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Summary 
The validation of numerical codes for the calculation of current distribution and AC loss in 
superconducting cables versus experimental results is essential, but could be affected by 
approximations in the electromagnetic model or incertitude in the evaluation of the model 
parameters. A preliminary validation of the codes by means of a comparison with analytical results 
can therefore be very useful, in order to distinguish among different error sources. We provide here 
a benchmark analytical solution for current distribution that applies to the case of a cable 
described using a distributed parameters electrical circuit model. The analytical solution of current 
distribution is valid for cables made of a generic number of strands, subjected to well defined 
symmetry and uniformity conditions in the electrical parameters. The closed form solution for the 
general case is rather complex to implement, and in this paper we give the analytical solutions for 
different simplified situations. In particular we examine the influence of different boundary 
conditions, the effect of a localised resistance in the middle of the cable such as in case of quench 
and the effects of localized time dependent magnetic fluxes acting on the cable. 
 
 

1. Introduction 
 

Cables for high current applications consist invariably of many superconducting strands in the 
form of a cable bundle where the strands are connected in parallel. In order to reduce the induced 
currents and the corresponding losses when exposed to external field changes, the strands are 
twisted to achieve transposition. This fabrication technique results in a wide variety of cable 
configurations of which Rutherford cables for accelerator magnets and Cable in Conduit 
Conductors (CICC) for fusion magnets are two typical examples. For any possible configuration the 
question on how the current distributes among the parallel strands may be of vital importance. 
Several experiments and theoretical works have shown that non uniform current distribution among 
the strands of Rutherford cables can lead to the development of a longitudinal oscillation of the field 
harmonics in the bore of accelerator dipoles, usually referred to as “magnetic field pattern” [1]. It 
has also been shown that the decay of the field harmonics measured during constant field phases 
such as the phase of injection of particle beams into the accelerator is related through strand 
magnetization to the current distribution among the cable strands [2, 3]. These phenomena must be 
predicted and corrected for the safe operation of a particle accelerator. 

 



 2

 
On the fusion magnets side, it has been established experimentally that CICC conductors may 

show a degradation of their quench performance when current distribution and re-distribution is 
hindered by large interstrand resistance. The degradation appears in steady state as a modification 
of the current-voltage characteristics of the cable, that has lower n-value of the power law compared 
to single strands, and during fast transients, as a ramp-rate dependent quench current, significantly 
lower than the critical current of individual strands. Uneven current distribution is discussed as one 
of the possible mechanisms for this performance degradation. For this reason several dedicated 
experiments were designed and performed to analyse the relation between the conductor thermal 
stability and the current distribution in the cable. An extensive review of the experimental work can 
be found in [4].  
 

In parallel, several research groups have developed numerical codes for the calculation of current 
distribution and ac-losses in multistrand cables. Some of these codes are based on lumped 
parameters circuit models of cables [5-9], while others rely on distributed parameters models [10-
12]. Despite this large experimental and theoretical effort, there is a lack of simple quantitative 
formulae for the estimation of current non uniformities in real-scale conductors. Moreover, little 
progress has been made to determine design criteria of practical use to improve the conductor 
design in order to limit the performance degradation due to uneven current distributions.  
 

Some interesting hints in this direction can be given by analytical work. Analytical studies were 
limited till now to simple cables made of few strands, typically two, in which case the governing 
equations simplify to a great extent [13-16]. In order to extend the reach of analytical models we 
have developed an analytical solution for the partial differential equations describing current 
diffusion in the frame of a distributed parameters model [17]. This solution applies to cables made 
of a generic number of strands, and is valid when the cable inductance, resistance and conductance 
matrices satisfy specific symmetry and circularity conditions. The validity of these conditions in 
most practical cases is discussed in [17].  
 

As the analytical solution is rather complex to implement in its general form, involving intricate 
mathematical functions and the numerical calculation of integrals, in this paper we provide 
simplified analytical formulae for the calculation of current distribution in three different relevant 
cases. The first case is representative of uneven boundary conditions imposed at the cable ends. The 
second case is representative of the initial phases of the quench of one strand. The third case is 
representative of a driving voltage acting on one strand in the presence of a time dependent 
magnetic field, due to a transposition error with respect to the field itself. 
 

