).

2.2. Initial conditions

In order to solve system (7) by means of the finite element method it is necessary to
fix the initial current distribution among the cable strands. The only physical situation
in which a clear condition on strand currents can be set is at zero total current before
any current ramp, when the following initial conditions hold:

Nhxih ,10)0,( == (8).

A simple way to obtain this condition with a real magnet is to make it quench, so that
the long “memory” of persistent currents flowing in the strands can be erased. In other
cases, after a suff iciently long time from the last operation current variation, a simply
resistive current distribution is established between the strands. As a starting point for
the calculations, it can be assumed that the initial current distribution is uniform, i. e.:
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i
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2.3. Boundary conditions

The choice of the correct boundary conditions is quite delicate. In fact, in order to
correctly model the connection of a multistrand superconducting cable to another
cable through a termination or to a current lead through a joint, it would be necessary
to have a complete description of the whole system (joint + cable + joint). However,
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two reasonable choices of boundary conditions can be identified, which describe
different properties of the actual cable end surfaces. If we consider the end surfaces to
be equipotential, we can write:

LxxNhxvxv hh ==−== + ,01,1)0,()0,( 1 (10).

This condition implies that the voltage differences between all the strands and strand
N are nil:

LxxNhxeh ==−== ,01,10)0,( (11)

where we have defined:

),(),(),( txvtxvtxe nhh −= (12).

Applying the method of analysis based on nodes potentials, we can write system (4b)
in terms of the voltage differences eh (h= 1, N), obtaining a set of N-1 independent
equations:
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The possibilit y to invert system (13) guarantees that a condition equivalent to (10) can
be written for the space derivatives of the longitudinal currents in the strands:
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As the operation current is only a function of time, from equation (3) it can be
deduced that the condition (14) holds for the Nth strand as well , so that the complete
boundary conditions in the equipotential end surfaces case can be written as:
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Another possibilit y is to assume that the current distribution is uniform at the cable
ends, imposing the following boundary conditions:
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Different kinds of boundaries can in principle be described by an accurate choice of
the model parameters at the cable ends.

2.4. Contact conductances per unit length

In order to define the smeared interstrand conductances, we consider that each strand
crosses every other strand in two points per twist pitch. Indicating with Rc

h,k the
interstrand cross contact resistance between strand h and strand k, and with Lp the
cable twist pitch, the cross contact conductance per unit length is given by the
following expression:

c
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c
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g
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The description of the cross contact resistance between strands given by the network
model is closer to the physical reality of the cross contacts than that given by the
continuum model, while a better representation of the contact between adjacent
strands is given by the present model.

However, in order to make comparisons with the network model, and to consistently
calculate the interstrand adjacent conductances, we consider that in the most advanced
versions of the network model [4, 10], a lumped contact resistance Ra 

h,k is inserted
between two adjacent strands at the same positions in which they have cross contacts
with the strands of the other layer. Every strand crosses all the other strands in two
points per twist pitch, so that a total of 2 (N-1) lumped resistances are inserted along a
twist pitch between each pair of adjacent strands. The equivalent adjacent conductance
per unit length results in:
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2.5. Mutual inductances matrix

For the calculation of the matrix of mutual inductances we assume the current density
to be uniform inside each strand. The strands are considered to be made of straight
cylinders layered alternatively in the upper and lower face of the cable. Starting from
a generic position along the cable axis we consider all the cylinders of each strand
within a certain number of cable pitches, in order to smear the periodic variations of
the inductances matrix along the cable axis.

If we consider p pitches of cable the total number of cylinders for each strand
introduced in the calculations is equal to 2p or 2p + 1, depending on the strand chosen.
As an example, the cylinders considered for the calculation of the mutual inductances
matrix for strand 1 (2 cylinders) and strand 3 (3 cylinders) in the case of a calculation
for 1 pitch are shown in Fig. 1. The mutual inductance between a generic cylinder i of
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strand h and a generic cylinder j of strand k is calculated by means of an adaptive
recursive numerical integration of the following formula:
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where Ωs is the area of the strand cross section, µ0 is the permeabilit y of vacuum, uh, i

and uk, j are unit vectors tangent to the axis of the strands, and Vh, i , Vk, j are the volumes
of the strands segments. Once the mutual inductances between all the strand sectors
are known, the elements of the matrix of the self and mutual inductances per unit
length can be calculated as follows:

P

hC

i jkih

kC

j

kh pL

M

l

∑∑
= =

=

)(

1 ,,,

)(

1

, (20)

where C (h) is the number of cylinders owing to strand h along the p pitches
considered. It is worth remarking that the absolute values of the mutual induction
coeff icients change with the number of cable pitches chosen for the smearing.
However, only differences between these coeff icients appear in the final equations in
the matrix gl. We have verified that the elements of matrix gl are quickly convergent
with the number of pitches, obtaining a constant value within 6 - 7% after 10 twist
pitches. As we are interested to study effects that involve many twist pitches (up to the
whole cable length), we believe that in general these variations do not affect
substantially the final current distribution, and we have verified it in the test cases
reported in the following sections.

