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Summary 

The analysis of current distribution and redistribution in superconducting cables requires 
the knowledge of the electric coupling among strands, and in particular the interstrand 
resistance and inductance values. In practice both parameters can have wide variations 
in cables commonly used such as Rutherford cables for accelerators or Cable-in-
Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-
stage twisted cable with arbitrary geometry that can be used to study the range of 
interstrand resistances and inductances that is associated with variations of geometry. 
These variations can be due to cabling or compaction effects. To describe the variations 
from the nominal geometry we have adopted a cable model that resembles to the physical 
process of cabling and compaction. The inductance calculation part of the model is 
validated by comparison to semi-analytical results, showing excellent accuracy and 
execution speed. 
 
 
Introduction 
 
Any analysis of current distribution and re-distribution in multi-strand superconducting 
cables (see for instance [1-6]) depends in last analysis on the assumptions made on the 
electrical characteristics of the cable. The main parameters that are of importance are in 
particular the strand longitudinal resistance, theinterstrand conductance and the strand 
self and mutual inductances. The strand longitudinal resistance depends on the V-I 
characteristics of the superconducting material and the associated stabilizer. This is 
typically one of the characteristics that can be well established through measurements on 

 



single strands in various conditions. The interstrand conductance depends largely on 
strand coatings, surface conditions, cabling pattern and cabling procedure, in particular 
on the cabling compaction at the various cabling stages. Because of the importance in the 
control of AC loss and the implications for stability, the interstrand conductance is the 
subject of an intense experimental study for various cable types and configurations. 
Finally, the strand self and mutual inductances are known to affect the dynamic response 
of a cable to current and field transients. In spite of this, especially when compared to the 
effort in the characterization of the resistive properties of cables, cable inductances are 
not intensively studied. Part of this could be due to the fact that a measurement of the 
strand self inductance and the interstrand mutual inductances is not easy. A measure of 
inductance in a cable demands access to single strands, which is not practical in the case 
of large cables. A frequency analysis can be used to discriminate the inductive effects 
from the resistive ones and thus infer the strand inductances from the measured 
impedances [7]. This method has limited accuracy. Finally, inductance is an integral 
property of the cable geometry, so that the inductance of a cable wound in a coil is in 
general different from that of a straight cable sample. The results thus depend on the 
measurement conditions. 
 
Based on the above arguments, we have developed a geometric model of a cable that is 
suitable for the calculation of the strand inductances. In addition, the geometric model 
can be used for the estimation of the interstrand contact pattern and hence to estimate the 
expected interstrand conductance, assuming that the conductance of a single, isolated 
contact is known. In this paper we describe the main features of the geometric model and 
the calculation procedures for the inductances and interstrand conductances. We show 
that the inductance calculation is sound and stable by comparison to another numerical 
method, based on a different approach. Finally we present some calculation results for 
relevant examples of a subcable of a cable-in-conduit conductor (CICC) of the ITER 
class [8], and for a Rutherford cable as used in the LHC [9]. The examples are used to 
show general trends in the electrical parameters of cables as a function of cabling pattern, 
size and compaction. 
 
Cable geometry 
 
The cable geometry is generated first in a reference x-y plane, located at the origin of the 
cable, and is then extruded in the third dimension z taking into account the cable twist-
pitches and cabling direction, reproducing the physical cabling process in a virtual 
analog. The starting components are strands of round shape, cabled in an arbitrary 
number and composition (e.g., mixing superconducting and pure stabilizer strands of 
different diameter) to form a sub-stage of round shape and with a given outer diameter. 
Cabling around a core has been implemented also to model, for example, cabling patterns 
of the type of 6-around-1, or cabling around a central hollow space. Figure 1 shows the 
general sub-stage assemblies that have been considered. 
 
This assembly process can be repeated recursively up to the last level of cabling. The 
cable is then formed by arranging an arbitrary assembly of elements in a final shape that 
can be chosen among a round (as is the case for sub-cables), a rectangular or a keystoned 



geometry. This makes it possible to generate geometries ranging from round, square and 
rectangular CICC’s, to CICC’s with central cooling hole, or flat and keystoned 
Rutherford cables. Some examples of the geometry generated are reported later. 
 
Once the geometry is generated in the reference plane, the centres of the building 
components are known in polar coordinates and are located at radius Ri

l and angle θi
l(0) 

where the superscript l is the identifier of the cabling stage and the subscript i is the index 
of the element in the cabling stage. A schematic representation of the coordinate 
identification in the reference plane for a simple case of a 3x4 cabling pattern is shown in 
Fig. 2.  
 
