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Summary 

This note reports general formulae for the calculation of magnetic field generated by 
conductors in plane 2-D, axisymmetric 2-D and 3-D configurations, in the presence of 
current and magnetization sources. All formulae have been programmed in numerically 
stable routines, collected in a library named MAGNUM. 
 
 

Introduction 

 
In this note we review the state of the art of integral formulae for the calculation 
of the magnetic field in linear and magnetised media. The formulae have been 
collected in a library of FORTRAN routines that compute the magnetic field and 
the vector potential generated by distributions of current and magnetization in 
several configurations of interest for magnet design and analysis. The routines 
are organised according to the field source (current or magnetization), and 
spatial symmetry, for the following configurations: 
 

• plane 2-D 
• axisymmetric 2-D 
• general 3-D 

 
Most of the calculations are based on analytical formulae for the field, and 
numerical integration or function approximation is limited to the minimum 
strictly necessary. In particular, all plane 2-D and 3-D configurations are 
computed analytically. Axisymmetric 2-D configurations require a numerical 
approximation to elliptic integrals and numerical integration in one dimension. 
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We describe below the configurations, as well as the relevant analytical formulae 
programmed in the library. The aim of this note is to describe the working 
principle of the routines, and the basics of magnetostatics are intentionally left to 
the numerous textbooks and references quoted on the subjects. 
 

Plane, 2-D configurations 

 
Long straight current lines normal to a plane (x,y), or magnetic moments which 
are uniform in one space dimension and have components only in the (x,y) plane 
generate magnetic field configurations that are 2-D and plane. The magnetic field 
only has the two components in the plane (x,y), and the vector potential only has 
a component normal to the plane, along z. Under this assumption we can make 
an extensive use of the complex formalism introduced by Beth (Beth, 1966). The 
position of the current and magnetization sources is defined in the complex 
plane ζ = x + i y.1  
 

 
 
Figure 1. Plane 2-D reference frame and configurations considered for the calculation of 

magnetic field and vector potential of current and magnetization sources.  
 
As discussed in (Beth, 1966) a complex, analytical function B = By + i Bx can be 
defined from the x- and y-components of the magnetic field vector. We indicate 
below the z-component of the current density in a current carrying conductor 
with J, and the total current with I. By analogy with the definition of the complex 
field function, we define a complex magnetization function M = My + i Mx, where 
the two components My and Mx are the magnetization densities, uniform in z, in 
a magnetised material. Finally, when computing the field of small magnetic 
moments, we make use of the complex magnetic moment per unit length p = py+ 
i px, where the two components py and px are the magnetic moments per unit 
length, uniform in z, in the magnetised material. 
                                                             

1 Note that we indicate with ζ the complex variable, to distinguish it from the axis coordinate z in the general 3-D frame 
(x,y,z). 
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The advantage of this definition is that, as B is analytical, it can be expanded in a 
series that converges in a circle that does not contain current sources: 
 

  

! 

B = C n

"

Rref

# 

$ 
% % 

& 

' 
( ( 

n)1

n=1

*

+  (1) 

 
where Cn is called complex harmonic, or multipole coefficient, of order n, and Rref is a 
reference radius that has a pure normalization function. The complex multipole 
coefficients have a real and an imaginary part: 
 
  

! 

C
n

= B
n

+ iA
n
 (2). 

 
The real part Bn is the so-called normal multipole, while the imaginary part, An is 
the skew multipole.  
 
Magnetic field calculation 

Filamentary current 

 
The magnetic field generated in a point ζP = xP + iyP by a filamentary current I 
located at ζC = xC + iyC is given by: 
 

  

! 

B = µ
0

I

2"#
 (3) 

 
 
where the distance ρ is defined as: 
 

! 

" = #
C
$#

P
 (4) 

Uniform current density with polygonal boundary 

We consider the case of a polygonal conductor, delimited by a series of N 
piecewise straight segments defined in the complex plane through the position of 
the N vertices ζi. A uniform current density J flows inside the polygonal 
conductor normal to the complex plane, see Fig. 2.  
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Figure 2. Polygonal conductor with unifom current density in the direction normal to the plane. The 
field is computed in a point zp that can be in an arbitrary position in the plane. 