2.6. Longitudinal resistance

The strand longitudinal resistance is in general dependent on the magnetic flux density
B, on the temperature T, and on the current flowing in the strand. Once the
longitudinal resistance per unit length of the strand rs,h is known, the longitudinal
resistance per unit length of cable rh can be found as:
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r
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where α is indicated in Fig. 1.

2.7. External voltage per unit length

The external voltage per unit length can be defined in the following way:
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where Aext is the magnetic vector potential associated with the external sources, uh is
the unit vector tangent to the axis of strand h. This definition guarantees that the
integral effect of the difference vext

h - v
ext

k along any loop formed by two generic strands
h and k provides a driving force equivalent to the time derivative of the magnetic flux
linked to the loop.

3. Comparison with the network model

We have applied the model to the evaluation of currents induced by longitudinal
variations of the external field perpendicular to the broad face of the cable. A
comparison between the results obtained with the continuum and the network model
ill ustrated in [4] is shown in Fig. 3 in the case of a simple step variation of the
magnetic field along the cable axis. As far as possible the same conditions as in [4]
have been used for the simulations. The cable considered is a 16 strands cable, with
Rc

h,k = 1 µΩ, Ra

h,k = 10 µΩ for every h and k and LP = 100 mm. The cable is exposed to
a time dependent magnetic field perpendicular to its broad face equal to 0 for x < L/2
and increasing with a rate of 0.01 T/s for x > L/2. It was assumed in [4] that the strand
can be characterised by a constant and uniform longitudinal effective strand
resistivity. For the sake of comparison, we have introduced a uniform and constant
longitudinal resistance per unit length rh, and we have evaluated the strand currents at
the final steady state for two different values of rh, equal to 1.54 10-8 Ω/m and 1.54 10-
11 Ω/m.

In the case reported in Fig. 3 the short range coupling currents due to the uniform field
applied at the right of x = L/2 are superimposed to the main long range coupling
currents due to the field variation at x = L/2. It can be noticed that the qualitative
behaviour of the BICC's obtained with the two models is very similar in both the
current distribution regimes shown. Only a quantitative difference in the range 5-20%
on the maximum amplitude of the BICC's is found. This could be due to the slightly
different description of the geometry of the cable made in the two models. The present
model in fact is based on the simple geometry ill ustrated in Fig. 1, with a
discontinuous jump of the strands from one layer to the other. In the model described
in [4] instead, the strands go from one layer to the other via short side cylinders.

In the evaluation of the short range coupling currents, instead, the two models
strongly differ. In fact, the amplitude of these currents obtained with the continuum
model is about half of that obtained through the network model. This is due to the
smearing of the system parameters performed in the continuum model and can be
confirmed by an analytical calculation of the short range coupling currents in the
simple case of a two strand cable made of an integer number of pitches to which an
uniform time dependent magnetic field is applied.

As anticipated in the introduction, our aim here is to model correctly the behaviour of
the long range coupling currents, neglecting the influence of short range coupling
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currents. For this reason we have tried to find the minimum number of mesh points
needed for a correct evaluation of the long range BICC's. We have found that with 2
mesh points per pitch the main BICC's can be very well approximated for the case-
study previously described (see Fig. 4). If the longitudinal variations of the time
derivative of the field were less sharp, appropriate meshing strategies could lead to
even larger meshes.

Considering that in the network model there are (5N-3) unknowns per calculation
band, and N bands per pitch, we end up with a total of (5N-3)⋅N unknowns per pitch.
In the actual implementation of the continuum model a point collocation method [17]
has been used for the numerical solution of system (7), with two gaussian points per
elemental mesh. This results in a total of 2MPN unknowns per pitch, where MP is the
number of mesh points per pitch. The ratio of the number of unknowns per pitch of
cable in the two models is then equal to:

PM

N

2

)3(5 −=ℜ (23)

In the case reported in Fig. 4 ℜ is approximately equal to 16. This leads to a
remarkable computational advantage, which allows the application of the continuum
model to the study of real long Rutherford cables operating in accelerator magnets.

4. Comparison with experimental data

We have applied the continuum model to the evaluation of BICC's in the inner layer
cable of a short LHC dipole model. This dipole has been extensively measured to
evaluate the dependence of the amplitude of the periodic oscill ations of the magnetic
field in the magnet bore (called "magnetic field periodic pattern") on the powering
history of the magnet [18].

