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Summary

A model for the simulation of current distribution in superconducting Rutherford cables is described.
The model assumes that interstrand currents can flow continuously among the strands, as if the
contact resistances were smeared along the cable length. The model is aimed at the simulation of the
generation and development of long range current loops in the presence of time dependent magnetic
fields. The results of the model are compared with those obtained through the lumped constants circuit
model currently used to calculate the current distribution in Rutherford cables obtaining a good
quantitative agreement. The model has also been applied to the study of current distribution in the
Rutherford cable of a short LHC dipole magnet. The calculated values of current differences among the
strands are in qualitative agreement with experimental data on the amplitude of the periodic
oscillations of the magnetic field in the magnet bore.

1. Introduction

Supercondicting cables are made of a number of multifilamentary composites
(strands) consisting d many supercondwcting filaments embedded in a matrix of
normal metal. The strands are then twisted or transposed together to buld the find
cable. The gplicaion d current ramps or time dependent externa fields to
multi strand cables generates sreening currents in bah the superconducting filaments
and the normal metal matrix. Severa methods have been proposed to study the
resulting eddy currents and the crrespondng AC losses [1-3]. The study d these
currents is beyondthe scope of this work.

We focus our attention onthe study o the eddy currents distribution which isinduced
by time dependent magnetic fields in the paths formed by the @mntads between the
different strands of the multistrand cable. These interstrand eddy currents are
superimposed to the intrastrand eddy currents, bu the gpproximation to study the two
phenomena independently is widely accepted, because of the different time wnstants
of the two current distributions.



Two main kinds of interstrand eddy currents can be distingushed, namely short and
longrange couping currents. The last ones are often indicated as "Boundary Induced
Couping Currents' (BICC's) [4] or "Supercurrents’ [5-7]. The short range couging
currents have atypicd loop length equal to the cdle twist pitch and exhibit time
constants in the range from 0.01to 1 s. The long range @wugding currents can flow
alongthe whaoe cdle length, and have very hightime @nstants, in the range from 10
to 10 sin pradicd cables. Their amplitude can be orders of magnitude higher than
that of the short range augding currents.

In the cae of Rutherford cables, in which the strands are compressd to form a flat,
two layers, cable, a network model has been developed to study the aurrent
distribution among the strands. One of the ealiest presentations of this model was
given by Morgan in 1973[8], and assumes that the strands in ore layer have dedricd
contads with those in the other layer, bu not between themselves. Morgan reports
that “a direa applicaion d Maxwell‘s equations to a flat meta-filled braid was
attempted bu dropped owing to the non isotropic structure of the cadle”. For this
resson he developed a lumped-constant circuit approach. In the Morgan’s model the
Faraday’s and Kirchhdf' s equations are gplied to al the loops formed by two
adjacent strands of one layer crossng any two adjacent strands of the other layer. The
braid is assumed to be infinitely long with uriform cross contad resistance and
uniform field alongthe cdle length, even if field variations aaossthe cdle width are
allowed. In this way only N-1 independent loops have to be solved, where N is the
total number of strands (seeFig. 1). The solution foundfor the cossover currents at
an arbitrary paosition is then considered to be uniformly repeded along the cale
length.

In more alvanced versions of the network model [4, 913] the N-1 loops considered
by Morgan become the comporents of the basic units for the cdculation d the arrent
distribution (cdled ‘cdculation bands [4] or ‘columns [9]), alowing to consider
longtudinal variations of the magnetic flux density aong the ca&le length. A
complete set of equations is written for all the wlumns, applying Faraday’s laws to
the N-1 loops of ead column. The aoss over currents in ead column can be
cdculated step by step from the knowledge of the aossover currents in the previous
column [9]. The matrix approad, described in detail in [10] consists in expressng
thisrelationin amatrix form.

In [9] it was $hown that the Morgan's lution is only a particular solution d the
general system of equations, which can be obtained impasing that the aoss over
currents of a cetain column are dl equal to the crrespondng crossover currents of
the previous column. Instead, a general solution d the system equations is
charaderised bythe fad that the cossover currents of the (k+N)" column are eual to
those of the k" column, where k is the index of the @lumn. This means that the aoss
over currents between any two strands of the cdle ae the same dter every pitch
length. The dfeds of sinusoidal distributions of the magnetic field alongfinite cdles
samples was analysed in [11], with the conclusion that the eddy currents distribution
IS pseudo-periodic if the period d the magnetic field oscill ations exadly coincides
with the cdle twist pitch, andis periodic in the other cases.