For round cables, the coordinates of the centerline of the strands are computed as a 
function of z in 3-D coordinates space as follows: 
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where Lp

j is the twist pitch of the cabling stage j. The sign + or – in the trigonometric 
functions of Eq. (1) are selected depending on the cabling pattern (“S” or “Z”). This 
calculation neglects the effect of the following cabling sequences on the curvilinear 
coordinate along the strand. We assume that this effect introduces a small error compared 
to other possible error sources. In the case of rectangular or keystoned cable shapes, the 
strands are first placed uniformly on a circle as implied by Eq. (1), as it is the case on a 
real winding machine before passing through the turcks head and compaction dies. This 
circle is then transformed in the desired shape by an isoparametric transformation 
between the physical plane (x,y) and a parent plane (ξ,η), where the cable is a square 
with corners placed at unit coordinates [10]. The transformation is shown schematically 
in Fig. 3 for the case of a cable of width w formed of strands of diameter d. 
 
We have chosen to discretize the strands in 3-D using isoparametric, 8-nodes brick 
elements [10]. The discretization is performed automatically, using the coordinates of the 
centers of the strands to define the line along which the isoparametric bricks are created. 
The cross-sectional dimensions of the brick elements in the plane normal to the z 
direction are set so that the strand cross section is maintained. The number of subdivision 
Nz in z direction is chosen large enough to lead to accurate numerical results, as discussed 
later. Figure 4 shows a detail of the geometry discretization in 3-D coordinates generated 
for the cross section reported in Fig. 2. At present the model cannot avoid strand 
interference and inter-penetration of the isoparametric bricks, but we are experimenting 
methods that could resolve interference either imposing geometrical constraints or 
simplified mechanical constraints. 
 



Inductance calculation 
 
For the calculation of the self and mutual inductance of the strands we use the standard 
definition of the inductance coefficient Lij between two strands i and j of volume Vi and 
Vj, whose internal points P and Q are located at a distance rPQ . The strands have current 
densities Ji and Jj respectively. We define two vectors ji and jj with directions identical to 
those of the current densities Ji and Jj, and module equal to the inverse of the cross 
section normal to the current flow. With this definition, ji and jj are the current densities 
that correspond to unit current in the two strands. The inductance is then given by: 
 

∫ ∫
•

=
Vi Vj

ij
PQ

ji
ij dVdVL

r

jj

π
µ
4

0  (2). 

 
Introducing the magnetic vector potential Aj generated by the current density of strength 
jj in the strand j: 
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we can transform the definition of the inductance coefficient as follows: 
 

∫ •=
Vi

ijiij dVL Aj  (4). 

 
In the above form, the inductance calculation can therefore be reduced to the volume 
integral in strand i of the scalar product of the current density versor ji and the vector 
potential Aj generated by a current density of strength jj in the strand j. This is the most 
convenient form for numerical integration.  
 
In practice, the integral of the scalar quantity, the product ji • Aj, over the volume Vi of 
strand i is broken into the sum of the integrals over the Nz isoparametric elements of 
volume VNz that are used to discretize the strand: 
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To perform the volume integration in each element of strand i, we need the value of the 
vector potential generated at an arbitrary point by the elements belonging to strand j. For 
this calculation we use the analytic expressions established in [11] in the case of an 
arbitrary isoparametric element carrying a uniform current density. The integral over the 
volume VNi is then performed numerically using Gauss quadrature [10], as detailed in 
[12]. 
 



Strand contact pattern and interstrand conductance 
 
Starting from a discretized cable geometry it is possible to use the distance between 
strands to identify the interstrand contacts [13, 14, 15]. An interstrand contact between 
strands i and j is defined as the point where the distance dij between the centers of the 
strands is smaller than the sum of the strand radii. The contact condition is therefore: 
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where di and dj are the strand diameters. This condition must be verified continuously 
along the cable, as a function of the z coordinate, to detect one or more contacts. We have 
chosen to verify it at all isoparametric elements, on the points zup and zlow corresponding 
to the two faces parallel to the x-y plane. By doing this, we have defined two possible 
types of contacts between strands, as shown schematically in Fig. 5. The first type is a 
line contact, taking place when both points at zup and zlow satisfy the condition Eq. (6). 
This type of contact is best characterised using the distributed conductance gline defined 
for a unit length of contact (i.e., with dimensions of [S/m]). The second type is the cross 
contact, defined when only one of the two points satisfies the contact condition Eq. (6). 
This contact is characterised electrically by the contact conductance Gcross. Once the 
topology of all contacts is found, it is possible to compute the interstrand conductance per 
unit length between the two strands: 
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where Ncross and Nline are the total number of cross and line contacts respectively, L is the 
total length of cable modelled and analysed and Nz is the number of subdivisions in z 
direction, so that L/Nz is the length of a single isoparametric element in z direction. 
 