 
The field generated at any point ζP in the complex plane is given by the surface 
integral: 
 

  

! 

B =
µ
0
J

2"
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The above iontegral can be transformed in the following line integral (Beth, 
1966), (Beth, 1967), (Halbach, 1970): 
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where the variable of integration ζ describes the contour of the polygon in 
positive (anti-clockwise) direction. Introducing the distance vector ρ, as defined 
in Eq. (4), and recalling that the contour of the polygon between two vertices i-1 
and i is a straight line, it is possible to simplify the above integral: 
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where we implicitly assume that ρ0 = ρN. Introducing the auxiliary quantities: 
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we can solve the contour integral: 
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The expression above provides an exact and closed form solution for the field 
generated by a polygonal conductor with uniform current density. Its evaluation 
is straightforward for points ζP outside the conductor, but requires care in the 
monotonic treatment of the argument of the complex natural logarithm for 
points ζP placed inside and on the contour of the conductor2. 
Localised magnetic moment 

The magnetic field generated in a point ζP = xP + iyP by a localised magnetic 
moment per unit length p with components (px,py) and located at zM = xM + iyM is 
given by: 
 

  

! 

B = "µ
0

p *

2#$2
 (11) 

 
 
where the distance ρ is defined similarly to Eq. (4). 
 

! 

" = #
M
$#

P
 (12) 

Uniform magnetization with polygonal boundary 

As for the magnetic field, we consider the polygonal conductor of Fig. 2. The 
material in the polygon has a uniform magnetization M with components (Mx, 
My). The field generated at any point ζP in the complex plane is given by the 
surface integral: 
 

  

! 

B = "
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M
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For points external to the polygon, the above integral can be transformed in the 
following line integral (Beth, 1966; Beth, 1967; Halbach, 1970): 
 

  

! 

B = "
1

4#i
µ
0
M

1

$ "$
P

d$%  (14) 

 
with the same conventions as Eq. (6). For points internal to the polygon the result 
is the same, but the magnetic field in this case is given by the result of Eq. (14) 
plus the contribution of the magnetization, µ0 M. We introduce the distance 
vector r, as defined in Eq. (4), and we write the above integral decomposing over 
the sides of the polygon: 
 

                                                             
2 In general the logarithm of a complex nuber ζ can be written as: 
log(ζ) = log(|ζ |) + arg(ζ) 
while the log of the module of the complex number is well behaved and always single-valued, the argument can flip by 2 π 

depending on the evaluation method. The care that is needed is to make sure that under all circumstances the argument of the terms in 
the line integral is a monotonical increasing or decreasing function with no jumps. 
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where we implicitly assume that ρ0 = ρN. Introducing the auxiliary quantities: 
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we can solve the contour integral: 
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The expression above but requires the same care in the monotonic treatment of 
the argument of the complex natural logarithm for points ζP placed inside and on 
the contour of the conductor as Eq. (10). 
 
Vector potential calculation 

Filamentary current 

The vector potential generated in a point ζP = xP + iyP by a filamentary current I 
located at ζC = xC + iyC is given by: 
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where the distance ρ is defined as in Eq. (4). 
Uniform current density with polygonal boundary 

The vector potential generated by a polygonal conductor as in Fig. 2.2, carrying a 
uniform current distribution is given by the following surface integral: 
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that can be transformed (Halbach, 1970) in the line integral: 
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As previously, we introduce the distance vector ρ as in Eq. (4), and we break the 
integral in a summation along the straight sides of the polygon: 
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The integral can be solved and leads to the following closed form for the vector 
potential of a polygonal conductor with uniform current density:  
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 (23) 

 
that can be evaluated with the same precautions taken for the magnetic field (see 
previous sections). 
Localised magnetic moment 