In [4] the network model was applied to the study d the generation and development
of the BICC's, due to longtudinal variations of the @osscontad resistances or of the
magnetic field perpendicular to the broad face of the cdle, oltaining a good
agreament with experimental data.

The network model describesin grea detail every crosscontad between the strands of
the two layers, and gves locd information abou the aurrents flowing in every strand
and in the aosscontad resistances, and the power disdpated in the cdle. It can take
into acourt variations of the cadle parameters aaossthe cdle width and simulate the
generation and the development of short and long range couging currents. The main
drawbadk of this model is that the number of unknownsis very high, gowing quckly
with the cdle size This makes it very difficult to study the problem of current
distribution in red long cables made of some tens of strands used in supercondtcting
acceerator magnets. Moreover, ore needs to include a fit parameter (the strand
effediveresistivity) in order to match the experimental data[4].

To owvercome these drawbadks, we have developed a complete “continuum model” of
multi strand supercondicting cebles [14, 15.

Our aim in the present work is to model corredly and in an optimised way the time
dependent longrange muging currents, negleding an acarrate evaluation d the short
range wuping currents. The way to cadculate the stealy state “supercurrents’ in
multi strand cables was suggested in [5]. The gproach adopted there was to compute
the total flux linked to two generic strands as the product of the aeaof the dementary
loop formed by the two strands and the locd value of the magnetic flux density. The
steady state aurrent in ead strand can then be cdculated considering the N-1
contributions given by the driving vdtages induced in the loops formed by the strand
considered and al the others. If the magnetic flux density change is applied to more
than ore loopa superposition d the dfeds of the different loops is cdculated and the
final currentsin the strands are found.

The difficulty increases when all the cdle strands are mnsidered together, and the
mutual dynamic interadions of the strand currents are taken into acount to evaluate
their time dependence A simplified modelling d this stuation was propaosed in [16],
where asingle strand is considered and all the rest of the cdle is lumped in ancther
idedised strand, with which the aurrent exchange takes place An equivaent
inductance of the strand and d al the rest of the cdle, as well as an equivalent
condwctance between these two elements is evaluated, and the equation d current
diffusion between the strand and the rest of the caleis then solved.

In this paper we introduce a omplete “continuum” representation d the Rutherford
cables, based on a distributed parameters circuit. In the next sedions the modd is
developed and applied to the cdculation d the airrent distribution in the presence of
different longtudinal profiles of the magnetic flux density perpendicular to the cale
axis.



2. Model description

2.1. Equations of the model

The model assumes that ead strand carries a arrent distributed in a uniform way in
its cross ®dion, regleding the influence of interfilament couging currents flowing
inside eab strand between dfferent supercondicting filaments. We dso assume that
the aurrent transfer between dff erent strands happens along the length of the cadlein
a @ntinuows manner. Under these asumptions we can derive gproximate equations
governing the arrent distributionin the cdle.

To doso, we @mnsider a supercondicting cable made by N strands, and we examine
the demental length dx. Over this length the strands have parallel resistancesR = r,
dx, (i=1, N), where r, are the longtudinal resistances per unit length of céble (zero if
the strand is in the supercondicting state). The self inductances of the strands are
indicaed with L, = |, dx where |, (i=1,N) are atificial parameters which we
temporarily introduce In the fina equations only differences between these
parameters appea, which have the physicd meaning d per unit length induction
coefficients. Finaly, ead strand can have an external voltage source V™ = v* dx, that
can be originated, for instance, by changes of the magnetic field flux due to external
sources linked to a mude of strands. This idedised situation is represented
schematicdly in Fig. 2.

The strands have initial currents i, and vdtages V, a the wordinate x. Over an
elemental length dx the aurrents will change by di, because of the aurrent transfer
throughthe interstrand contad resistances R, = 1/(ghk dx), where g, is the interstrand
conduwctance per unit length. Similarly the voltages will drop bydV, due to the parall e
resistance, inductance and the voltage source Applying the Kirchhdf' s current law to
the N nodes, we obtain the following N dependent equations for the aurrent variations:
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whereV, isthe voltage of strand h at position x.

