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1. Introduction

Helium is the only viable coolant for magnets built using low-temperature
superconductors as it has the unique property of maintaining the liquid state till t he
absolute zero [1]. The most common cooling modes range from helium bath (the
superconducting magnet is completely submerged in a pool of helium at uniform
temperature) to natural convection (buoyancy flow is used to etablish a thermal syphon)
to forced flow helium (the magnet is cooled by heat exchange to a forced-flow of helium
in cooling pipes). A common feature to all cooling modes is that magnets built using low
temperature superconductors must be operated in a narrow range of temperatures,
typically between 1.8 K and 4.5 K. Further, independently on the nominal operating
temperature level, they have in common the obvious necessity of having a well known
temperature distribution inside the magnet winding pack, so that the superconducting
material can be operated with a safe margin with respect to the so called current sharing
temperature, where the superconductor starts to transit into the normal conducting state.
Therefore the prediction of the temperature profile inside a superconducting coil , taking
into proper account the presence of the helium coolant, has deserved much attention in



magnet design and testing, and in the development and validation of dedicated computer
procedures (see for instance [2] and the references quoted there).

Here we deal in particular with the solution of the mass, momentum and energy balances
of helium when it is cooled below the lambda transition, a logarithmic anomaly in the
specific heat, and achieves the so called superfluid state. The boundary of the lambda
transition is represented in the (p,T) helium state diagram by the pressure dependent
temperature Tλ(p) called by analogy the lambda temperature. Tλ has been shown
experimentally to be only weakly dependent on pressure, ranging from 1.77 K at the
melting line (at 30 bar) to 2.17 K at the boili ng line (at 50 mbar). Below Tλ helium
becomes a quantum fluid with vanishing apparent flow resistance through narrow
capill aries and anomalously high heat transport capabilit y [1]. Both properties are of
interest for cooling applications because they imply high heat removal potential in
conjunction with littl e pumping work at cryogenic temperature.

A good phenomenological description of these properties is given by the two-fluid model
[1,3-4], which assumes that superfluid helium consists of two interpenetrating fluid
components, a normal fluid and a superfluid. The inviscid superfluid component, with
density ρs, has zero entropy, while the viscous normal component, with density ρn and
viscosity νn, carries the entropy of the mixture S. The two-fluid model states that the total
density of the mixture ρ is given by the sum of the densities of the two coexisting species:

ns ρρρ += (1)

and that the total momentum ρv is given by the sum of the momenta of the single species:

nnss vvv ρρρ += (2)

where vs and vn are the velocities of the superfluid and normal components respectively.
The vanishing viscosity of the superfluid component explains why superfluid helium can
flow with no impedance through porous media that would otherwise present a large
impedance to a normal fluid.

The concentration of the two species depends on temperature. Above Tλ the superfluid
concentration is zero, but it increases as the temperature is lowered below Tλ, replacing
gradually the normal component. As an example, at 0.8 K the normal fluid represents
only approximately 0.1 % of the total fluid. Local heating of stagnant superfluid helium
with an heat flux q̀ ′′

 
causes a change in the relative concentrations of the superfluid and

normal components. To maintain mass equili brium and zero momentum, according to
Eqs. (1) and (2), a net flow of the superconducting component “ towards” the heat source,
and of the normal component “away” from the heat source must be established. Because
the superfluid component has zero entropy it does not transport heat. On the other hand
the motion of the normal fluid component is associated with heat flow, and the heat
transported is given by:



nSTvq ρ=′′a (3).

This peculiar heat transport mechanism resembles mass convection in a normal fluid, but
we remember that it is not associated with a net mass flow of the helium mixture. It is
often referred to as counterflow  heat exchange,  and is responsible for the exceedingly
high heat transport capabilit y of superfluid stagnant helium. To highlight typical orders of
magnitude, a temperature gradient of 0.1 K/m would result in a conduction heat flux of 2
mW/m2 in normal helium at 4.2 K (above Tλ) while the counterflow heat flux under the
same temperature gradient would be 30 kW/m2 in superfluid helium at 1.8 K (below Tλ).
Heat transfer in superfluid helium is hence largely dominated by counterflow heat
exchange, in turn governed by the hydrodynamics of the motions of the normal and
superfluid components.

