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Summary

In this paper we discuss the solution of transient mass, momentum and energy balances in superfluid
helium by means of a finite element algorithm. A simple linearization procedure is used for the non-linear
pseudo-diffusion term in the energy balance arising because of the unique counterflow heat transport
mechanism in superfluid helium. The linearization algorithm is analyzed for accuracy order and stability.
We show in practical tests the reliability of the algorithm devised, comparing the numerical solutions to
experimental data available in literature.

1. Introduction

Helium is the only viable @odant for magnets built using low-temperature
supercondictors as it has the unique property of maintaining the liquid state till the
absolute zero [1]. The most common coding modes range from helium bath (the
supercondicting magnet is completely submerged in a pod of helium at uniform
temperature) to natural convection (buoyancy flow is used to etablish a thermal syphon
to forced flow helium (the magnet is cooled by hea exchange to a forced-flow of helium
in codling pipes). A common fedure to all cooling modes is that magnets built using low
temperature supercondictors must be operated in a narrow range of temperatures,
typicdly between 1.8 K and 4.5K. Further, independently on the nominal operating
temperature level, they have in common the obvious necessty of having a well known
temperature distribution inside the magnet winding pad, so that the supercondicting
material can be operated with a safe margin with resped to the so cdled current sharing
temperature, where the superconductor starts to transit into the normal conducting stete.
Therefore the prediction d the temperature profile inside asupercondtcting coil, taking
into proper acourt the presence of the helium coodlant, has deserved much attention in



magnet design and testing, and in the development and validation d dedicaed computer
procedures (seefor instance[2] and the references quated there).

Here we ded in particular with the solution d the mass momentum and energy balances
of helium when it is coded below the lambda transition, a logarithmic anomaly in the
spedfic hed, and adhieves the so cdled superfluid state. The boundxry of the lambda
trangition is represented in the (p,T) helium state diagram by the presaure dependent
temperature T)(p) cdled by analogy the lambda temperature. T, has been shown
experimentally to be only we&ly dependent on presaure, ranging from 1.77 K at the
melting line (at 30 kar) to 2.17K at the baling line (at 50 mbar). Below T, helium
becomes a quantum fluid with vanishing apparent flow resistance through narrow
ceoill aries and anomalously high hea transport cgpability [1]. Both properties are of
interest for coding applicaions because they imply high hea removal patentia in
conjunction with littl e pumping work at cryogenic temperature.

A good plenomenologicd description d these propertiesis given by the two-fluid model
[1,34], which asuumes that superfluid helium consists of two interpenetrating fluid
comporents, a normal fluid and a superfluid. The inviscid superfluid comporent, with
density ps, has zero entropy, while the viscous norma comporent, with density p, and
viscosity v, cariesthe entropy of the mixture S. The two-fluid model states that the total
density of the mixture p is given by the sum of the densiti es of the two coexisting spedes:

1
p=p,+p, @

and that the total momentum pv is given by the sum of the momenta of the single spedes:

p\/ = pSVS + pnvn (2)

where vs and v, are the velocities of the superfluid and namal comporents respedively.
The vanishing viscosity of the superfluid comporent explains why superfluid helium can
flow with no impedance through paous media that would otherwise present a large
impedanceto anormal fluid.

The @ncentration d the two spedes depends on temperature. Above T, the superfluid
concentration is zero, but it increases as the temperature is lowered below T), repladng
gradually the normal comporent. As an example, at 0.8 K the normal fluid represents
only approximately 0.1 % of the total fluid. Locd heaing of stagnant superfluid helium
with an hea flux " causes a dhange in the relative mncentrations of the superfluid and

normal comporents. To maintain mass equili brium and zero momentum, acarding to
Egs. (1) and (2), a net flow of the superconducting comporent “towards’ the hea source,
and d the normal comporent “away” from the hea source must be establi shed. Because
the superfluid comporent has zero entropy it does not transport hea. On the other hand
the motion d the norma fluid comporent is associated with hea flow, and the hea
transported is given by:



q = pSTy, o

This peauliar hed transport medianism resembles massconvedion in anormal fluid, bu
we remember that it is not asociated with a net massflow of the helium mixture. It is
often referred to as counterflow hea exchange, and is resporsible for the excealingly
high hea transport capability of superfluid stagnant helium. To highlight typicd orders of
magnitude, a temperature gradient of 0.1 K/m would result in a cnduction red flux of 2
mW/m? in namal helium at 4.2 K (above T;) while the @urterflow hea flux under the
same temperature gradient would be 30 KW/m? in superfluid helium at 1.8 K (below T)).
Hea transfer in superfluid helium is hence largely dominated by counterflow hea
exchange, in turn governed by the hydrodynamics of the motions of the normal and
superfluid comporents.