These formulae can be used to build an analytical benchmark for the validation of numerical 
codes modelling current distribution in multistrand cables. The equations used to describe 
analytically current diffusion are quite general, and this benchmark applies to most of the codes 
based on distributed parameters models developed in the past years. In addition the analytical 
solutions reported here give a basis for useful scalings for the behaviour of multistrand cables. 
 

2. Model and assumptions  
 
The model for the current distribution that we have developed [12, 18] is shown schematically in 

Fig. 1 (for three strands). The cable has a total length L and is composed of N strands. It is assumed 
that the current can flow continuously from each strand to all the other strands through distributed 
contacts. These contacts are taken into account through longitudinal conductances per unit length 
gh,k (with h, k = 1, N) between the h-th and k-th strand. The local mutual inductive effect between 
strand currents is taken in account by means of a matrix of per unit length mutual induction 
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coefficients lh,k (with h, k = 1, N). The voltages induced by external sources, such as, e.g., a time 
dependent external magnetic field dB/dt, are also distributed along the cable length and they are 
taken in account by means of external voltages per unit length ext

hv  (with h= 1, N). The equations of 
current diffusion in the presence of a longitudinal resistance describing the non linear current-
voltage characteristics of each strand can be easily derived [12]. In the scope of the present study, 
the longitudinal resistance is neglected, i. e. the strands are considered to be in the perfectly 
superconducting state. Under this hypothesis, the current in each strand can be described by the 
following parabolic system of partial differential equations: 
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where t is time, x is the distance along the cable axis, i is the vector that contains the N strand 
currents, while g and l are the cable conductance and inductance matrices.  
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The lh,k in (2) are the inductance coefficients among strands, defined for a unit of strand length. In 
order to facilitate the analytical approach, we assume that the model matrices g and l have a very 
simple structure. In particular we assume the inductances matrix l to be made of only two possible 
values, namely a self and a mutual induction coefficient, or: 
lh,h =  l and lh,k = m with h, k = 1, N, h≠ k. (4). 
The contact conductances between all different strand pairs are assumed to be identical, so that 
matrix g can be written as follows: 
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In order to find the analytical solution of system (1) it is necessary to set the initial current 
distribution among the cable strands. We assume the initial currents in the cable to be equal to zero: 

0)0,( =xih  with h = 1, N          (6) 
This is obviously true in a real cable before any current cycle, or after the decay of all the current 
loops induced during previous current cycles.  

All the assumptions made above, i.e. nil strand longitudinal resistance and initial current 
distribution, and the simplified feature of the model matrices, are not necessary for the derivation of 
the analytical solution of the system equations [17]. In particular, both assumptions (4) and (5) are 
true in the case of simple cables such as triplets or quadruplets, but are not likely to be fulfilled in a 
multi-stage cable, where the contact conductances and mutual inductances are ‘graded’.   

These choices are however useful as they result in a very relevant simplification of the analytical 
formulae discussed here, without affecting the validity of the benchmark proposed. In fact, these 
simplifications can also be considered for the model matrices in the numerical simulations, allowing 
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in any case meaningful comparisons with the analytical solutions. 
 Moreover, numerical simulations show that these formulae are representative of the average 

behaviour of the strand currents evolution in the different situations discussed. This result can be 
obtained through an appropriate choice of the averaged parameters for the matrices l and g. These 
parameters can be obtained imposing the conservation of the energy accumulated and dissipated in 
the cable in the passage from the real to the simplified matrices.  