The normal and superfluid components tend to interact differently depending on the
difference of velocities. On the other hand Eq. (3) implies a relation between the heat flux
and the magnitude of the internal flow. For this reason the distinction of different regimes
of interaction between normal and superfluid components is based directly on the heat
flux, rather than on the velocities. For small heat fluxes, associated to small velocites vn

and vs, the interaction between the two components is negligible. This regime is referred
to as laminar internal convection and is typical of heat exchange in channels with small
diameter, below 10 µm. Increasing the heat flux the interaction between the two
components causes the generation of internal turbulence, that gives rise to a drag between
superfluid and normal fluid. This interaction, also known as the Gorter-Melli nk mutual
friction mechanism [5], is typical of heat transfer in large channels with diameter in
excess of 100 µm. For most cooling applications in superconducting magnets technology
heat fluxes and channels are large enough to have their heat flow controlled by the mutual
friction mechanism [6], that is therefore the heat transfer regime of widest practical
interest.

The motion of the two components forming the superfluid helium is governed by a
modified form of the classical Navier-Stokes equations [3,4,7]. The modifications consist
in terms originating from the mutual friction term, discussed above, and from the
chemical potential in presence of a difference of velocity between the two components.
These term appear in the momentum equations of each single component, and cause a
strong coupling with the energy equation. Because of the relevance for magnet
construction and design we will focus here on simulation of channels with diameters in
the mm range, containing stagnant or forced-flow superfluid helium. In these conditions
the two fluids are in the turbulent transport regime and mutual friction dominates. In
addition we will consider cooling circuits with large length to diameter ratio, typically in
excess of 1000, so that the problem can be considered one dimensional. Within these
limits the two fluid model can be drastically simpli fied. As presented by Kitamura et al.
[7] the continuity and momentum balances of the mixture of the two fluid components,
normal and superfluid, in terms of total density and density-averaged velocity, is the same
as for a single-component normal fluid. Taking further the momentum balance for the
superfluid component and neglecting acceleration, viscosity and pressure gradient terms,



it can be shown that the Gorter-Melli nk mutual friction term in the momentum balance
for the superfluid component gives origin to a strong non-linear pseudo-conduction term
in the energy transport equation (see for instance Arp [4], Kitamura [7] or Van Sciver [1]
and [6]). This term accounts physically for the heat transported by the counterflow
mechanism described above, and it is customary to write the associated heat flux as
follows:
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where cfq ′′b
 is the counterflow heat flux in the direction x. The helium thermodynamic state

is defined by its temperature T and pressure p. The exponent 1/η is empirically
determined and generally is in the range of 1/3. Finally, the effective conductivity
function F(T,p) is a property that has been tabulated from experimental data. We have
reported in Fig. 1 typical values of F(T,p) for different helium pressures. The units of F
are consistent only for η = 3, and we will t herefore use this choice throughout the paper.
Above the lambda transition the value of F is identically zero, indicating that the
counterflow mechanism disappears in normal helium. Equation (4) shows the high degree
of non-linearity of the additional heat transport term, both because of the temperature and
pressure dependence of the effective conductivity function F, and because of the presence
of the exponent 1/η in the dependence of cfq ′′b

 on the temperature gradient.

The result of the simpli fication process described above is a single fluid approximation,
where only the energy balance is modified to model the counterlow heat transport. Heat
transport in superfluid helium within the frame of this single fluid approximation has
been solved by several authors either by approximate analytical methods [9, 11] or
numerically [12-14]. Most of the numerical work performed so far is based on the use of
dedicated procedures (e.g. Runge-Kutta integration for steady-state [12,14], upwind or
staggered  mesh finite differences [12] and FFT methods [7] for transients). Only the
model of Ref. [13] is based on the same finite element procedure for steady-state and
transient simulation. The governing equations, in conservation form, are discretized there
with a Taylor-Galerkin finite-element algorithm [15] equivalent to the Lax-Wendroff
finite difference solver for the Euler equations of compressible flow [16]. The equations
are solved explicitl y in time and therefore the algorithm suffers from strong limitations on
time step and mesh size related to the stabilit y condition on the Courant number. The
counterflow term is finally treated as an additional flux in the energy balance, also
evaluated explicitl y from the results of the previous time step, and hence prone to produce
unstable results.