Applying the Kirchhdf's voltage law to evaluate the voltage drops aong the
elemental mesh identified, and regleding the inductive couging for all sedions, bu
for the one of length dx located at x, we obtain the foll owing equations:

N
av, =vdx —irdx— Zlhkdxa—I h=1N 2

In addition, the solutionis subjed to a condtion that expresses the onservation d the
total operation current i (t) in the cdle aoss ®dion. We can write this condtion as:
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; iy =i (t) (3)

that must hold at any pdnt in time and space The euations above can be
conveniently put in the foll owing matrix form to ease the further algebra:
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where we have defined the following vedors and matrices:
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If we cdculate the space derivative of equation (4b) asuuming that the interstrand
condwctances are uniform along the cale ais, so that the spatial derivative of the
interstrand condictances matrix g is nil, we obtain the foll owing dff erential equations
for the arrentsin the strands:
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These ae parabdic differential equations that describe the processes of current
diffusionaongthe cdle. The N equations in system (6) are linealy dependent, due to
the goplicaion d the Kirchhdf's current law to all the nodes of the distributed circuit
in the demental mesh o length dx. However we can arbitrarily consider N-1
equations for the aurrents in the first N-1 strands and coupe them to equation (3). In
this way we obtain a complete set of N independent partial differential equations for
the aurrentsin the strands at any time and pasition:
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where we indicae with (gl), ; the éement i, j of the result of the matrix product gl.

These gquations arein general not linea becaise the strand resistance depends on the
current flowing in the strands, so that an appropriate model for the strand kehaviour
has to be diosen. Finaly the gpropriate length for the smeaing d the system
parameters (resistance, inductance and external voltage) has to be dosen. As
multi strand supercondtcting cables have an intrinsic periodicity related to the twist
pitch, good choices of the length for the smeaing d eledric parameters are
appropriate multi ples or fradions of the pitch. Once the parameters for matrices g and
| are experimentally evaluated or cdculated, the finite dement method can be gplied
to solve system (7). The equations of the model developed in [7] for a two strands
cable can be eaily derived as a particular case of system (6).

2.2. Initial conditions

In order to solve system (7) by means of the finite dement method it is necessary to
fix theinitia current distribution amongthe cale strands. The only physicd situation
in which a dea condtion onstrand currents can be set is at zero tota current before
any current ramp, when the following initial condtions had:

i (x0)=0 h=1N (8).

A simple way to oltain this condtion with ared magnet is to make it quench, so that
thelong“memory” of persistent currents flowing in the strands can be eased. In ather
cases, after a sufficiently longtime from the last operation current variation, a smply
resistive aurrent distribution is establi shed between the strands. As a starting pant for
the cdculations, it can be asumed that theinitial current distributionisuniform, i. e.:
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2.3. Boundary conditions

The dhoice of the corred boundxry condtions is quite delicae. In fad, in order to
corredly model the @mnredion d a multistrand supercondwcting cable to ancther
cable througha termination a to a aurrent lead throughajoint, it would be necessary
to have acomplete description d the whaole system (joint + cadle +joint). However,



two reasonable choices of boundry condtions can be identified, which describe
different properties of the ad¢ual céble end surfaces. If we mnsider the end surfaces to
be equipatential, we can write:

v, (X,0) =v,,; (x,0) h=LN-1 x=0,x=L (20).

This condtion implies that the voltage differences between al the strands and strand
N are nil:

e, (x,0=0 h=L,N-1 x=0,x=L (11
where we have defined:

& (1) =V, (xt) =V, (X,1) (12).
Applying the method d analysis based on nods potentias, we can write system (4b)

in terms of the voltage differences e, (h= 1, N), oltaining a set of N-1 independent
equations:
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The posshility to invert system (13) guarantees that a andtion equivaent to (10) can
be written for the spacederivatives of the longtudinal currentsin the strands:

9% _0 h=1N-1 x=0 x=L (14).
0X

As the operation current is only a function d time, from equation (3) it can be
deduced that the cndtion (14) hads for the N" strand as well, so that the mmplete
boundry condtionsin the equipatential end surfaces case can be written as:

ai,
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Ancther posshility is to assume that the aurrent distribution is uniform at the céle
ends, impaosing the following boundry condtions:
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Different kinds of boundxries can in principle be described by an acarate dhoice of
the model parameters at the cale ends.