The norma and superfluid comporents tend to interad differently depending on the
difference of velocities. On the other hand Eq. (3) implies arelation between the hea flux
and the magnitude of the internal flow. For this reason the distinction d diff erent regimes
of interadion between nama and superfluid comporents is based dredly on the hed
flux, rather than onthe velocities. For small hea fluxes, associated to small velocites v,
and v;, the interadion between the two comporents is negligible. This regimeis referred
to as laminar internal convedion and is typicd of hea exchange in channels with small
diameter, below 10 pm. Increasing the hea flux the interadion between the two
comporents causes the generation d internal turbulence, that gives rise to a drag between
superfluid and namal fluid. This interadion, also known as the Gorter-Melli nk mutual
friction medhanism [5], is typicd of hea transfer in large dhannels with dameter in
excessof 100 um. For most codling applicaions in supercondicting magnets techndogy
hea fluxes and channels are large enough to have their hea flow controlled by the mutual
friction medhanism [6], that is therefore the hea transfer regime of widest pradicd
interest.

The motion d the two comporents forming the superfluid helium is governed by a
modified form of the dassca Navier-Stokes equations [3,4,7. The modificaions consist
in terms originating from the mutual friction term, discussed abowve, and from the
chemicd potential in presence of a difference of velocity between the two comporents.
These term appea in the momentum equations of ead single comporent, and cause a
strong cougding with the energy equation. Because of the relevance for magnet
construction and design we will focus here on simulation o channels with dameters in
the mm range, containing stagnant or forced-flow superfluid helium. In these wndtions
the two fluids are in the turbulent transport regime and mutual friction daminates. In
addition we will consider coaling circuits with large length to dameter ratio, typicdly in
excess of 1000, so that the problem can be mnsidered ore dimensional. Within these
limits the two fluid model can be drasticdly simplified. As presented by Kitamura & al.
[7] the continuity and momentum balances of the mixture of the two fluid comporents,
normal and superfluid, in terms of total density and density-averaged velocity, is the same
as for a single-comporent normal fluid. Taking further the momentum balance for the
superfluid comporent and regleding acceeration, Mscosity and presaure gradient terms,



it can be shown that the Gorter-Méellink mutual friction term in the momentum balance
for the superfluid comporent gives origin to a strong nonlinea pseudo-condiction term
in the energy transport equation (seefor instance Arp [4], Kitamura[7] or Van Sciver [1]
and [6]). This term acwurts physicdly for the hea transported by the wurterflow
medhanism described abowve, and it is customary to write the asociated hed flux as
follows:

Yo arp”
q = EF(T’F’)@XQ @

where q; isthe ourterflow hed flux in the diredion x. The helium thermodynamic state

is defined by its temperature T and pressuure p. The eporent 1/n is empiricdly
determined and generdly is in the range of 1/3. Findly, the dfedive cnductivity
function F(T,p) is a property that has been tabulated from experimental data. We have
reported in Fig. 1 typicd vaues of F(T,p) for different helium presaures. The units of F
are onsistent only for n = 3, and we will therefore use this choice throughou the paper.
Abowve the lambda transition the value of F is identicdly zero, indicaing that the
courterflow medianism disappeasin namal helium. Equation (4) shows the high degree
of nontlineaity of the alditional hea transport term, bath because of the temperature and
pressure dependence of the dfedive conductivity function F, and because of the presence
of the exporent 1/n in the dependenceof ¢ onthe temperature gradient.

The result of the simplificaion processdescribed above is a single fluid approximation,
where only the energy balance is modified to model the munterlow hea transport. Hea
transport in superfluid helium within the frame of this single fluid approximation hes
been solved by severa authors either by approximate analyticd methods [9, 11 or
numericaly [12-14]. Most of the numericd work performed so far is based onthe use of
dedicated procedures (e.g. Runge-Kutta integration for steady-state [12,14, upwind o
staggered mesh finite differences [12] and FFT methods [7] for transients). Only the
model of Ref. [13] is based on the same finite dement procedure for steady-state and
transient simulation. The governing equations, in conservation form, are discretized there
with a Taylor-Galerkin finite-element agorithm [15] equivalent to the Lax-Wendroff
finite difference solver for the Euler equations of compressble flow [16]. The equations
are solved explicitly in time and therefore the dgorithm suff ers from strong limitations on
time step and mesh size related to the stability condtion onthe Courant number. The
courterflow term is finally treaed as an additional flux in the energy balance aso
evauated explicitly from the results of the previous time step, and henceprone to produce
unstable results.