Our objective in this paper is to overcome these limitations, solving the equations for
compressible flow of superfluid helium implicitly, using the same algorithm for transient
up to steady state conditions. We will use as a starting point the formulation and finite
element algorithm developed in Ref. [2], well adapted to the analysis of 1-D steady and
transient compressible flow in cooling channels containing normal helium. In the next
section we will present the approximate, single-fluid model for compressible flow in



superfluid helium, including the counterflow heat flux. Section 3 describes in details the
finite element algorithm. The effect of the additional counterflow term on stabilit y and
accuracy is studied in Sect. 4. We will finally use published experimental data in Sect. 5
to benchmark the model and the solution procedure.

2. Model

As we discussed in the previous section, we concentrate here on one-dimensional
compressible flow of superfluid helium, in conditions where heat transfer is dominated by
the Gorter-Melli nk mutual friction. Witihin this approximation the mass, momentum and
energy transport in superfluid helium are the same balances as for transient viscous,
compressible flow of a normal fluid, provided that a non-linear term, Eq. (4), is added in
the energy transport equation. This term models the effect of the counterflow heat transfer
mechanism. The common approach to the solution of 1-D compressible flow in pipes is
to write the mass, momentum and energy conservation in terms of the conserved
variables (mass, momentum and energy density). In Ref. [2] we found that a more
convenient description of the 1-D transient flow can be obtained using velocity v,
pressure p and temperature T as primary variables. We refer in particular to [2] for a
complete derivation of the compressible flow equations for normal helium in these
variables. In the case of superfluid helium we need to add the counterflow heat transport
term to the energy conservation balance. After trivial algebra we can write the modified
set of equations for a compressible, 1-D flow of superfluid helium:
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where the meaning of the symbols is mostly standard, and a complete list is reported in
appendix. We stress that for a compressible fluid the equations above are exact, i.e. they
do not contain any thermodynamic approximation. In the case of superfluid helium the set
above is only a good practical representation of the more complex two-fluid physics
[1,14]. We see clearly the advantage in the use of temperature as a state variable, namely
the possibilit y to linearise the counterflow heat transport term directly, as we will discuss
in the next section. We have shown in Ref. [2] that the use of pressure as the second state
variable permits further to achieve stable simulations at very large Courant number (in
excess of 1000) with a simple linearization that does not involve iterative solution.

As noted by Arp [8] the thermophysical properties that appear in Eqs. (5)-(7) are either
continuous (isentropic sound speed c, Gruneisen parameter ϕ) or weakly non-analytic
(density ρ, specific heat at constant volume Cv) at the phase boundaries. This limits the



error introduced in the vicinity of phase changes by uncertainties in the coeff icients of the
differential equations. In particular the Gruneisen parameter ϕ, defined as:
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(the derivative is taken at constant entropy S) is continuous and well behaved, so that it is
very useful in reducing the equations to a compact and well -conditioned form. The
helium state equation ρ(p,T) and the thermophysical properties are obtained from
interpolations and fits of standard tables of measured points. The relative accuracy of
these fits is of 1 to 3 %, but can degrade by as much as one order of magnitude (10 to 30
%) in close vicinity (less than 0.1 K) to the phase boundaries. The accuracy of the
conductivity function F relative to its maximum is better than 10 %. As we already
mentioned, we take the exponent 1/η equal to 1/3 throughout this work. This is necessary
to maintain consistency with the definition of F.

Under the assumption of large length to diameter ratio the viscous force in the boundary
layer is modelled as a wall friction , through a friction factor f that is related empirically
to the Reynolds number of the flow. Several correlations can be found in literature
depending on the geometry of the flow channel and on the range of Reynolds number
covered. We have chosen the following simple form that applies to a smooth tube:
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where the transition from laminar (fl) to turbulent (ft) flow takes place at approximately
Re=1500. For superfluid helium we assume that the friction mechanism at the pipe wall i s
the same as for normal helium. In this case for the calculation of the Reynolds number we
use the total density and velocity of the flow, but the viscosity of the normal helium
component only [9].