2.4. Contact conductances per unit length

In order to define the smeaed interstrand condictances, we onsider that ead strand
crosses every other strand in two pdnts per twist pitch. Indicaing with R, the
interstrand cross contad resistance between strand h and strand k, and with L the
cable twist pitch, the aoss contad condictance per unit length is given by the
foll owing expresson:

2
Lp R‘r?,k

(17)
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The description d the a@osscontad resistance between strands given by the network
mode is closer to the physicd redity of the aoss contads than that given by the
continuum model, while a better representation d the @ntad between adjacent
strandsis given bythe present model.

However, in order to make amparisons with the network model, and to consistently
cdculate the interstrand adjacent condwctances, we consider that in the most advanced
versions of the network model [4, 1(, a lumped contad resistance R*,, is inserted
between two adjacent strands at the same pasitions in which they have aosscontads
with the strands of the other layer. Every strand crosss all the other strands in two
points per twist pitch, so that atotal of 2 (N-1) lumped resistances are inserted donga
twist pitch between ead pair of adjacent strands. The equivalent adjacent condwctance
per unit length resultsin:
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2.5. Mutual inductances matrix

For the cdculation d the matrix of mutua inductances we asume the arrent density
to be uniform inside eab strand. The strands are nsidered to be made of straight
cylinders layered alternatively in the upper and lower faceof the cdle. Starting from
a generic paosition along the cale ais we consider all the g/linders of ead strand
within a cetain nunber of cable pitches, in order to smea the periodic variations of
the inductances matrix alongthe cdle ais.

If we oonsider p pitches of cable the total number of cylinders for ead strand
introduced in the cdculationsisequal to 2p or 2p + 1, depending onthe strand chosen.
As an example, the gylinders considered for the cdculation d the mutual inductances
matrix for strand 1(2 cylinders) and strand 3(3 cylinders) in the cae of a cadculation
for 1 pitch are shown in Fig. 1. The mutual inductance between a generic cylinder i of



strand h and a generic cylinder j of strand k is caculated by means of an adaptive
reaursive numerica integration d the foll owing formula:

M Ui d3 'd®x 19
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where Q. isthe aeaof the strand cross gdion, |, is the permeébility of vaaum, u,

andu, ; are unit vedors tangent to the ais of the strands, andV, ,, V, arethevolum&s
of the strands ggments. Once the mutual inductances between all the strand sedors
are known, the dements of the matrix of the self and mutual inductances per unit

length can be cdculated as foll ows:
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where C (h) is the number of cylinders owing to strand h along the p pitches
considered. It is worth remarking that the @solute values of the mutual induction
coefficients change with the number of cable pitches chaosen for the smeaing.
However, ony diff erences between these wefficients appea in the final equations in
the matrix gl. We have verified that the dements of matrix gl are quickly convergent
with the number of pitches, oltaining a wmnstant value within 6 - 7% after 10 twist
pitches. Aswe ae interested to study eff eds that involve many twist pitches (up to the
whole cdle length), we believe that in general these variations do nd affed
substantially the final current distribution, and we have verified it in the test cases
reported in the foll owing sedions.

2.6. Longitudinal resistance

The strand longtudinal resistanceisin general dependent onthe magnetic flux density
B, on the temperature T, and on the arrent flowing in the strand. Once the
longtudinal resistance per unit length of the strand r, is known, the longtudinal
resistance per unit length of cabler, can befoundas:

(21)
sina

where a isindicaed in Fig. 1.

2.7. External voltage per unit length

The external voltage per unit length can be defined in the foll owing way:
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where A* is the magnetic vedor patential asciated with the external sources, u, is
the unit vedor tangent to the ais of strand h. This definition guarantees that the
integral effed of the differencev™, - v, dongany loopformed by two generic strands
h and k provides a driving force euivalent to the time derivative of the magnetic flux
linked to the loop.

3. Comparison with the network model

We have gplied the model to the evaluation d currents induced by longtudinal
variations of the externa field perpendicular to the broad face of the cdle. A
comparison ketween the results obtained with the continuum and the network model
illustrated in [4] is down in Fig. 3in the cae of a smple step variation d the
magnetic field along the cale ais. As far as posgble the same @ndtions as in [4]
have been used for the simulations. The cdle mnsidered is a 16 strands cable, with
R.=1uQ, R, =10uQ for every handk and L, = 100mm. The cale is exposed to
atime dependent magnetic field perpendicular to its broad face gual to Ofor x < L/2
andincreasing with arate of 0.01T/sfor x> L/2. It was assumed in [4] that the strand
can be daraderised by a onstant and uriform longtudina effedive strand
resistivity. For the sake of comparison, we have introduced a uniform and constant
longtudinal resistance per unit length r,, and we have evaluated the strand currents at
the final steady state for two different values of r,, equal to 1.54 16 Q/m and 1.54 10
" Q/m.