Our objedive in this paper is to overcome these limitations, solving the equations for
compresshble flow of superfluid helium implicitly, using the same dgorithm for transient
up to steady state condtions. We will use & a starting point the formulation and finite
element algorithm developed in Ref. [2], well adapted to the analysis of 1-D steady and
transient compressble flow in coding channels containing normal helium. In the next
sedion we will present the gproximate, single-fluid model for compressble flow in



superfluid helium, including the courterflow hed flux. Sedion 3 describes in detail s the
finite dement algorithm. The dfed of the alditional courterflow term on stability and
acaracgy is gudied in Sed. 4. We will finaly use pulished experimental datain Sed. 5
to benchmark the model and the solution procedure.

2. Model

As we discussd in the previous fdion, we @ncentrate here on ore-dimensional
compressble flow of superfluid helium, in condtions where heé transfer is dominated by
the Gorter-Mélli nk mutual friction. Witi hin this approximation the mass momentum and
energy transport in superfluid helium are the same balances as for transient viscous,
compressble flow of anormal fluid, provided that a nonlinea term, Eq. (4), is added in
the energy transport equation. This term models the dfed of the counterflow hed transfer
medhanism. The common approad to the solution d 1-D compressble flow in pipesis
to write the mass momentum and energy conservation in terms of the cnserved
variables (mass momentum and energy density). In Ref. [2] we found that a more
convenient description d the 1-D transient flow can be obtained using velocity v,
presaure p and temperature T as primary variables. We refer in particular to [2] for a
complete derivation d the mmpressble flow equations for norma helium in these
variables. In the cae of superfluid helium we need to add the wurterflow hea transport
term to the energy conservation lalance After trivial algebra we can write the modified
set of equations for a cmpressble, 1-D flow of superfluid helium:
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where the meaning of the symbadls is mostly standard, and a cwmplete list is reported in
appendix. We stressthat for a compressble fluid the equations above ae ead, i.e. they
do nd contain any thermodynamic gpproximation. In the cae of superfluid helium the set
abowe is only a good padicd representation d the more @mmplex two-fluid physics
[1,14. We see dealy the alvantage in the use of temperature & a state variable, namely
the posshility to lineaise the wurterflow hea transport term diredly, as we will discuss
in the next seaion. We have shown in Ref. [2] that the use of presaure & the seand state
variable permits further to achieve stable simulations at very large Courant number (in
excessof 1000 with asimple lineaization that does not involve iterative solution.

As noted by Arp [8] the thermophysicd properties that appea in Egs. (5)-(7) are aether
continuows (isentropic sound speed ¢, Gruneisen parameter ¢) or wedly nonanalytic
(density p, spedfic hea at constant volume C,) at the phase boundxies. This limits the



error introduced in the vicinity of phase dhanges by uncertainties in the wefficients of the
differential equations. In particular the Gruneisen parameter ¢, defined as:

o= E ®

(the derivative is taken at constant entropy S) is continuows and well behaved, so that it is
very useful in reducing the eguations to a wmpad and well-condtioned form. The
helium state euation p(p,T) and the thermophysicd properties are obtained from
interpolations and fits of standard tables of measured pants. The relative acaracy of
these fitsis of 1 to 3%, bu can degrade by as much as one order of magnitude (10to 30
%) in close vicinity (less than 0.1 K) to the phase boundries. The acworacy of the
conductivity function F relative to its maximum is better than 10 %. As we drealy
mentioned, we take the exporent 1/n equal to 1/3 throughou this work. This is necessary
to maintain consistency with the definition d F.

Under the asssumption d large length to dameter ratio the viscous force in the boundry
layer is modelled as a wall friction , through a friction fador f that is related empiricaly
to the Reynalds number of the flow. Several correlations can be found in literature
depending on the geometry of the flow channel and onthe range of Reynods number
covered. We have dhasen the foll owing smple form that appli es to a smooth tube:

f =max{f,, f.}
_16

" Re
_0.046

fi

f (9)

where the transition from laminar (f;) to turbulent (f;)) flow takes place & approximately
Re=1500.For superfluid helium we assume that the friction medhanism at the pipewall is
the same a for normal helium. In this case for the cadculation d the Reynalds number we
use the total density and welocity of the flow, bu the viscosity of the norma helium
comporent only [9].

o m

The external hea source ¢, models the hea inpus into the madling channel, and it is

usually a known, diving term. In redity, depending on the length and time scde of the
external heding, it may be necessry to take into acount complex hea transfer
mecdhanisms at the wetted pipe surfacethat are not within the scope of this work. We
finaly remark that in the form abowe Egs. (5)-(7) are valid bah in the superfluid and in
the normal fluid damains, alowing continuows smulations aaossthe phase boundry.