The vector potential generated in a point ζP = xP + iyP by a localised magnetic 
moment p with components (px,py) and located at ζm = xm + iym is given by: 
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where the distance ρ is defined as in Eq. (12). 
Uniform magnetization with polygonal boundary 

The vector potential generated by a polygonal distribution of uniform 
magnetization, with the polygon defined as in Fig. 2.2, is given by the following 
surface integral: 
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Apart for a constant, the term in parentheses, and in particular the integral, is the 
same as that of the magnetic field of a uniform current density in a polygon, Eq. 
(10). Hence we can use the same procedure, and the final result is: 
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Harmonics calculation 

Filamentary current 

A line of current I located at a position ζC = xC + iyC in the complex plane 
generates the following harmonics: 
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Localised magnetic moment 

A localised magnetic moment p with components (px,py) and located at a position 
ζm = xm + iym in the complex plane generates the following harmonics: 
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Axisymmetric, 2-D configurations 

In the case of axisymmetric circular filamentary or massive coils, the current lines 
are normal to the plane (R,z) in cilindrical coordinates, and magnetic moments 
have components only in the (R,z). Both currents and magnetic moments are 
constant in the third space dimension θ. The resulting magnetic field has only the 
two components in the plane (R,z), and the vector potential has only one 
component normal to the (R,z) plane, along θ. We limit ourselves to filamentary 
currents or magnetic moments, or to polygons in 2-D plane with constant current 
density and volume magnetization.  
 

 
Figure 3. Cylindrical reference frame for the axisymmetric 2-D configuration, and geometries 

considered for the calculation of magnetic field and vector potential of current and 
magnetization sources.  
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The calculation of fields in this configuration invariably results in expression 
involving the elliptic integrals, and in particular the complete elliptic integral of 
first kind K and E, defined as follows: 
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Magnetic field calculation 

Filamentary loop current 

The magnetic field generated in a point (RP,zP) by a filamentary loop current I 
with radius RC and placed at an height zC is given by: 
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where: 
 

! 

k
2 =

4R
C
R
P

R
C

+ R
P( )

2

+ "z2
 (33) 

 
and the distance Δz is defined as: 
 

! 

"z = z
P
# z

C
 (34)  

 
Uniform current density loop with rectangular boundary 

NOTE: This field primitive is presently not documented 
Uniform current density loop with polygonal boundary 

NOTE: This field primitive is presently not documented 
Localised magnetic moment loop 

NOTE: This field primitive is presently not documented 
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Uniform magnetization loop with rectangular boundary 

NOTE: This field primitive is presently not documented 
Uniform magnetization loop with polygonal boundary 

NOTE: This field primitive is presently not documented 
Vector potential calculation 

Filamentary current loop 

The vector potential generated in a point (RP,zP) by a filamentary loop current I 
with radius RC and placed at an height zC is given by: 
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where k is defined as in Eq. (33). 
 
Uniform current density loop with rectangular boundary 

NOTE: This field primitive is presently not documented 
Uniform current density loop with polygonal boundary 

NOTE: This field primitive is presently not documented 
Localised magnetic moment loop 

NOTE: This field primitive is presently not documented 
Uniform magnetization loop with rectangular boundary 

NOTE: This field primitive is presently not documented 
Uniform magnetization loop with polygonal boundary 

NOTE: This field primitive is presently not documented 

3-D configurations 

 
In the case of general, 3-D configurations, the current and magnetization vectors 
can have arbitrary orientation in the (x, y, z) space. The resulting magnetic field 
and vector potential also have three non-zero components.  
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Figure 4. Reference frame for the 3-D configuration, and geometries considered for the 

calculation of magnetic field and vector potential of current and magnetization 
sources.  