 
3. Non uniform current distribution at the cable boundaries 
 

In this section we give the analytical solution for the evolution of the strand currents in a N-
strand cable subjected to an uneven current distribution at the cable ends. In particular we suppose 
that at one cable end only one of the N cable strands is connected to the current leads and thus 
carries the whole transport current. At the other end we assume that all the strands are connected to 
the current leads and share the transport current uniformly. distributed. The external voltage 
excitation vext is assumed to be zero, neglecting the effect of self and external fields. The boundary 
conditions of the problem are schematically shown in Fig. 2. The equations, initial conditions and 
boundary conditions considered for this case can be written in the following form: 
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where L is the cable length and iop is the total cable operating current. The detailed derivation of the 
solution for any kind of current cycle that can be found elsewhere [19]. Here we give the solution 
for the case of a current cycle made of a current ramp up with ramp rate β until t = t1 followed by a 
constant current phase at t > t1, or: 

ttiop ß)( =   for t ≤ t1           (8) 

1ß)( ttiop =  for t > t1.          (9) 
The currents in the strands during the current ramp are given by: 
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while during the current plateau the currents are given by: 
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In equations (10) through (13) t  represents the time constant of the cable, given by: 
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As discussed in [17], in the simple case considered (uniform inductance and conductance 
matrices) this is the only time constant of the system. From the above equations we remark that the 
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deviation of the strand currents from a uniform distribution has two components. The first one, the 
first term on the right hand side of Eqs. (10)-(13), is a linear function of space constrained by the 
two values at the boundaries. The second component is a deviation from linearity that becomes 
negligible at times much longer than the cable time constant. Considering the solution during the 
ramp, Eqs. (10) and (11), it can be shown that the series converges to the following polynomial in x: 
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This value is constant in time, while the linear term containing iop (t) always increases in time. 
Hence after a sufficiently long time the non linear term can be neglected with respect to the linear 
one. During the current plateau the exponential present in the series reported in (12) and (13) forces 
this term to zero at times much longer than τ. The current distribution in the limiting case of a long 
current ramp or a long current plateau is therefore given by a simple linear space dependence in all 
strands. 

In order to apply these analytical formulae to the benchmarking of a numerical code, we 
have performed a set of numerical simulations involving cables made of different number of 
strands. A cable of length L = 2.3 m is subjected to a current cycle characterized by the parameters 
β equal to 600 A/s and t1 equal to 10 s with the boundary conditions previously described. The 
number of strands is taken as a parameter in the simulations, keeping the inductances to the values 
l = 0.5 µH and m = 0.25 µH, and the contact conductance to the value g = 7.463 MS. This choice 
results in τ equal to 2 s for the two strand cable. We show in Fig. 3 the space dependence of the 
current in strand #1 of a 2-strand cable for the ramp and plateau phases respectively. Each curve 
plotted in Fig. 3 is normalised to the instantaneous value of the current at the beginning of the cable 
(x = 0) at each time step considered. The current imbalance at the boundaries disappears as expected 
along the cable length. As already anticipated, the strand current tends towards a perfectly linear 
variation, both during the current ramp and during the current plateau. We finally plot in Fig. 4 the 
comparison between the analytical solution and the numerical simulation for cables made of 2, 3, 4 
and 5 strands. The numerical code used for comparison is based on a finite element approach and is 
described in detail in [18]. A very good agreement is obtained between the analytical solution and 
the numerical simulation. 

 
4. Local quench in one strand 
 

For this case a lumped longitudinal resistance R is introduced in strand #1 in the middle of 
the cable (x = L/2), as shown in Fig. 5. This resistance is representative of a normal zone that can 
develop in one strand due to a direct heat input or to a local increase of current above the current 
sharing threshold. In the present model, the resistance is kept constant in time, neglecting the 
longitudinal propagation of the normal zone. This situation is representative of the first phases of 
quench of one strand before the normal zone can spread across the cross section of the cable, or 
downstream due to the heat conduction or a heating induced flow of helium. Also in this case the 
external voltage excitation is assumed to be absent for simplicity. An uniform current distribution is 
taken at the cable boundaries. The procedure for the determination of the analytical solution in this 
case is more complicated than in the first case, requiring the intervention of Laplace transform and 
is reported elsewhere [19]. We only report here the strand currents arising in a current cycle made 
of a current ramp followed by a current plateau as already described in section 3. 
 Once the non-dimensional parameter 4/)1(? −−= NLgR  is defined, the solution for 
the strand currents during the current ramp-up (t ≤ t1) can be written in the following way:  
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for 0 ≤ x≤ L/2 and: 
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for L/2 < x ≤ L. 
 