Boundary condtions are neaded to close the problem. For compressble flow as described
by the set of equations above we know that the number and type of boundry condtions
to be imposed depends on the sign of the charaderistics at the boundary [10]. However,
deding with the nortlinea system of equations above we nolonger have aclea guideline



for the number and type of boundry condtions needed. In addition the boundry
condtions doud be imposed on the Riemann invariants, rather than on the state and
flow variables. The use of the Riemanninvariantsis not pradicd for our purposes and we
have resorted onamore pragmatic goproac that has proven to give stable results.

Helium codling circuits are conreded to manifold systems that ad as large buffers at
given presaure and temperature @ndtions, with in- and ouflow at very low Mad
numbers. As discused in Ref. [2] for a flow of helium in namal state we impose
pressure boundry condtions both at inflow and ouflow boundries, and temperature
boundry condtions only in the cae of inflow. The boundry values of presaure and
temperature can be, in principle, a known function d time. In the cae of superfluid
helium the modification o the energy balance due to the curnterflow term ¢ can be

written alternatively as foll ows:

EH—TH_M x x (10)

where k isthe dfedive mnductivity, dependent on the temperature gradient. In the form
above the ouneflow hea transport term resembles clasgcd hea diffusion. The
presence of this diffusion-like term in the energy equation translates into a second ader
derivative term in Eq. (7) for the temperature evolution. Hence the original hyperbalic
equation (for normal helium) becmes pseudo-parabalic (for superfluid helium) and we
need necessrily two boundry condtions for its lution. Therefore we have modified
the boundary condtions in the cae of superfluid state (i.e. for (T< T,), by imposing both
presaure and temperature & inflow and ouflow boundxries. In spedfic ceases it can be
useful to model symmetry boundary condtions, asin ore of the test cases discussed later
in the paper. This is achieved imposing zero flow and zero temperature gradient at the
boundiry. The same boundiry condtion appliesto the cmmmon case of a dosed pipeinlet
or outlet (e.g. a dosed valve) and adiabatic condtions at the boundry.

3. Finite element algorithm and linearization

The system of Egs. (5)-(7) forms a nonlinea system with mixed hyperbalic-parabalic
charader. As we have discussd in Ref. [2] no ogimal technique can be defined to ded
with bah aspeds, espedaly when the compressble flow is associated with thermal
processes triggered by a sudden transition d a supercondicting cable to the normal state.
In the cae of norma helium flow we have dosen a Galerkin finite dement
approximation in spacewith seledive upwinding on the ejuations in order to damp the
high order modes associated with sound waves propagation withou affeding the low
order modes assciated with hea convedion. The implicit time integration used permits
operation at very high Courant numbers, regularly in excessof 1000, and thus does not
penali ze meshes with very small element sizes, necessary to improve the spaceresolution



in regions of interest. We will discusshere only the adaptions of this basis <heme taken
for the solution d the wunterflow hea flux term.

We firstly put the system of equations (5)-(7) in the foll owing convenient matrix form:

ou. ou 0 []ou
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ot oX ﬁ(ggdx@_ ‘ D

where we have defined the vedor of unknavns u as;

v
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Note that in the definition d the counerflow term we have used the pseudo-diffusion
form discussed previously, appeaing in the diffusion matrix g and making explicit the



seoond-order temperature derivative. We now discretise in space @proximating the
unknownns u with linea shape functions N interpolating the values at the nodes U of a 1-
D mesh:

(18
u=NU

and we write the system Eq. (11) asaweighted residual at the nodes with identicd weight
and shape functions. We obtain the following system of ordinary differential equationsin
time:

M%+(A+G—S)U=Q (19

with the foll owing definitions for the matrices M, A, G, S andthe vedor Q:

M = [N"mNx (20
)| 21
A-J’N adxdx (21)
dNT dN

G= CAR 22
I dx ng X (22
S= [N"sNdx (23
Q :J'NquX (24)

So far the treament is identicd to the one exposed in Ref. [2], and we refer to there for
the seledive upwinding procedure. In the present case, for superfluid helium, an
additional matrix contribution is present in G, namely the pseudo-diffusion term. Its
approximationis given, in ead finite dement, by:

g @9

where T; are the nodal temperatures and N; are the nodal shape functions for node i. We
can see from Eq. (25) that the gproximation abowve is potentially divergent when the
gradient of temperature, at denominator, approaches zero. This stuation, which
corresponds physicdly to zero hea flux, must be dedt by a proper limiting procedure.
Similarly to what dore in Ref. [12], we damp the temperature gradient to a minimum
Win, Chosen so that the crrespondng courterflow hea flux (Eq. (4)) is negligible. We
foundthat values of yin in the range 10°...10° K/m can be safely used without causing
numerica condtioning problems for the cases presented here. Note that these values are
several orders of magnitude lower than those tested in Ref. [12].