Since the contact condition (6) is verified at a finite number of points, the contact 
topology and, in particular, the number of contacts found depend on the level of 
discretization. This can be obviated using a sufficiently large number of subdivisions Nz 
and providing a tolerance range for the contact condition. 
 
Model validation 
 
As we discussed in the introduction, a direct verification of the electrical coupling 
parameters is not easy. Some attempt at validating models similar to that described here 
have been reported in the literature [15] with encouraging results. Here we focus mainly 
on inductances, and we validate our calculations comparing them to the results of an 
independent model that uses analytical strand trajectories to solve the 6-D integral of Eq. 
(2) [16, 17]. The cases that have been selected for a comparison are two: 
 



• three lengths, 100, 200 and 540 mm, of the first two stages of a cable with 
characteristics similar to the ITER-CS1 cable [8], reported in Tab. 1. Note that the 
outer diameter chosen for the two stages is identical to the diameter of the 
envelope of the outer strand surfaces in the two cabling stages, as shown in Fig. 2. 
The diameter of a compacted cable is generally smaller than the values taken in 
Tab. 1; 

• a single twist pitch of a keystoned, Rutherford cable with the typical dimensions 
of the inner cable used for the LHC dipoles [9], and characteristics reported in 
Tab. 2; 

 
The results of the comparison for the ITER-CS1 subcables is shown in Fig. 6. The 
agreement is excellent for the triplet, with a relatively simple geometry, and is 
satisfactory for the 3x4 subcable. The results shown in Fig. 6 have been obtained with a 
number of z subdivisions sufficient to insure convergence of the numerical integration. 
Typically 10 subdivisions per twist pitch are necessary to describe accurately the twisted 
strands geometry. We attribute the small residual differences observed in this case to 
variations of the geometry used in the integration and the residual error at the specified 
convergence tolerance of 5 %. The results for the LHC inner cable are shown in Fig. 7, 
and display a very good agreement between the two calculation methods. Based on these 
results, we have confidence in the quality and accuracy of the calculation method 
presented. 
 
Applications 
 
We have used the model described above to study two parameters that are fundamental in 
determining the maximum intensity and the longest time constant of induced currents in 
superconducting cables. The first parameter is the return line inductance per unit length 
λij, defined for any couple of strands i and j as: 
 

ijjjiiij lll 2−+=λ  (8). 
 
The second parameter of relevance is the total return conductance per unit length γi 
defined for any strand i as: 
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which corresponds to the conductance per unit length experienced by a current flowing in 
strand i and returning in the other strands. It can be shown [18, 19] that the amplitude of 
the current imbalance induced in a multi-strand cable by external sources such as 
localised or distributed voltages is proportional to the return conductance γi, while the 
time constant of the evolution of the imbalance is proportional to the product of the return 
inductance and conductance λij γi. 
 



In the case of the LHC inner cable the spectrum of return line inductances is shown in 
Fig. 8. The return line inductances are relatively small for adjacent strands, 0.3 µH/m, 
and grow to a maximum of 1 µH/m for strands opposite in the cable. The implication is 
that the time constants of current distribution span a spectrum with the same width. The 
case for a multi-stage twisted cable is more interesting. Taking the first three stages of the 
ITER-CS1 cable as an example, the return line inductance for the first stage (triplet) is 
small, approximately 0.4 µH/m, similar to adjacent strands in the case of a Rutherford 
cable. As the cable becomes larger and more complex, the spectrum shows a steady rise, 
reaching values in excess of 1 µH/m for the 3x4x4 subcable as shown in Fig. 9. Clearly, 
the return inductances (and the corresponding time constants) will be significantly larger 
in the final cable stage. 
 
An interesting feature of the model is that it allows the generation of cables geometries 
with different final diameter, thus simulating the effect of cable compaction. We have 
studied the effect of cable compaction on the return inductance and conductance of the 
second stage (3x4) of the ITER-CS1 cable. The final diameter of the cable has been 
reduced scaling it by a factor in the range of 0.85 (15 % compaction) to 1 (0 % 
compaction) without modifying the strands, and the corresponding inductance and 
conductance matrices have been used to determine the spectrum of λij and γi.  The results 
of this study are shown in Figs. 10 and 11, where we have plotted the effect of cable 
compaction on the average, minimum and maximum of the spectra of λij and γi. The 
effect on the return inductance (Fig. 10) is marginal and smooth, resulting in a change of 
15 % over the whole range of compaction tested. In contrast, as expected, the estimated 
effect on the return conductance is large and shows a threshold at a cable compaction of 
5 %. For compaction below 5 %, the return conductance is governed by line contacts 
among the strands in a triplet. Above 5 %, the strands of different triplets come in contact 
and the return conductance grows sharply, reaching saturation at high enough 
compaction. The absolute magnitude of this effect depends on the values taken for the 
line and cross conductances, see Tab. 1. Although the details of interstrand conductance 
are much more complex than the simplistic approach discussed here, it is interesting to 
note that a simple model can still give useful quantitative indications on trends.  
 