During the current plateau (t > t1) the strand currents are expressed as follows: 
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for 0 ≤ x≤ L/2, and: 
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 for L/2 < x ≤ L. 
 
The function ( )?,, txA  in equations (16) through (19) is given by: 
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Finally, the set ( )??n , n = 1, ∞ is the solution of the following transcendental equation: 
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where x is an arbitrary, real positive unknown. As shown in Fig. 6, the solutions of this equation, 
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It is worth noting that also in this case the deviation of the strand currents from a uniform 
distribution is given by two terms clearly readable in Eqs. (16) through (19). The first term 
represents a linear variation of the current along the cable length, while the second term represents a 
deviation from linearity that becomes negligible with respect to the first term for times much longer 
than the cable time constant, both during the current ramp and during the current plateau. 
Arguments similar to those discussed in the previous section apply to the series in Eqs. (16) through 
(19), that can be shown to be formally identical to the series in Eq. (10). 

We have applied the solution above to the analysis of current distribution considering the 
same ramp cycle and the same cable analysed in Section 3. A lumped resistance R of 5 µΩ is placed 
in strand #1 in the middle of the cable. This situation corresponds to a normal zone with distributed 
resistance of 0.5 mΩ/m spreading over a length of 1 cm in strand #1, that is introduced in the 
simulations performed with the numerical code. The current in strand #1 during the current rise and 
plateau is represented in Fig. 7. The current drops close to the lumped resistance diffusing from 
strand #1 to the other strands along a characteristic redistribution length that depends on the contact 
conductance among the strands. A comparison between the analytical solution and numerical 
simulation is shown in Fig. 8 for cables made of 2, 3, 4, and 5 strands with the same contact 
conductance and cable inductances as considered for the 2-strand cable. A good agreement is found 
also in this case between the two solutions. 

 
5. External voltage excitation 
 

We finally consider the cable subjected to a longitudinal voltage excitation localised over a 
short length δ placed in the middle of the cable and acting for a time t1. This situation is 
representative of the voltage induced by a changing external magnetic flux in the presence of a 
localised transposition error in the cable. In particular we consider that the external voltage source 
acts only on one strand, e.g., the first one in the cable. An uniform current distribution is assumed at 
the cable boundaries.  
The problem can then be stated as follows: 
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The solution for this case is given by the following equations, for t ≤ t1: 
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where we have used the following definitions for the parameters appearing in (24) and (25): 
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and τ  is defined in (14).  
  The currents Ih in (24) and (25) are the regime currents that are reached after a time much 
longer than the time constant τ and can be written as follows for the first strand:  
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In all the other strands the regime current is the same and is given by: 
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As in the previous sections, we have applied these solutions to the benchmarking of the 
numerical code. The current distribution is calculated in the reference cable previously described 
with different number of strands (ranging from 2 to 5). A voltage source of 10 µV/m is localised in 
the center of the cable along a length δ = 0.1 m and acts for a time t1 equal to 10 s. We show in Fig. 
9 the evolution of the current in strand #1 calculated with the 2-strand cable. The current rises under 
the effect of the external voltage and then drops to zero after the end of the field ramp. In the simple 
case considered, with uniform cable inductance and conductance matrices, the currents in all strands 
except for strand #1 are coincident. The current in strand #1 increases until t1 due to the external 
voltage excitation and then decays after t1 with the time constant τ. The current in all the other 
strands is negative and the absolute value is simply given by the current in the first strand divided 
by (N−1), so that the total cable current is zero. A comparison between the analytical solution and 
the numerical simulation is shown in Fig. 10. A very good agreement is found also in this case 
between the analytical and numerical solution. 
 