The evduation d the matrices of Egs. (20) to (24) isdore analyticdly, taking the average
value over the dement for the nonlinea terms appeaing in the integrals. The pseudo
diffusion term of Eq. (25) is evaluated in the centre of the linea, 2-nodes elements. We
finally discretize in time using the trapezoidal integration rule (superscripts indicate time
stations) obtaining the following system of nonlinea algebraic equations for the
increments of the noddl variable AU:

E\/IAT@ + Q(A e 4 gt — gnd )EAU = (A mo 4 G0 _ gno )U n 4 Qn+e 26)

where At is the time step and 8 is the impli citness parameter, with typicd choices of 1/2
and 1.The system above is nonlinea for any value of @ different from 0, asit implies the
knowledge of the matrix coefficients at an intermediate time in the time step. The
lineaization procedure chosen consists in simply ignoring the nortlineaity, and taking
instead of Eq. (26) the following linea agebraic system:

é’lvAl_nw(AwG“ S”)%U:(A”G”—S”)U”Q" (27).

The matrix onthel.hs. isbuilt using the results of the previous time step. The system EQ.
(27) isfinally solved at ead time step by dired fadorization and badk-substitution.

4.  Algorithm analysis - stability and convergence

In the stability and acairagy analysis presented here we have mncentrated ontreament of
the ourterflow term, using the following simplified hamogenous partial differential
equation:

0 LU
c?t @(EF H 29)

that can be obtained from the energy equation regleding compressbhility and source
terms. Equation (28) demonstrates most of the issues without adding useless complexity
to the treagment. Note that in Eqg. (28) we have taken for simplicity n=3, athowgh any
choice of n in the typicd range of experimental data would na affed the results quaed
here. Asauming constant coefficients and proceading as outlined in the previous edion,
the discretization d Eq. (28) on aregular mesh of spadng Ax and time step At beaomes
(subscripts indicate nodes, superscripts time stations):
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We have then computed the amplificaion fador of the scheme @owe using the Von
Neumann technique of Fourier decompasition d the aror [16], taking into acourt the
norlineaity conreded with the pseudo-diffusive term. The resulting amplification fador
isthus nonlinea:

4+ 2c0dp)- 65(1-6)|(L- cogp) + sin(p)) + (L- codp) - sin(p))"]
4+ 2cogp) + 606|(L - codp) +i sin(@))"* + (L - codp) i sin())"*]

(30

where @ is the phase angle of the eror mode cnsidered, ranging in the interval [0..1,
and we have introduced the parameter & given by:

1/3
5. 60 F

- CAX> in g/s
% (31

that resembles closely the diffusion number for a linea problem. Eq. (30) canna be
handed easily to determine the stability limits correspondng to any choice of the
implicitness parameter 6. Therefore we have experimentally plotted the modue of the
amplification fador, and erified that, as expeded, urcondtional stability is obtained for
0 = 1/2 dso in the nonlinea case, while any choice 6 < 1/2 is condtionaly stable (see
the results plotted in Fig. 2 for the cae d=1).

A secondisaue to addressis the order of convergence of the lineaized approximation o
the pseudo-diffusion term (using Eq. (25)). Using the equivalent differential equation o
the scheme [16], and after trivial algebra, it can be shown that the lineaization used in the
scheme of Eq. (29) based onthe evaluation d the equivalent condictivity in the center of
ead element:



has :mnd ader acaracy, with an error explicitly given by:

-8/9
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5. Benchmarking

Hea conwvedion and counterflow hea transport in superfluid helium result in a highly
nonlinea problem that isnot easily solved analyticdly. Thisis espedally true becaise of
the variation d the thermophysicd properties of helium in the temperature range of
interest. Hence we have dedded to validate the dgorithm using available pulished
experimental dataon helium superfluid hed transport in pipes.

5.1. Steady-state heat transport measurements of Srinivasan and
Hoffman [17]

The first experiment chosen is from Srinivasan and Hoffman [17], who have measured
stealy-state temperatures distribution in a pipe of length 0.8 m and 3mm inner diameter
heaed ower ashort length in the center. Different heding power and massflow rates were
used and the temperature was recorded at 8 thermometers along the pipe. Table 1 reports
presaure, masslow and heding power for the runs that we have dhasen for the validation
of the dgorithm. Compared to the experiments performed, they cover the whole
parameter spaceof the measurement set.