Conclusions 
 
The model described in this paper provides useful information for the characterization of 
the electrical properties of a multi-strand superconducting cable. We have verified the 
inductance calculation through comparison to a semi-analytical model, developed 
independently, achieving good agrement between the two calculations. Further validation 
tests will include a mandatory comparison to experimental results. 
 
 The flexibility of our general approach is an advantage when dealing with multi-stage 
cables, for which an analytical description of the cable geometry is not feasible. The 
contact model, although rudimentary in its principle, has an inherent level of complexity 
associated with the geometry description that makes its detailed interpretation already 
difficult. However, it appears to produce physically consistent trends and definitely 
demands a more precise quantitative validation. 



 
The examples discussed demonstrate that the electrical characterization of a multi-strand 
superconducting cable is a complex task, involving a multitude of parameters. The 
consequences is that simple estimations can be wrong, in some cases by orders of 
magnitude, leading to wrong assumptions on the transient and steady state electrical 
response of a cable. We believe that the approach described here is a step in the direction 
of an improved understanding through enhanced knowledge of key parameters such as 
interstrand inductance and conductance. 
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Strand diameter (mm) 0.81 
Cabling pattern  3x4x4 
1st stage (triplet)   
 outer diameter (mm) 1.75 
 twist pitch (mm) 25 
2nd stage (quadruplet)   
 outer diameter (mm) 4.21 
 twist pitch (mm) 54 
33d stage (quadruplet)   
 outer diameter (mm) 10.17 
 twist pitch (mm) 95 
Gcross (MS) 1 
gline (MS/m) 20 

 
Table 1. Geometrical and electrical characteristics used for the calculation of the 
electrical parameters of the first cabling stages of the ITER-CS1 cable. 
 
 
 
 
 

Strand diameter (mm) 1.07 
Number of strands (-) 28 
Width (mm) 15.1 
Inner thickness (mm) 1.74 
Outer thickness (mm) 2.06 
Twist pitch (mm) 115 

 
Table 2. Geometrical characteristics used for the calculation of the electrical parameters 
of the inner cable of the LHC dipoles. 
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Figure 1. Cabling patterns considered for a sub-cable stage: (a) a n-plet of 
superconducting strands, (b) an hybrid of superconducting strands and pure stabilizer 
strands, (c) a hollow cable and (d) cable around a core with different diameter and 
material (e.g., pure stabilizer). 
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Figure 2. Definition of the polar coordinates of the sub-elements of a 3x4x4 cable in the 
reference plane. Only two triplets (stage 1) are shown for clarity. 
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Figure 3. Principle for randomized meshing of a cable. The first strand is placed 
randomly on the ζ circle, the following strands are equispaced. This distribution is then 
mapped first in the parent plane and afterwards in the physical plane. 
 
 

 
 
Figure 4. Detail of the geometry generated for a 3x4 cable with the cross section shown 
in Fig. 2. Note the inversion in the twisting direction between first and second stage. 
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Figure 5. Definition of a line contact (a) and a cross contact (b). 
 



 

  

 
 
Figure 6. Comparison of computed strand self and mutual inductances per unit length in 
the case of an ITER-CS1 triplet (a) and for a 3x4 cable substage (b). The results of the 
numerical procedure described in this paper (plotted on the x axis) are compared to the 
results obtained by direct 6-D integration of the inductance of round conductors with 
analytical centerline (plotted on the y axis). The calculations have been performed for 
different cable lengths. 
 



 

 
 
Figure 7. Comparison of the calculation of self and mutual inductances per unit length in 
the case of a Rutherford cable for the inner layer of an LHC dipole, computed for a cable 
with a length of 115 mm (one twist pitch). 
 
 

 
 
Figure 8. Spectrum of the return line inductances computed for the LHC inner cable. 
 



 

 

 
Figure 9. Spectrum of the return line inductances computed 3x4 (a) and the 3x4x4 (b) 
cabling stages of the ITER-CS1 cable. The return line inductance grows significantly as 
the subcable increases its size. 
 



 

 
Figure 10. Estimate of the effect of cable compaction on the average, minimum and 
maximum return line inductance in a 3x4 subcable of the ITER-CS1 cable. 
 
 

 
Figure 11. Estimate of the effect of cable compaction on the average, minimum and 
maximum total interstrand conductance in a 3x4 subcable of the ITER-CS1 cable. 