 
For 3-D configurations we restrict the library of modelling elements to the case of 
localised sources (filament current I [A] or point-like magnetic moment P [Am2]), 
and to a general volume element with plane faces and constant current density J 
[A/m2] or constant volume magnetization M [A/m]. Furthermore, although the 
volume element could have an arbitrary number of nodes (the equations below 
reflect this case), the implementation has been done only for a 8-node 
hexahedron, which is the most useful modelling element for coil winding packs. 
To simplify the notation, it is useful to define local reference frames. In the case 
of a current filament or a localised magnetic moment we define a local reference 
frame (x’,y’,z’) oriented such that the z’ axis has the direction of the current, or of 
the magnetic moment, and centered in the center of the current filament, or in the 
location of the magnetic moment. The orientation of the other two axes, x’ and y’, 
is inessential, as the results are invariant for a rotation around z’. This reference 
frame is schematically shown in Fig. 5. 
 

 
 
Figure 5. Local reference frames on faces and sides of a source volume.  
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Figure 6. Local reference frames on faces and sides of a source volume.  
 
In the case of a volume element we define two frames, one on the plane faces and 
one on the sides of the element. For the i-th plane face delimiting the volume we 
define the local reference frame (x’,y’,z’) with z’ axis oriented towards the 
external of the element. This reference frame is shown schematically in Fig. 6. 
Note that with this choice the z’ component of the distance vector between a field 
calculation point and a source point on the face is a constant. 
 
In turn, each face is delimited by straight sides. For the j-th side we define a local 
reference frame (x’’,y’’,z’’) with z’’ axis parallel to z’ defined above, and y’’ 
parallel to the side. This reference frame is also shown schematically in Fig. 6. 
Note that with this choice the y’’ component of the distance vector between a 
field calculation point and a source point on the face is a constant. Furthermore, 
the equations describing the side becomes y’’=0 and z’’=0. 
 
In general, the versors in the direction of the axes of the local reference frames 
((x’,y’,z’) or (x’’,y’’,z’’)) are indicated as t, s, and n respectively. The 
transformation of a vector g from the cartesian frame (x , y , z) to the cartesian 
frame (t, s, n) is obtained by the following matrix relations: 
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Magnetic field calculation 

Filamentary current 

The magnetic field generated in a point (xP,yP,zP) by a straight filament of current 
I with extremes (xC1, yC1, zC1) and (xC2, yC2, zC2) is given in the local coordinate 
frame (x’, y’, z’) oriented along the filament and shown in Fig. 5: 
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! 

B
z'

= 0 (40) 
 
where L is the total length of the current filament, and xP’, yP’, zP’ are the 
coordinates of the field point in the local reference frame (x’, y’, z’).  
 
The components of the field in the global reference frame (x, y, z) are obtained by 
rotation of the above values using Eq. (36). 
Uniform current density in a solid volume 

The magnetic field generated by a current density distribution in an arbitrary 
volume V is given by: 
 

! 

B =
µ
0

4"

J # r

r
3
dV

V

$  (41) 

 
where r is the vector from the source point (xQ, yQ, zQ) to the field point (xP, yP, zP): 
 

! 

r = xP " xQ yP " yQ zP " zQ[ ] (42) 
 
We make the hypothesis that the current density is constant in the volume, and 
that the volume is delimited by plane faces. In this case the calculation of (41) can 
be performed analytically using the procedure devised in (Collie, 1976) to first 
reduce volume integrals to surface integrals, and then reduce surface integrals to 
line integrals. We sketch here the process, without entering in the details of the 
method described in the above reference. 



 14 

 
As the current density is constant, the integral in Eq. (4.6) can be written: 
 

! 
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The vector in the integral can be written as follows3: 
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If we indicate with S the surface bounding the volume V, and with n its normal 
pointing towards the outside of the element, we can use the following property 
of vector functions: 
 

! 

"g dV
V
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which relates the volume integral of the divergence of g to the flux of g over the 
surface S. We can transform the integral in Eq. (4.8) as follows: 
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Above we have indicated with Si the i-th plane surface composing the boundary 
of the volume element, and with ni its normal (constant on the surface Si). As the 
integral is invariant to a change of reference frame, we can choose that each 
surface integral is performed on the local reference frame (x’, y’, z’) shown in Fig. 
6. In this frame a point on the surface Si has coordinates (xQ’, yQ’, 0) , and the field 
point (xP’, yP’, zP’) is hence at a constant distance along z’. 
 