All simulations were performed using a uniform mesh o 200 elements over the pipe
length. Conwvergence studies, na reported here, showed that increasing the number of
elements had no effed on the solution. The steady state condtions were readed as the
limit of along transient. The initial condtions for the simulations were obtained as an
approximate solution d a steady state flow with no heding. In particular the massflow
was taken identicd to the experimental values reported in Tab. 1. The temperature
distribution was asumed to be initially flat, with a value identicd to the inlet
temperature. The inlet presaure was taken equal to the nominal badkground pesaire, as
from Tab. 1. The presaure drop was computed in the hypaothesis of incompressble flow
and constant friction fador, and the presaure distribution was assumed to be linealy
deaeasing from inlet to oulet. Finally the velocity was caculated from the spedfied
masdlow and the density, this last dependent on the locd value of temperature and
presaure. Because of the small flow used in the experiments, and the short length of pipe,



the presaure drop recessary to maintain the steady masslow was negligible (10° to 10*
bar) as compared to the badkground pesaure (1 to 7 kar). The initial condtions chosen
were thus a good approximation d thered flow.

The simulation d the transient was then started, ramping the external hedaing within 5s
to the nominal steady state value of Tab. 1. This ramp was advantageous, athough na
necessary, allowing large time steps (upto 1s) to be taken from the very beginning of the
transient and acceerating convergence towards dealy state condtions. A 1 s time step
corresponds to Courant number of the order of 50000, that did na appea to cause
instability in the solution. Inlet and oulet presaure and temperature were spedfied,
constant in time. Thisis in acerdancewith the boundary condtions in superfluid state &
detailed in Sedion 2. The boundxry condtions for presauure were taken identicd to the
initial values. For temperature we used the measured values at the entry and exit sedions
of the pipe (x = 0 m and x = 0.8 m). Note that because of the difference that was present
between the experimental values at inlet and oulet, the boundry condtions were not
fully consistent with the initial temperature profile (constant temperature in space equal
to the inlet value). The temperature profile relaxed duing the transient withou
difficulties. A total of 50 sto 100s of simulated time was necessary to achieve stealy
state andtionsin all cases.

We compare temperature profiles as obtained from the experimental results (data points)
and simulations (continuots lines) in Fig. 3, where we have grouped the experiments by
operating presuure and mas<low. The agreement is excdlent, for both forced flow (Figs.
3(a), 3(b) and J¢)) and stagnant (Fig. 3(d)) condtions, andfor all heaer powers.

5.2. Steady-state and transient measurements of Kashani et al.[12]

The semnd experiment chosen is from Kashani et a. [12], who have measured
temperatures distribution in a cpper tube of 2 m length and 3mm inner diameter, heaed
at its midpant along its length. Table 2 reports the masslow and heaing powers for the
experiments smulated. We have performed simulation wsing a uniform mesh of 200
elements.

Figure 4(a) shows the comparison d stealy-state temperature profiles as measured and
simulated at an initial bath temperature of 1.95K. To establish initial condtions and to
read the steady state we followed a procedure identicd to the one presented in the
previous ®dion. The agreament between measured and simulated profilesis stisfadory.

In Figs. 4(b) and 4(c) we report transient measurements and simulations at an initial bath
temperature of 1.65K. Figure 4(b) refers to data taken duing a step hea depaosition o
0.377W, while in Fig. 4(c) a redangular hea pulse of 0.404W was applied for a tota
duration d 3.5s. In this case we performed the full transient simulation starting from the
approximate flow initial condtions. The presaure & inlet and oulet was taken constant in
time. The inlet and oulet temperatures were obtained from a linea interpdation d the
experimental values as afunction d time. Again, the simulations compare favorably with
the measurements. In transient condtions ome time lag seem to appea (seeFig. 4(b)),



possbly due to the uncertainty on the thermophysicd properties of helium in the
superfluid state. Note that a lag of the same order was obtained in an independent
simulations of the same experiment [14].

For these two transient cases we have reported in Figs. 5(a) and §b) the velocity profiles
computed at different times. Figure 5(a) refers to the step in heding power. Presaure
variations during the transient with resped to theinitial profile ae negligible (of the order
of 10° bar) for two reasons. Firstly the dharaderistic time needed for the establi shment of
the temperature profile is much longer than the time necessary for soundwaves to travel
along the pipe (of the order of 20 ms at approximately 100 m/s isentropic sound speed).
Seondy the density changes associated with the transient heding are small. The
masdlow is therefore gproximately constant during the transient. The variations of
velocity visible in Fig. 5(a@) are thus mostly associated with the small changes in the
density profile under approximately constant masglow. We note there anather interesting
feaure of superfluid helium, namely the dfed of a negative expansion coefficient. A
temperature increase in superfluid state @rresponds to a density increase. Therefore in
the region after the heaer, where the helium is warmer, the flow decderates to maintain
the masdlow constant along the pipe. A similar behaviour is found for the velocity
profilesin the cae of aredangular heaing pulse, shown in Fig. 5(b). In this case for long
times the velocity tends to the initial profile, as the heaed helium is flushed and the
temperature drops (see &so Fig. 4(c)). In bah cases, as we drealy remarked, the dfeds
are small, with typicd changesin density and velocity in the range of 1 to 3%.