Inthe caereported in Fig. 3the short range couping currents due to the uniform field
applied at the right of x = L/2 are superimpaosed to the main long range cougding
currents due to the field variation at x = L/2. It can be naticed that the qualitative
behaviour of the BICC's obtained with the two models is very similar in bah the
current distribution regimes shown. Only a quantitative differencein the range 5-20%
on the maximum amplitude of the BICC's is found. This could be due to the dlightly
different description d the geometry of the cdle made in the two models. The present
model in fad is based on the smple geometry illustrated in Fig. 1, with a
discontinuouws jump of the strands from one layer to the other. In the model described
in [4] instead, the strands go from one layer to the other viashort side ¢ylinders.

In the evaluation d the short range cuging currents, insteal, the two models
strongdy differ. In faad, the anplitude of these airrents obtained with the cntinuum
model is abou half of that obtained throughthe network model. This is due to the
smeaing d the system parameters performed in the @ntinuum model and can be
confirmed by an anayticd cdculation d the short range @wugding currents in the
simple cae of atwo strand cable made of an integer number of pitches to which an
uniform time dependent magnetic field is applied.

As anticipated in the introduction, ou am here is to model corredly the behaviour of
the long range @upding currents, negleding the influence of short range wuging
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currents. For this reason we have tried to find the minimum number of mesh pants
needed for a mrred evaluation d the long range BICC's. We have foundthat with 2
mesh pdnts per pitch the main BICC's can be very well approximated for the cae-
study previously described (see Fig. 4). If the longtudina variations of the time
derivative of the field were less $arp, appropriate meshing strategies could lea to
even larger meshes.

Considering that in the network model there ae (5N-3) unknawvns per cdculation
band, and N bands per pitch, we end upwith atotal of (5N-3)[N unknavns per pitch.
In the adua implementation d the continuum model a point collocaion method[17]
has been used for the numericd solution d system (7), with two gaussan pdnts per
elemental mesh. This results in atotal of 2M_N unknowns per pitch, where M, is the
number of mesh pants per pitch. The ratio of the number of unknawns per pitch of
cablein the two modelsisthen equal to:

2M,
In the cae reported in Fig. 4 Ois approximately equal to 16. This leads to a

remarkable computational advantage, which alows the gplicaion d the continuum
model to the study d red longRutherford cables operating in accéerator magnets.

4.  Comparison with experimental data

We have gplied the @mntinuum model to the evaluation d BICC'sin the inner layer
cable of a short LHC dipde model. This dipde has been extensively measured to
eva uate the dependence of the anplitude of the periodic oscill ations of the magnetic
field in the magnet bore (cdled "magnetic field periodic pattern™) on the powering
history of the magnet [18§].

The wil has two pdes assembled from an inner and an ouer layer. The inner layer of
asinge padeiswoundfrom 15 turns arranged into 3 Hocks, while the outer layer has
26turns arranged in 2 Hocks correspondng to different anguar positions, as siown in
Fig. 5. The layers in a pae ae wound individualy, and the cdle ends are ather
soldered together at the interconredion between layers and pdes or conreded
throughsplices to the arrent leads. We assume that the magnetic field pattern is only
related to the aurrent distribution in the inner layer céble, becaise the periodicity of
the field oscill ation is exadly coincident with the inner layer cable twist pitch. We
have simulated the airrent diffusion in the upper poe part of the inner layer cable.
This part of cable is made of 28 strands, with a total length of 27.8 meters, a twist
pitch of 115mm., and a thicknessof 1.88mm. The cdle has been expased to current
cycles made of a linea ramp up + plateau, with dfferent ramp rates and flat top
currents.

In order to simulate the airrent distribution duing these gy/cles, we have cdculated

with ROXIE [19] the magnetic field perpendicular to the broad faceof the cdle. We
have considered for the simulations the average value of the field aaossthe cdle
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width, regleding the field variations in the y diredion, and we have gplied it along
the developed length of the cdle ais. Moreover, we have taken the field propational
to the total current in the magnet, negleding the iron saturation at high magnetic
fields.