We can reduce further the dimension of the integral by using the following 
vector relation: 
 

! 

" # g dS
S

$ = g # s dl
l

$  (47) 

 
where l is the curve enclosing the surface S, s is the normal to the curve, in the 
plane of S, pointing towards the outside of the surface, and the divergence is 
intended as taken in the plane (i.e. no derivative in the direction n normal to S). 
To apply Eq. (47) we use the identity: 
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3 the gradient is taken with respect to the source point (i.e. the running variable in the integration). 
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where we have defined the vector r’ with components: 
 

! 
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Using Eqs. (47) and (48), we have that Eq. (45) yields: 
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Above we have indicated with lj the j-th straight line of the boundary of the 
surface Si, and with si its normal (constant on the line li). We choose now to 
integrate in the local reference frame (x’’, y’’, z’’) shown in Fig. 6. In this frame a 
point on the line li has coordinates (xQ’’, 0, 0) , and the field point (xP’’, yP’’, zP’’) is 
hence at a constant distance both along y’’ and z ‘’. Furthermore, the product r’ sj 
is the distance of the field point along y’’, and we can hence write: 
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 (51). 

 
The last step is to solve the line integral above. The general solution is: 
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where we have indicated with  
 

! 

r
2

= x
2

+ y
2

+ z
2  (53). 

 
We can use the above result to write the following expression for the magnetic 
field: 
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where we have indicated with x’’Q1 and x’’Q2 the coordinates of the beginning and 
end of the line lj, and we have made use of the fact that in the reference frames 
(x’, y’, z’) and (x’’, y’’, z’’) the z-coordinate of the fild point is the same, i.e. we 
have z’’P = z’P. 
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Localised magnetic moment 

The magnetic field generated in a point (xP,yP,zP) by a localised magnetic moment 
P located at (xM, yM, zM) is given in the local coordinate frame (x’, y’, z’) oriented 
along the magnetic moment and shown in Fig. 5: 
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! 

B" =
3µ

0
P

4#

y'P z'P

x'P
2
+y'P

2
+z'P

2( )
5 / 2

 (56) 

 

! 

B" =
µ
0
P

4#

2z'P
2
$x'P

2
$y'P

2

x 'P
2
+y 'P

2
+z'P

2( )
5 / 2

 (57) 

 
where P is the module of the magnetic moment and xP’, yP’, zP’ are the 
coordinates of the field point in the local reference frame (x’, y’, z’).  
 
The components of the field in the global reference frame (x, y, z) are obtained by 
rotation of the above values using Eq. (36). 
Uniform magnetization in a solid volume 

The magnetic field generated by a uniform magnetization in a volume can be 
obtained in different ways. We choose here the following expression: 
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where we used common conventions in vector calculus, and in particular the 
definition of the operator: 
 

  

! 

M " # = Mx

$

$x
o +My

$

$y
o +Mz

$

$z
o  (59). 

 
Examining Eq. (58) we see that the volume integral is the same as already solved 
for the magnetic field, i.e. Eq. (43). It is hence possible to use the result obtained 
there, and in particular Eq. (54), to write: 
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The gradient is intended to be taken with respect to the field point. The 
derivation of the expression under the summations can be simplified by recalling 
that: 
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where we used the components of the versors t, s, n in the frame (x, y, z) as 
defined in Eqs. (36) and (37). 
 
It is hence possible to derive the expression under the summation in the local 
frame (x’’, y’’, z’’) and transform the derivatives in the frame (x, y, z) using Eq. 
(61) and analogous for the other directions to solve Eq. (60). 
Vector potential calculation 

Filamentary current 

The vector potential generated in a point (xP,yP,zP) by a straight filament of 
current I with extremes (xC1, yC1, zC1) and (xC2, yC2, zC2) is given in the local 
coordinate frame (x’, y’, z’) oriented along the filament and shown in Fig. 5: 
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 (64) 

 
where L is the total length of the current filament, and xP’, yP’, zP’ are the 
coordinates of the field point in the local reference frame (x’, y’, z’).  
 