5.3. Transient measurements of Lottin and Van Sciver [18]

The last comparison has been made with the results of Lottin and Van Sciver reported
from Ref. [18], where astainless $ed test tube of 2.3 m length and 6 mm inner diameter
was heaed within a 0.1 m sedion in the middle by a 0.92 J pulse lasting 0.02 seconds.
Operating pressaure was 1 bar and beth temperature 1.82 K. The simulations were
performed in this case using a mesh of 800 elements, modelling only half of the pipe
length and assuming symmetry condtions in the midde of the pipe. Stagnant helium at
uniform temperature was taken as initial condtion. In the experiment the test sedion was
conreded to a helium bath that aded as a hea sink o limited cgpadty (the temperature
increased duing the pulse). We have thosen to approximate this boundiry condtion
adding a long length of pipe (1m) to the test sedion and setting constant pressure and
temperature, equal to the initial values, at the end d the alditional pipe length. The
additional length aded in the simulation as a mock-up d the buffer, alowing free
evolution d the temperature & the location correspondng to end d the test sedion.

We report in Fig. 6 the temperature increase measured at the termometers together with
the results of the simulation. Note that because of the symmetry assumption we plot there
only half of the length o the test sedion (1.15m). This case is particularly complex to
analyse, because the energy deposited in the bath caused a locd transition d state:
superfluid helium is heaed locdly above T, and kecomes norma helium, with much
lower density and padicdly no hea condwction. This is corredly predicted by the
simulation, that shows a locdised temperature peek at ealy times in the centre of the



pipe. In the experiment a wpper tube suppating the heaer wire aded as a thermal shunt
along the pipe length and asssted in the recvery of the superfluid state draining hed
from the normal fluid region towards the superfluid region. This particular has nat been
modelled in the smulation. Still we see that the simulation qualitatively predicts the
spread of the temperature pe&k, as well as the recmvery of the superfluid state, as time
advances.

To demonstrate the large hea transport capability of superfluid helium we report in Fig. 7
a snap-shot of the contributions to the total hea flux aong the pipe, evaluated at 0.1 s.
The two curves show in particular the hea flux due to the counterflow hea exchange
medhanism, evaluated from the numericd solution wsing Eq. (4), and the hed transported
by mass conwvedion, evaluated as pvC,T. As clea from the results reported there,
courterflow hea exchange is the dominating mechanism for hea transport. At 0.1 s the
helium in the region between x=1.12and x=1.15m, unckr the heaer, isin namal state.
Here the munerflow hea flux is zero. Becaise of the symmetry condtion velocity is
small in this region and therefore cnwvedion is aso negligible. Counterflow hea
exchange gpeas as on as the temperature is below T,. Close to the heaer the
temperature gradient is largest, and the wurterflow hea flux reates a maximum around
40 KW/m?. Note that becaise of the temperature dependence of the hea conductivity
function F, pedked at 1.8to 1.9K, the locaion d the maximum is not right at the phase
transition from superfluid to namal helium, where the gradient is maximum, but slightly
displacel within the superfluid region. Convedion hed transfer is much smaller, of the
order of 3 KW/m?, and hes oppasite diredion to the @urterflow contribution. This is
again dwe to the fad that the expansion coefficient is negative in superfluid helium, so
that the heding induced flow is towards the heaed region.

6. Conclusions

We have presented a lineaised finite dement agorithm for the solution d the steady-
state and transient 1-D flow of helium in superfluid state, based onan approximation o
the ourterflow hea exchange medanism, and taking into acourt nonlinea properties
and compressbility phenomena. The dgorithm is implicit, linealy uncondtionaly stable
and hes ®ond ader acaracy in space The implementation hes been dore & the
extension d a thermo-hydraulic model of a supercondicting cable [2], that has now
augmented capability and extended validity range. The alditional terms, originated by the
courterflow hea exchange, did na affed the stability properties of the origina algorithm
for compresgble flow, that cen still operate & Courant number commonly in excess of
1000.Finally we have used pubished experimental results to benchmark the methodwith
satisfadory results.
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Appendix 1. List of symbols

