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Summary 
In this note we describe a method for the numerical calculation of inductances among 
conductors of arbitrary shape. The conductor is discretized using isoparametric bricks 
with uniform current density. The calculation is numerically stable and automatically 
adaptive up to a predefined accuracy. A convergence acceleration based on the study of 
the numerical error properties is used to achieve fast and accurate results. 
 

1. Introduction 
 
In the electromagnetic analysis of magnetic configurations, in circuital analysis 
and in general in electrical engineering it is often necessary to have a precise 
value of the self and mutual indutance of conductors. In the case of simple 
configurations the inductance calculation is often performed using analytical 
approximations. Once the configuration becomes complex, or tends to limits of 
small distances or small conductor size, analytical approximation can become 
very inaccurate, and in the limit fail to provide physically consistent values. In 
this note we describe a numerical method suitable for aritrary, three-dimensional 
conductor shape that gives accurate results in all limiting cases. 
 
For the calculation of the inductance we start from the following expression of 
the magnetic energy Eij stored in the interaction of the current flowing in two 
conductors i and j of arbitrary shape and volume Vi and Vj: 
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where Ji is the current density in the volume Vi, Jj is the current density in the 
volume Vj and rPQ is the vector distance between a point Q centered in the 
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volume element dVj, and a point P centered in the volume element dVi. We show 
this situation in Fig. 1 for the case of two conductors of arbitrary shape and 
position in space. 
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Figure 1. Definition for the calculation of inductance coefficients among conductors of 
arbitrary shape. 

 
Note that Eij is only the portion of magnetic energy associated with the 
interaction of conductors i and j. The total magnetic energy E stored in the 
system can be obtained by the sum: 
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where all possible interactions must be considered. In the absence of current 
sources or sinks, each conductor carries a total current Ii and Ij constant along its 
length, and the corresponding interaction energy can be also written using the 
inductance Lij as follows: 
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We define now two versors ji and jj oriented as the current density in the 
conductors, but with module normalised to provide unit current in the 
conductor. The current density in the conductor i can then be written as: 
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and similarly for the conductor j. With the above definition we can identify terms 
in Eqs. (1.1) and (1.3) to obtain: 
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The order of the scalar product and integration in Eq. (1.5) can be changed as 
follows: 
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where we recognize that the product of the multiplicative constant and of the 
term in parantheses corresponds by definition to the vector potential Aj 
generated by a current density of strength jj in the conductor j, or: 
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Accordingly, the inductance coefficient can also be written as follows:  
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In the above form the inductance calculation can therefore be reduced to the 
volume integral in conductor i of the scalar product of the current density versor 
ji and the vector potential Aj generated by a current density of strength jj in the 
conductor j. This form is the most convenient for numerical integration. 
 

2. Numerical calculation 
 
2.1 Discretization 
 
For the numerical integration of Eq. (1.8) we start discretising the system of 
conductors using 8-nodes brick elements with plane faces. The integral of the 
scalar quantity, the product ji • Aj, over the volume Vi of conductor i is then 
broken into the sum of the integrals over its Ni elements of volume VNi: 
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To perform the volume integration in each element of conductor i we need the 
value of the vector potential generated at an arbitrary point by the elements 
belonging to conductor j. For this calculation we use the analytic expressions 
established in [2]. As explained there, the calculation is performed transforming 
the volume integral in a sum of line integrals over the edges of the isoparametric 
brick, and is exact in the case that the faces of the brick are plane. 
 
The integral over the volume VNi is performed numerically using Gauss 
quadrature [3]. To this aim we use the coordinate transformation properties of an 
isoparametric element to transform the volume integral in Eq. (2.1) as follows: 
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where the integration is transformed from the volume VNi of the element in 
physical space to the right prism with vertices placed at coordinates +1 and -1 in 
the parent space (j,d,c) as shown in Fig. 2. The transformation is defined as 
conventionally done in finite element theory using the determinant D of the 
Jacobian matrix[3].  
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Figure 2. Transformation of an isoparametric brick in physical space to the right prism in the 
parent space. 

 
The numerical integration of Eq. (2.2) is simplified by the fact that it takes place 
in the parent plane, where the integration interval is [-1…1]. For the integration 
in 3-D space we use the same number N of Gauss points with coordinates jk = dl 
= cm and associated weight w in the three directions and we can write the integral 
as follows: 
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where we have evidenced the fact that the current density is constant while the 
vector potential and the Jacobian must be evaluated at each Gauss point.  
 