The components of the vector potential in the global reference frame (x, y, z) are 
obtained by rotation of the above values using Eq. (36). 
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Uniform current density in a solid volume 

We use here the same technique as used for the magnetic field calculation. The 
the vector potential A generated by an arbitrary distribution of current J in a 
volume V is: 
 

! 

A =
µ
0

4"

J

r
dV

V

#  (65) 

 
where r is the vector from the source point (xQ, yQ, zQ) to the field point (xP, yP, zP) 
defined as in Eq. (42). Under the hypothesis of constant current density, we have: 
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The scalar in the integral can be written as follows: 
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and in accordance with the relation Eq. (45) we can transform the volume 
integral of Eq. (67) in the following surface integral: 
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Above we have indicated with Si the i-th plane surface composing the boundary 
of the volume element, and with ni its normal (constant on the surface Si). We 
choose that each surface integral is performed on the local reference frame (x’, y’, 
z’) shown in Fig. 6. In this frame the scalar product r ni is constant, and is equal to 
zP’, the z’ component of the distance of the field point from the surface. 
 
Based on this, the surface integral becomes: 
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We note now that the surface integral in Eq. (69) is identical to that already 
solved for the magnetic field generated by a uniform current density in a volume 
element, in Eq. (46). We can use the procedure already detailed there to obtain 
the following summation of line integrals in the local reference frame (x’’, y’’, z’’): 
 

! 

A =
µ
0

4"
J
1

2
z'P y ' 'P

1

r + z'P
dl

l j

#
j

$
% 

& 
' 
' 

( 

) 
* 
* 

i

$
+ 

, 
- 

. - 

/ 

0 
- 

1 - 
 (70). 



 19 

 
Finally, using the definition of the primitive in Eq. (52), we have: 
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where we have indicated with x’’Q1 and x’’Q2 the coordinates of the beginning and 
end of the line lj, and we have made use of the fact that in the reference frames 
(x’, y’, z’) and (x’’, y’’, z’’) the z-coordinate of the fild point is the same, i.e. we 
have z’’P = z’P. 
Localised magnetic moment 

The vector potential generated in a point (xP,yP,zP) by a localised magnetic 
moment P located at (xM, yM, zM) is given in the local coordinate frame (x’, y’, z’) 
oriented along the magnetic moment and shown in Fig. 5: 
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! 

A
z'

= 0  (74) 
 
The vector potential generated in a point (xP,yP,zP) by a localised magnetic 
moment P located at (xM, yM, zM) is given in the local coordinate frame (ξ, η, ζ) 
oriented along the magnetic moment: 
where P is the module of the magnetic moment and xP’, yP’, zP’ are the 
coordinates of the field point in the local reference frame (x’, y’, z’).  
 
The components of the vector potential in the global reference frame (x, y, z) are 
obtained by rotation of the above values using Eq. (36). 
Uniform magnetization in a solid volume 

The the vector potential A generated by an arbitrary distribution of 
magnetization M in a volume V is: 
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where r is the vector from the source point (xQ, yQ, zQ) to the field point (xP, yP, zP) 
defined as in Eq. (42). Under the hypothesis of constant magnetization density, 
we have: 
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The above integral is identical to the expression for the magnetic field generated 
by a constant current density in a volume (see Eq. (43)), where the vector 
potential takes the place of the magnetic field and the magnetization takes the 
place of the current density. Under the hypothesis of a volume delimited by 
plane faces, and using the local coordinate frame (x’’, y’’, z’’) as shown in Fig. 6, 
we have: 
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where the primitive I1 is defined in Eq. (52), and we have indicated with x’’Q1 and 
x’’Q2 the coordinates of the beginning and end of the line lj. 
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