The results of simulations are reported in Fig. 6for a aurrent step with a ramp rate of
50 A/s and a final current of 2000A. The magnetic field perpendicular to the cale
faceshows grong, short range longtudinal variations due to the cale bending ower
the magnet bore. It can be noticed that soon after the beginning d the ramp sharp
current spikes appea in these regions of highfield gradient (Fig. 6a). At the end d the
field ramp the @rrespondence between the field profile and the aurrent pattern is less
evident (Fig. 6b. After 1000s from the beginning d the arrent flat top, we note a
remarkable aurrent difference between the strand currents, but the crrespondence
with thefield profileislost (Fig. €c).

In order to compare the cdculated and measured results, we asume that the amplitude
of the magnetic field periodic pattern is propationa to the differences between the
currents flowing in the strands. In particular we take the values of the maximum
diff erence between the strand currents in the midd e of the uniform field regions, Al _,
as a reference quantity for a qualitative mmparison with the amplitude of the
magnetic field pattern measured ouside the cdle next to these positions.

InFig. 7we mmpare the anplitude of magnetic field pettern at position A in the aoss
sedion (r = 17 mm. and 6 = 35°, Fig. 5 and parameter Al cdculated for turn 7-a
which faces the point seleded. The behaviour of the amplitude of the pattern is
qualitatively similar to that of the maximum current difference, bah respeding the
typicd feaure of the resporse to current steps shown by atwo strand cable in a much
simpler situation [7].

This qualitative agreement is reinforced by the fad that the measured amplitude of
magnetic field pettern at the end d the ramps, and the cdculated values of Al _ at the
same time, show the same kind o dependence on the aurrent ramps parameters. These
two quantities are in fad linealy dependent on the fina flat top current and
approximately independent on the ramp rate.

5. Conclusions

A continuum representation d superconducting Rutherford cables has been developed
for the evaluation d longrange aldy currents generated by time dependent magnetic
fields applied to the cdle. The results on the aurrent distribution pettern are in good
agreement with those obtained with a network model of the cdle in the cae of a
simple step-like distribution d the magnetic field perpendicular to the cdle ais. The
computational advantages of the present model allow to simulate the airrent
distributionin red long cables used in magnets. A qualitative agreament between the
results on current distribution in the inner cable of an acceerator dipoe and the
experimental data on the magnetic field pettern generated inside the magnet bore has
been oltained.
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Fig. 1 Top view of the idedised geometry of the strand axes of a Rutherford cable used for the
continuum model. The thick lines represent the strand segments of strand 1 and 3 considered for the
cdculation of the mutual inductances matrix along one pitch. The shaded areas represent the N-1 loops
used in Morgan's network model, and as elemental cdculation bands in the following versions of the
network model.

\Y/ r,dx vV, +dV,

A
A

Fig. 2 Distributed circuit model of the demental mesh of cable used in the cntinuum model
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Fig. 3 Comparison ketween network and continuum model: behaviour of Boundary
Induced Couging Currents in a 16 strands Rutherford cable & the regime condtionin
the cae of astep-like spatial distribution d the magnetic flux density perpendicular to
the broad faceof the cdle. @) r, = 1.54 10° Q/mb) r, = 1.54 10™ Q/m.
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used in the experiments.
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Fig. 6 Behaviour of the aurrents in two strands of the 28 strand cable dongthe cadle
length at different times. RR=50A/s |_=2000A a) t = 3.85s (soon after ramp start)
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the main badkgroundmagnetic field perpendicular to the cdle ais cdculated at i, =

11500A.

19



l’—E‘ N
=4 A |B| at position A experiment 1 100
] 0.8 — Al max Re=10pQ simulation
g — Al mex Rc=20 pQ simulation 1 80
2 06 <
5 M%) 60 &
%:j 0.4 MA%MM <
= + 40
£
<02 — 20

4 R S

0.0 0
-200 0 200 400 600 800 1000 1200
time (s)

Fig. 7Comparison ketween the time evolution d the anplitude of the periodic pattern
in the midde of the uniform field region and that of parameter Al _ caculated at turn
7-a. Timet is %t to zeo at the beginning d the aurrent step, made of alinea increase
up to 2000A with a ramp rate of 50 A/s and a flat top d 1000s at the maximum
current.
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