The external heat source extq ′′′d
 models the heat inputs into the cooling channel, and it is

usually a known, driving term. In reality, depending on the length and time scale of the
external heating, it may be necessary to take into account complex heat transfer
mechanisms at the wetted pipe surface that are not within the scope of this work. We
finally remark that in the form above Eqs. (5)-(7) are valid both in the superfluid and in
the normal fluid domains, allowing continuous simulations across the phase boundary.

Boundary conditions are needed to close the problem. For compressible flow as described
by the set of equations above we know that the number and type of boundary conditions
to be imposed depends on the sign of the characteristics at the boundary [10]. However,
dealing with the non-linear system of equations above we no longer have a clear guideline



for the number and type of boundary conditions needed. In addition the boundary
conditions should be imposed on the Riemann invariants, rather than on the state and
flow variables. The use of the Riemann invariants is not practical for our purposes and we
have resorted on a more pragmatic approach that has proven to give stable results.

Helium cooling circuits are connected to manifold systems that act as large buffers at
given pressure and temperature conditions, with in- and outflow at very low Mach
numbers. As discussed in Ref. [2] for a flow of helium in normal state we impose
pressure boundary conditions both at inflow and outflow boundaries, and temperature
boundary conditions only in the case of inflow. The boundary values of pressure and
temperature can be, in principle, a known function of time. In the case of superfluid
helium the modification of the energy balance due to the counterflow term cfq ′′e

 can be

written alternatively as follows:
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where k
~

 is the effective conductivity, dependent on the temperature gradient. In the form
above the counterflow heat transport term resembles classical heat diffusion. The
presence of this diffusion-like term in the energy equation translates into a second order
derivative term in Eq. (7) for the temperature evolution. Hence the original hyperbolic
equation (for normal helium) becomes pseudo-parabolic (for superfluid helium) and we
need necessarily two boundary conditions for its solution. Therefore we have modified
the boundary conditions in the case of superfluid state (i.e. for (T≤ Tλ), by imposing both
pressure and temperature at inflow and outflow boundaries. In specific cases it can be
useful to model symmetry boundary conditions, as in one of the test cases discussed later
in the paper. This is achieved imposing zero flow and zero temperature gradient at the
boundary. The same boundary condition applies to the common case of a closed pipe inlet
or outlet (e.g. a closed valve) and adiabatic conditions at the boundary.

3. Finite element algorithm and linearization

The system of Eqs. (5)-(7) forms a non-linear system with mixed hyperbolic-parabolic
character. As we have discussed in Ref. [2] no optimal technique can be defined to deal
with both aspects, especially when the compressible flow is associated with thermal
processes triggered by a sudden transition of a superconducting cable to the normal state.
In the case of normal helium flow we have chosen a Galerkin finite element
approximation in space with selective upwinding on the equations in order to damp the
high order modes associated with sound waves propagation without affecting the low
order modes associated with heat convection. The implicit time integration used permits
operation at very high Courant numbers, regularly in excess of 1000, and thus does not
penalize meshes with very small element sizes, necessary to improve the space resolution



in regions of interest. We will discuss here only the adaptions of this basis scheme taken
for the solution of the counterflow heat flux term.

We firstly put the system of equations (5)-(7) in the following convenient matrix form:
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where we have defined the vector of unknowns u as:
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and the remaining matrices and vectors are given by:
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Note that in the definition of the counterflow term we have used the pseudo-diffusion
form discussed previously, appearing in the diffusion matrix g and making explicit the



second-order temperature derivative. We now discretise in space approximating the
unknowns u with linear shape functions N interpolating the values at the nodes U of a 1-
D mesh:

NUu ≈
(18)

and we write the system Eq. (11) as a weighted residual at the nodes with identical weight
and shape functions. We obtain the following system of ordinary differential equations in
time:
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with the following definitions for the matrices M, A, G, S and the vector Q:
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So far the treatment is identical to the one exposed in Ref. [2], and we refer to there for
the selective upwinding procedure. In the present case, for superfluid helium, an
additional matrix contribution is present in G, namely the pseudo-diffusion term. Its
approximation is given, in each finite element, by:
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where Ti are the nodal temperatures and Ni are the nodal shape functions for node i. We
can see from Eq. (25) that the approximation above is potentially divergent when the
gradient of temperature, at denominator, approaches zero. This situation, which
corresponds physically to zero heat flux, must be dealt by a proper limiti ng procedure.
Similarly to what done in Ref. [12], we clamp the temperature gradient to a minimum
γmin, chosen so that the corresponding counterflow heat flux (Eq. (4)) is negligible. We
found that values of γmin in the range 10-5...10-6 K/m can be safely used without causing
numerical conditioning problems for the cases presented here. Note that these values are
several orders of magnitude lower than those tested in Ref. [12].



The evaluation of the matrices of Eqs. (20) to (24) is done analytically, taking the average
value over the element for the non-linear terms appearing in the integrals. The pseudo-
diffusion term of Eq. (25) is evaluated in the centre of the linear, 2-nodes elements. We
finally discretize in time using the trapezoidal integration rule (superscripts indicate time
stations) obtaining the following system of non-linear algebraic equations for the
increments of the nodal variable ∆U:
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where ∆t is the time step and θ is the implicitness parameter, with typical choices of 1/2
and 1. The system above is non-linear for any value of θ different from 0, as it implies the
knowledge of the matrix coeff icients at an intermediate time in the time step. The
linearization procedure chosen consists in simply ignoring the non-linearity, and taking
instead of Eq. (26) the following linear algebraic system:
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The matrix on the l.h.s. is built using the results of the previous time step. The system Eq.
(27) is finally solved at each time step by direct factorization and back-substitution.

4. Algorithm analysis - stability and convergence

In the stabilit y and accuracy analysis presented here we have concentrated on treatment of
the counterflow term, using the following simpli fied homogenous partial differential
equation:
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that can be obtained from the energy equation neglecting compressibilit y and source
terms. Equation (28) demonstrates most of the issues without adding useless complexity
to the treatment. Note that in Eq. (28) we have taken for simplicity η=3, although any
choice of η in the typical range of experimental data would not affect the results quoted
here. Assuming constant coeff icients and proceeding as outlined in the previous section,
the discretization of Eq. (28) on a regular mesh of spacing ∆x and time step ∆t becomes
(subscripts indicate nodes, superscripts time stations):
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We have then computed the ampli fication factor of the scheme above using the Von
Neumann technique of Fourier decomposition of the error [16], taking into account the
non-linearity connected with the pseudo-diffusive term. The resulting ampli fication factor
is thus non-linear:
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where φ is the phase angle of the error mode considered, ranging in the interval [0...π],
and we have introduced the parameter δ given by:
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that resembles closely the diffusion number for a linear problem. Eq. (30) cannot be
handled easily to determine the stabilit y limits corresponding to any choice of the
implicitness parameter θ. Therefore we have experimentally plotted the module of the
ampli fication factor, and verified that, as expected, unconditional stabilit y is obtained for
θ ≥ 1/2 also in the non-linear case, while any choice θ < 1/2 is conditionally stable (see
the results plotted in Fig. 2 for the case δ=1).

A second issue to address is the order of convergence of the linearized approximation of
the pseudo-diffusion term (using Eq. (25)). Using the equivalent differential equation of
the scheme [16], and after trivial algebra, it can be shown that the linearization used in the
scheme of Eq. (29) based on the evaluation of the equivalent conductivity in the center of
each element:
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5. Benchmarking

Heat convection and counterflow heat transport in superfluid helium result in a highly
non-linear problem that is not easily solved analytically. This is especially true because of
the variation of the thermophysical properties of helium in the temperature range of
interest. Hence we have decided to validate the algorithm using available published
experimental data on helium superfluid heat transport in pipes.