2.2 Convergence acceleration and adaptivity 
 
The sum on the r.h.s. of Eq. (2.3) provides an approximation u to the exact 
integral uexact over each element. The quality of the approximation improves, and 
the associated error ¡ = u - uexact decreases, increasing the number of Gauss points 
used for the evaluation, i.e. the order of the integration. In general we can write 
that the result of the integral is affected by an error that depends asymptotically 
on the integration order as follows: 
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where C is a constant and R is the convergence rate of the numerical 
approximation. Provided that the relation Eq. (2.4) holds, it is possible to use the 
result of the numerical integral obtained using different integration orders to 
estimate the integration error and thus improve the result. We refer to this 
process as convergence acceleration. Assuming in particualr that the numerical 
integral has been performed for two different orders N and N-1, leading to the 
two results uN and uN-1 respectively, we can calculate the multiplicative constant 
C: 
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The asymptotic value of the integral for an infinite integration order is then 
estimated as follows from the result obtained using an integration order N: 
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The estimate thus obtained for the integration order N can be compared to a 
previous estimate, obtained for an order M with M < N to verify the convergence 
by computing the variation b among the two estimates: 
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The parameter b provides a simple mean to adapt the integration order. The 
integration is started with a single Gauss point, i.e. N=1. The order is augmented, 
recomputing at each successive integration the estimate '

Nu  and monitoring the 
variation b between successive integrations (i.e. M = N-1). Convergence is 
achieved when the variation b becomes smaller than a pre-set value. 
 
The procedure outline here requires the knowledge of the convergence rate R, 
discussed in the next section. 
 
2.3 Convergence rate 
 
In order to determine the conmvergence rate R to be used in the adaptive 
procedure described, we have performed tests of inductance calculations on 
brick elements placed differently in space. The first test was performed using as 
conductors right prisms of size 2 m placed as shown in Figure 3(a). The current 
was assumed to flow along the z axis of the prisms. The second convergence test 
was performed on the bricks used to discretized two co-axial solenoids of inner 
radius 0.5 m, outer radius 1.5 m and height 1 m and placed as shown in Fig. 3(b). 
The solenoids were discretized using 50 isoparametric bricks each. 
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(a)    (b) 

Figure 3. Geometry used for the convergence tests. 
 
Calculations of the self and mutual inductance of the bricks were performed 
using 1 to 10 Gauss points in each space direction. The error ¡ was computed 
assuming that the exact value of the integral uexact is the asymptotic value '

Nu  
estimated for the highest integration order (i.e. N = 10). In addition we have 
computed the error on the asymptotic estimate ¡' given by the difference 
between the asymptotic value '

Nu  at a given order N and the exact value uexact, i.e. 
¡' = '

Nu - uexact. In Figs. 4 and 5 we report the results of this analysis. The errors 
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have been normalised to the exact solution, and are plotted in absolute value. We 
see that for both calculations that the relative error on the computed inductances 
of closely placed bricks is at the ppm level for an integration of order 6 and 
higher. For bricks with large spacing compared to the dimensions the required 
integration order to reach ppm accuracy is much smaller, and typically 2 to 3 
Gauss points per direction are enough. The typical convergence rate R is of the 
order of 7.5.  
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Figure 4. Convergence rate of the computed self and mutual inductance coefficients for the 

first test case (right prisms). On the left the relative error on the volume  given by Eq. 
(2.3), on the right the relative error on the asymptotic estimate provided by Eq. (2.6). 
In both cases the power law is plotted for C=1. 
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Figure 5. Convergence rate of the computed self and mutual inductance coefficients for the 

second test case (co-axial solenoids). On the left the relative error on the volume  
given by Eq. (2.3), on the right the relative error on the asymptotic estimate provided 
by Eq. (2.6). In both cases the power law is plotted for C=1. 

 



 8

The asymptotic estimate of the integrals converges faster, typically with a rate 
(R + 1) and higher. The gain in the convergence rate allows to reach higher 
accuracy for a given integration order or the same accuracy with a reduced 
order. This prooves that the acceleration procedure devised works as expected. 
 

3. Example 
 
As a final test of the procedure described here we have tested the convergence of 
the calculation of the inductance of the solenoid configuration reported in Fig. 
3(b) and we have compared it to known analytical solutions. The self inductance 
of each solenoid computed with the  analytical approximations given in [4] is 
1.2666 µH, while the mutual inductance is 0.5457 µH. The numerical calculation 
was performed for a discretization of the first solenoid using 100 bricks, while for 
the second a variable number of bricks in the range of 5 to 80 has been used in 
order to establish the convergence rate. The result for the largest number of 
bricks is a self inductance of 1.2655 µH and a mutual inductance of 0.5397 µH. 
Both values agree well with the analytical approximations quoted above. 
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Figure 5. Convergence of the calculation of self and mutual inductance for a set of two co-axial 

solenoids. The power law is plotted for C=0.5. 
 
The convergence of self and mutual inductance calculation is shown in Fig. 6. In 
this case the convergence appears to be quadratic. The reason for the apparent 
loss of convergence speed is that in this test an additional error is generated by 
the approximation of the solenoid geometry through bricks. The curved 
geometry is approximated better at increasing number of bricks, and it can be 
shown that the geometrical error of this approximation process has a quadratic 
convergence. This error dominates the overall performance of the calculation, 
thus hiding the higher convergence rate that is achieved on a brick-by-brick 
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basis. It is therefore clear that care should be exerted when approximating 
curved geometries with bricks and in estimating the associated error. In spite of 
this the calculation achieves remarkable accuracy with moderate number of 
bricks. 
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