Conclusions 

A set of analytical solutions for the equations of current diffusion in multistrand 
superconducting cables has been reported. These formulae extend previous analytical work 
performed for 2-strand cables to cables made of a generic number of strands under some 
simplifying assumptions over inductance and conductance matrices. These solutions therefore 
provide an ideal analytical benchmark that can be used to test numerical codes for the calculation of 
current distribution in superconducting cables, in order to obtain a preliminary validation of these 
codes. The formulae are not intended to substitute numerical codes as they are not able to deal with 
the intrinsic non linearity of the current-voltage characteristics of superconducting strands, that 
becomes important as the strand current approaches its critical value. However, they can be useful 
for a rapid evaluation of the time scales and characteristic lengths of current redistribution for 
strands in superconducting regime, or when only a small portion of a strand turns normal due to an 
external disturbance. A possible future development of this work is the definition of improved 
design criteria for superconducting cables taking into account the effect of uneven current 
distributions between strands. 
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Fig. 1.  Distributed parameters circuit model of the elemental mesh of cable used to describe current 

distribution in multistrand superconducting cables. 
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Fig. 2. Boundary conditions considered for the N-strand cable. 
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Fig. 3. Evolution of the current in the first strand of a two-strand cable with the parameters 

discussed in the text and subjected to non uniform boundary conditions. The current at each 
time step reported is normalised to the value I0 of the current at x = 0. The cable is subjected 
to a current ramp until t1 equal to 5 τ, followed by a current plateau. The left plot reports the 
current rise during the current ramp for t < t1, while the right plot shows the current plateau 
for t > t1. 
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Fig. 4. Time evolution of the strand currents in the middle of the cable for cables made of 2, 3, 4, 5 

strands (plots are marked respectively a), b), c), d)) with the boundary conditions specified 
in the text. All strands except strand #1 have the same current as strand #2. A comparison 
between the analytical solution (symbols), and the numerical simulation (lines) shows a 
good agreement.   
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Fig. 5. Simplified model for quench in strand #1 in the middle of the cable.  
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Fig. 7. Evolution of the current in the first strand of a two-strand cable with a lumped resistance in 

the middle of strand #1 simulating quench. The current at each time step reported is 
normalised to the value I0 of the current at x = 0. The cable is subjected to a current ramp 
until t1 equal to 5 τ, followed by a current plateau. The left plot reports the current rise 
during the current ramp for t < t1, while the right plot shows the current plateau for t > t1. 



 14

 
 

0

100

200

300

400

500

600

700

0 5 10 15 20

t  (s)

I 
(A

)

Strand 2

Strand 1

a)

0

50

100

150

200

250

300

350

0 5 10 15 20

t  (s)
I 

(A
)

Strand 1

Strand 2

b)

 

0

50

100

150

200

250

0 5 10 15 20

t  (s)

I 
(A

)

Strand 1

Strand 2

c)

0

50

100

150

200

0 5 10 15 20

t (s)

I 
(A

)

Strand 1

Strand 2

d)

 
 
Fig. 8. Time evolution of the strand currents in the middle of the cable for cables made of 2, 3, 4, 5 

strands (plots are marked respectively a), b), c), d)) with a lumped resistance in the middle 
of strand #1 simulating quench. All strands except strand #1 have the same current as strand 
#2. A comparison between the analytical solution (symbols), and the numerical simulation 
(lines) shows a good agreement.   
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Fig. 9. Evolution of the current in the first strand of a two-strand cable with an external voltage 

acting in the middle of strand #1. The current at each time step reported is normalised to the 
maximum value that could be reached after  a time much longer than the time constant. The 
cable is subjected to this external voltage until t1, while the excitation is nil after t1. The left 
plot reports the current rise during the field ramp for t < t1, while the right plot shows the 
current decay for t > t1. 
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Fig. 10. Time evolution of the strand currents in the middle of the cable for cables made of 2, 3, 4, 5 

strands (plots are marked respectively a), b), c), d)) with an external driving voltage acting 
on strand #1 in the middle of the cable. All strands except strand #1 have the same current as 
strand #2. A comparison between the analytical solution (symbols), and the numerical 
simulation (lines) shows a good agreement.   

 