5.1. Steady-state heat transport measurements of Srinivasan and
Hoffman [17]

The first experiment chosen is from Srinivasan and Hoffman [17], who have measured
steady-state temperatures distribution in a pipe of length 0.8 m and 3 mm inner diameter
heated over a short length in the center. Different heating power and mass-flow rates were
used and the temperature was recorded at 8 thermometers along the pipe. Table 1 reports
pressure, massflow and heating power for the runs that we have chosen for the validation
of the algorithm. Compared to the experiments performed, they cover the whole
parameter space of the measurement set.

All simulations were performed using a uniform mesh of 200 elements over the pipe
length. Convergence studies, not reported here, showed that increasing the number of
elements had no effect on the solution. The steady state conditions were reached as the
limit of a long transient. The initial conditions for the simulations were obtained as an
approximate solution of a steady state flow with no heating. In particular the mass flow
was taken identical to the experimental values reported in Tab. 1. The  temperature
distribution was assumed to be initially flat, with a value identical to the inlet
temperature. The inlet pressure was taken equal to the nominal background pressure, as
from Tab. 1. The pressure drop was computed in the hypothesis of incompressible flow
and constant friction factor, and the pressure distribution was assumed to be linearly
decreasing from inlet to outlet. Finally the velocity was calculated from the specified
massflow and the density, this last dependent on the local value of temperature and
pressure. Because of the small flow used in the experiments, and the short length of pipe,



the pressure drop necessary to maintain the steady massflow was negligible (10-3 to 10-4

bar) as compared to the background pressure (1 to 7 bar). The initial conditions chosen
were thus a good approximation of the real flow.

The simulation of the transient was then started, ramping the external heating within 5 s
to the nominal steady state value of Tab. 1. This ramp was advantageous, although not
necessary, allowing large time steps (up to 1 s) to be taken from the very beginning of the
transient and accelerating convergence towards steady state conditions. A 1 s time step
corresponds to Courant number of the order of 50000, that did not appear to cause
instabilit y in the solution. Inlet and outlet pressure and temperature were specified,
constant in time. This is in accordance with the boundary conditions in superfluid state as
detailed in Section 2. The boundary conditions for pressure were taken identical to the
initial values. For temperature we used the measured values at the entry and exit sections
of the pipe (x = 0 m and x = 0.8 m). Note that because of the difference that was present
between the experimental values at inlet and outlet, the boundary conditions were not
fully consistent with the initial temperature profile (constant temperature in space, equal
to the inlet value). The temperature profile relaxed during the transient without
diff iculties. A total of 50 s to 100 s of simulated time was necessary to achieve steady
state conditions in all cases.

We compare temperature profiles as obtained from the experimental results (data points)
and simulations (continuous lines) in Fig. 3, where we have grouped the experiments by
operating pressure and massflow. The agreement is excellent, for both forced flow (Figs.
3(a), 3(b) and 3(c)) and stagnant (Fig. 3(d)) conditions, and for all heater powers.

5.2. Steady-state and transient measurements of Kashani  et al.[12]

The second experiment chosen is from Kashani et al. [12], who have measured
temperatures distribution in a copper tube of 2 m length and 3 mm inner diameter, heated
at its midpoint along its length. Table 2 reports the massflow and heating powers for the
experiments simulated. We have performed simulation using a uniform mesh of 200
elements.

Figure 4(a) shows the comparison of steady-state temperature profiles as measured and
simulated at an initial bath temperature of 1.95 K. To establish initial conditions and to
reach the steady state we followed a procedure identical to the one presented in the
previous section. The agreement between measured and simulated profiles is satisfactory.

In Figs. 4(b) and 4(c) we report transient measurements and simulations at an initial bath
temperature of 1.65 K. Figure 4(b) refers to data taken during a step heat deposition of
0.377 W, while in Fig. 4(c) a rectangular heat pulse of 0.404 W was applied for a total
duration of 3.5 s. In this case we performed the full transient simulation starting from the
approximate flow initial conditions. The pressure at inlet and outlet was taken constant in
time. The inlet and outlet temperatures were obtained from a linear interpolation of the
experimental values as a function of time. Again, the simulations compare favorably with
the measurements. In transient conditions some time lag seem to appear (see Fig. 4(b)),



possibly due to the uncertainty on the thermophysical properties of helium in the
superfluid state. Note that a lag of the same order was obtained in an independent
simulations of the same experiment [14].