The coil has two poles assembled from an inner and an outer layer. The inner layer of
a single pole is wound from 15 turns arranged into 3 blocks, while the outer layer has
26 turns arranged in 2 blocks corresponding to different angular positions, as shown in
Fig. 5. The layers in a pole are wound individually, and the cable ends are either
soldered together at the interconnection between layers and poles or connected
through splices to the current leads. We assume that the magnetic field pattern is only
related to the current distribution in the inner layer cable, because the periodicity of
the field oscill ation is exactly coincident with the inner layer cable twist pitch. We
have simulated the current diffusion in the upper pole part of the inner layer cable.
This part of cable is made of 28 strands, with a total length of 27.8 meters, a twist
pitch of 115 mm., and a thickness of 1.88 mm. The cable has been exposed to current
cycles made of a linear ramp up + plateau, with different ramp rates and flat top
currents.

In order to simulate the current distribution during these cycles, we have calculated
with ROXIE [19] the magnetic field perpendicular to the broad face of the cable. We
have considered for the simulations the average value of the field across the cable
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width, neglecting the field variations in the y direction, and we have applied it along
the developed length of the cable axis. Moreover, we have taken the field proportional
to the total current in the magnet, neglecting the iron saturation at high magnetic
fields.

The results of simulations are reported in Fig. 6 for a current step with a ramp rate of
50 A/s and a final current of 2000 A. The magnetic field perpendicular to the cable
face shows strong, short range longitudinal variations due to the cable bending over
the magnet bore. It can be noticed that soon after the beginning of the ramp sharp
current spikes appear in these regions of high field gradient (Fig. 6a). At the end of the
field ramp the correspondence between the field profile and the current pattern is less
evident (Fig. 6b). After 1000 s from the beginning of the current flat top, we note a
remarkable current difference between the strand currents, but the correspondence
with the field profile is lost (Fig. 6c).

In order to compare the calculated and measured results, we assume that the amplitude
of the magnetic field periodic pattern is proportional to the differences between the
currents flowing in the strands. In particular we take the values of the maximum
difference between the strand currents in the middle of the uniform field regions, ∆Imax,
as a reference quantity for a qualitative comparison with the amplitude of the
magnetic field pattern measured outside the cable next to these positions.

In Fig. 7 we compare the amplitude of magnetic field pattern at position A in the cross
section (r = 17 mm. and θ = 35°, Fig. 5) and parameter ∆Imax calculated for turn 7-a
which faces the point selected. The behaviour of the amplitude of the pattern is
qualitatively similar to that of the maximum current difference, both respecting the
typical feature of the response to current steps shown by a two strand cable in a much
simpler situation [7].

This qualitative agreement is reinforced by the fact that the measured amplitude of
magnetic field pattern at the end of the ramps, and the calculated values of ∆Imax at the
same time, show the same kind of dependence on the current ramps parameters. These
two quantities are in fact linearly dependent on the final flat top current and
approximately independent on the ramp rate.

5. Conclusions

A continuum representation of superconducting Rutherford cables has been developed
for the evaluation of long range eddy currents generated by time dependent magnetic
fields applied to the cable. The results on the current distribution pattern are in good
agreement with those obtained with a network model of the cable in the case of a
simple step-like distribution of the magnetic field perpendicular to the cable axis. The
computational advantages of the present model allow to simulate the current
distribution in real long cables used in magnets. A qualitative agreement between the
results on current distribution in the inner cable of an accelerator dipole and the
experimental data on the magnetic field pattern generated inside the magnet bore has
been obtained.
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Fig. 1 Top view of the idealised geometry of the strand axes of a Rutherford cable used for the
continuum model. The thick lines represent the strand segments of strand 1 and 3 considered for the
calculation of the mutual inductances matrix along one pitch. The shaded areas represent the N-1 loops
used in Morgan's network model, and as elemental calculation bands in the following versions of the
network model.
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Fig. 2 Distributed circuit model of the elemental mesh of cable used in the continuum model
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Fig. 3 Comparison between network and continuum model: behaviour of Boundary
Induced Coupling Currents in a 16 strands Rutherford cable at the regime condition in
the case of a step-like spatial distribution of the magnetic flux density perpendicular to
the broad face of the cable. a) rh = 1.54 10 -8 Ω/m b) rh = 1.54 10 -11 Ω/m.
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Fig. 4 Comparison between two different calculations performed with the continuum
model in the same cases reported in Fig. 3. The two calculations are performed with a
different number of mesh points per pitch, showing that the main BICC's can be well
described with only two mesh points per pitch.
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Fig. 5 Cross section of one aperture of the double aperture dipole model MBSMT1
used in the experiments.
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Fig. 6 Behaviour of the currents in two strands of the 28 strand cable along the cable
length at different times. RR = 50 A/s IFT= 2000 A a) t = 3.85 s (soon after ramp start)
b) t=39 s (end of the ramp) c) t=1039 s (end of the plateau). The dotted line indicates
the main background magnetic field perpendicular to the cable axis calculated at iOP =
11500 A.
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