>

o

M—® g Qo0 ®
=0

a.Q

p’ pS’ pn’
sS

t

T,Ty,

u, U, u

V, Vs, Vp

X

matrix and dscretized matrix of convention coefficients
soundspead

spedfic hea and spedfic hed at constant volume

diffusion number

hydrauli c diameter

error

frictionfador

superfluid conductivity function

phase angle of the aror mode in the analysis of the amplificaion fador
matrix and dscretized matrix of diff usion coefficients

minimum temperature gradient for effedive conductivity evaluation
inflow and ouflow region

exporent for the temperature gradient in the wurterflow hea flux
Gruneisen parameter

effedive condictivity

amplification fador

matrix and dscretized matrix of mass (time derivatives) coefficients
nodal shape function and vedor of nodal shape function

presaure

superfluid courterflow hed flux

externa volumetric hed flux

impli citnessparameter for time integration

source and dscretized source vedor

density, density of the superfluid and namal comporents

source and dscretized source matrix

time @ordinate

temperature, temperature & the lambda transition

vedor of unknowns, nocdl unknovn and vedor of nodal unknavn
velocity, velocity of the superfluid and namal comporents

space oordinate



Table 1. Summary of operating condtions for the runs considered in the benchmarking

against the experimental data of Srinivasan and Hoffman [17].

Table 2. Summary of condtions for the runs smulated in the benchmarking against the

presaure

[Pl

mas<low

[9/]

heaer power
[W]

2.55

0.329

0.169

0.220
0.265
0.331

5.0e5

0.347

0.279
0.344
0.418

7.0e5

0.334

0.295
0.362
0.456

1.0e5

0.145
0.205

experimental data of Kashani at a. [12].

masdlow heaer pulse heaer pulse heaer power
waveform duration

[9/s] [W]

0.133 - stealy-state 0.123
0.215 - stealy-state 0.201
0.400 - stealy-state 0.358
0.215 step - 0.377
0.215 redangular 3.5s 0.404




1E+14 F

1E+13 3

F(T,p) (WWm® K)

1E+12 3

1E+11

125 15 175 2 2.25
T (K)

Figure 1. Superfluid hea conductivity function F(T,p) at several presaures (indicaed
in bar onthe aurves). The function F(T,p) is zero abowve the lambda temperature T, (in the
range of 2.1K)
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Figure 2. Amplificaion fador for the simplified model of transient hea transport

including only the munterflow medhanism. L is the mesh length, Ax is the space step,
plotted for a value of d=1. The arves plotted correspondto values of the implicitness
parameters 6 of 0, 14, /2, 34, 1.6 ismonaonously increasing in the diredion indicated
by the arow.
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Figure 3. Comparison d experimental data from Srinivasan and Hoff man[17] with

simulations. The results are grouped by operating presaure and masglow: (@) 2.5 kar and
0.329¢/s, (b) 5 bar and 0.347g/s, (c) 7 bar and 0.334¢g/s (d) 1 bar stagnant. Heder
powers asindicaed in the legends.



Figures 4.

2.10 H{ x 0.174W @
X L | +0.285W
< 2.06 -
5 [ | o0.507W
& i
8202~ )
g AT
194 L L L1 | I L
0 0.5 1 15 2
position (m)
2.10
r x1.5s (b)
2.00
< r
> i
5 1.90 r
E L
2180
e o
o r
1.70 £
=
160 }‘ 1 | | |
0 0.5 1 1.5 2
position (m)
2.20 [
F| x35s ©
o i
2 L
8 2.00 |-
5 i
o L
E L
[3) L
< 1.90 |

Comparison d experiment

1 1.5
position (m)

a steady-state (a) and transient hea inpu ((b)

and (c)) data from Kashani et al.[12] to the results of simulations.



0.211

0.210
@ 0.209
E 0.208
2
§ 0.207
() C
= 0.206 |
0.205 -
0.204 Fi
0 0.5 1 1.5 2
position (m)
0.210 [
__0.209 =355
Q i
é L
2 0.208 — 6-55
Z i
0.207 438
- (D)
0.206\\\\\\\\\\\\\\\\
0 0.5 1 15 2

position (m)

Figures 5. Calculated velocity at different times (indicaed on the arves) for the
transient hea inpu simulations of the experiments of Kashani et a.[12], (a) refersto a
step in heaing power, (b) to aredangular heding pulse.



x 0.2s
+0.5s
o0 1.0s
o1.5s

temperature increase (
o
=

|

3 F <

0.0l\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0O 02 04 06 08 1 12
pasition (m)

Figure 6. Comparison d simulation and experimental data on temperature increase
during aheda pulse in asuperfluid helium pipe a obtained by Lottin and Van Sciver [18].

100 :
- convection
of

NEE -10000 F
= - counterflow
5 -20000
S 30000 |
< -

-40000 F

_50000 :HHMH\M\HM\HMHMHHM\H

05 06 07 0.8 09 1 11 1.2
position (m)
Figure7. Hea fluxes due to the counterflow hea exchange medanism in superfluid

helium and die to convedion, as computed at t=0.1sin the smulation d the experiment
of Lottin and Van Sciver [1§].