For these two transient cases we have reported in Figs. 5(a) and 5(b) the velocity profiles
computed at different times. Figure 5(a) refers to the step in heating power. Pressure
variations during the transient with respect to the initial profile are negligible (of the order
of 10-5 bar) for two reasons. Firstly the characteristic time needed for the establishment of
the temperature profile is much longer than the time necessary for sound waves to travel
along the pipe (of the order of 20 ms at approximately 100 m/s isentropic sound speed).
Secondly the density changes associated with the transient heating are small . The
massflow is therefore approximately constant during the transient. The variations of
velocity visible in Fig. 5(a) are thus mostly associated with the small changes in the
density profile under approximately constant massflow. We note there another interesting
feature of superfluid helium, namely the effect of a negative expansion coeff icient. A
temperature increase in superfluid state corresponds to a density increase. Therefore in
the region after the heater, where the helium is warmer, the flow decelerates to maintain
the massflow constant along the pipe. A similar behaviour is found for the velocity
profiles in the case of a rectangular heating pulse, shown in Fig. 5(b). In this case for long
times the velocity tends to the initial profile, as the heated helium is flushed and the
temperature drops (see also Fig. 4(c)). In both cases, as we already remarked, the effects
are small , with typical changes in density and velocity in the range of 1 to 3 %.

5.3. Transient measurements of Lottin and Van Sciver [18]

The last comparison has been made with the results of Lottin and Van Sciver reported
from Ref. [18], where a stainless steel test tube of 2.3 m length and 6 mm inner diameter
was heated within a 0.1 m section in the middle by a 0.92 J pulse lasting 0.02 seconds.
Operating pressure was 1 bar and bath temperature 1.82 K. The simulations were
performed in this case using a mesh of 800 elements, modelli ng only half of the pipe
length and assuming symmetry conditions in the middle of the pipe. Stagnant helium at
uniform temperature was taken as initial condition. In the experiment the test section was
connected to a helium bath that acted as a heat sink of limited capacity (the temperature
increased during the pulse). We have chosen to approximate this boundary condition
adding a long length of pipe (1m) to the test section and setting constant pressure and
temperature, equal to the initial values, at the end of the additional pipe length. The
additional length acted in the simulation as a mock-up of the buffer, allowing free
evolution of the temperature at the location corresponding to end of the test section.

We report in Fig. 6 the temperature increase measured at the termometers together with
the results of the simulation. Note that because of the symmetry assumption we plot there
only half of the length of the test section (1.15 m). This case is particularly complex to
analyse, because the energy deposited in the bath caused a local transition of state:
superfluid helium is heated locally above Tλ and becomes normal helium, with much
lower density and practically no heat conduction. This is correctly predicted by the
simulation, that shows a localised temperature peak at early times in the centre of the



pipe. In the experiment a copper tube supporting the heater wire acted as a thermal shunt
along the pipe length and assisted in the recovery of the superfluid state draining heat
from the normal fluid region towards the superfluid region. This particular has not been
modelled in the simulation. Still we see that the simulation qualitatively predicts the
spread of the temperature peak, as well as the recovery of the superfluid state, as time
advances.

To demonstrate the large heat transport capabilit y of superfluid helium we report in Fig. 7
a snap-shot of the contributions to the total heat flux along the pipe, evaluated at 0.1 s.
The two curves show in particular the heat flux due to the counterflow heat exchange
mechanism, evaluated from the numerical solution using Eq. (4), and the heat transported
by mass convection, evaluated as ρvCpT. As clear from the results reported there,
counterflow heat exchange is the dominating mechanism for heat transport. At 0.1 s the
helium in the region between x=1.12 and x=1.15 m, under the heater, is in normal state.
Here the counterflow heat flux is zero. Because of the symmetry condition velocity is
small i n this region and therefore convection is also negligible. Counterflow heat
exchange appears as soon as the temperature is below Tλ. Close to the heater the
temperature gradient is largest, and the counterflow heat flux reaches a maximum around
40 kW/m2. Note that because of the temperature dependence of the heat conductivity
function F, peaked at 1.8 to 1.9 K, the location of the maximum is not right at the phase
transition from superfluid to normal helium, where the gradient is maximum, but slightly
displaced within the superfluid region. Convection heat transfer is much smaller, of the
order of 3 kW/m2, and has opposite direction to the counterflow contribution. This is
again due to the fact that the expansion coeff icient is negative in superfluid helium, so
that the heating induced flow is towards the heated region.

6. Conclusions

We have presented a linearised finite element algorithm for the solution of the steady-
state and transient 1-D flow of helium in superfluid state, based on an approximation of
the counterflow heat exchange mechanism, and taking into account non-linear properties
and compressibilit y phenomena. The algorithm is implicit, linearly unconditionally stable
and has second order accuracy in space. The implementation has been done as the
extension of a thermo-hydraulic model of a superconducting cable [2], that has now
augmented capabilit y and extended validity range. The additional terms, originated by the
counterflow heat exchange, did not affect the stabilit y properties of the original algorithm
for compressible flow, that can still operate at Courant number commonly in excess of
1000. Finally we have used published experimental results to benchmark the method with
satisfactory results.
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Appendix 1. List of symbols

a,A matrix and discretized matrix of convention coeff icients
c sound speed
C, Cv specific heat and specific heat at constant volume
δ diffusion number
Dh hydraulic diameter
ε error
f friction factor
F superfluid conductivity function
φ phase angle of the error mode in the analysis of the ampli fication factor
g,G matrix and discretized matrix of diffusion coeff icients
γmin minimum temperature gradient for effective conductivity evaluation
Γin, Γout inflow and outflow region
η exponent for the temperature gradient in the counterflow heat flux
ϕ Gruneisen parameter

k
~ effective conductivity

λ ampli fication factor
m,M matrix and discretized matrix of mass (time derivatives) coeff icients
N, N nodal shape function and vector of nodal shape function
p pressure

cfq ′′g
superfluid counterflow heat flux

extq ′′′g
external volumetric heat flux

θ implicitness parameter for time integration
q,Q source and discretized source vector
ρ, ρs, ρn, density, density of the superfluid and normal components
s,S source and discretized source matrix
t time coordinate
T,Tλ, temperature, temperature at the lambda transition
u, U, U vector of unknowns, nodal unknown and vector of nodal unknown
v, vs, vn velocity, velocity of the superfluid and normal components
x space coordinate



Table 1. Summary of operating conditions for the runs considered in the benchmarking
against the experimental data of Srinivasan and Hoffman [17].

pressure massflow heater power
[Pa] [g/s] [W]
2.5e5 0.329 0.169

0.220
0.265
0.331

5.0e5 0.347 0.279
0.344
0.418

7.0e5 0.334 0.295
0.362
0.456

1.0e5 0.0 0.145
0.205

Table 2. Summary of conditions for the runs simulated in the benchmarking against the
experimental data of Kashani at al. [12].

massflow heater pulse
waveform

heater pulse
duration

heater power

[g/s] [W]
0.133 - steady-state 0.123
0.215 - steady-state 0.201
0.400 - steady-state 0.358
0.215 step - 0.377
0.215 rectangular 3.5 s 0.404
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Figure 3. Comparison of experimental data from Srinivasan and Hoffman[17] with
simulations. The results are grouped by operating pressure and massflow: (a) 2.5 bar and
0.329 g/s, (b) 5 bar and 0.347 g/s, (c) 7 bar and 0.334 g/s (d) 1 bar stagnant. Heater
powers as indicated in the legends.
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Figures 4. Comparison of experimental steady-state (a) and transient heat input ((b)
and (c)) data from Kashani et al.[12] to the results of simulations.
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Figures 5. Calculated velocity at different times (indicated on the curves) for the
transient heat input simulations of the experiments of Kashani et al.[12], (a) refers to a
step in heating power, (b) to a rectangular heating pulse.
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during a heat pulse in a superfluid helium pipe as obtained by Lottin and Van Sciver [18].
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