CRYO/97/001
October 15, 1997

AC loss calculation algorithm

L. Bottura, C. Rosso

Distribution: C. Marinucci (EPFL-CRPP), C. Luongo, B. Parsons (Bechtel), M. Shimada (Toshiba),
N. Mitchell, H. Takigami (ITER JWS), R. Heller (FzK)

Summary

We describe the calculation algorithm for AC loss calculation in superconducting cables
presently implemented in M'C, version 2.5. The algorithm takes into account two loss
components, hysteresis and coupling. Field penetration and screening are well
approximated, allowing to deal with small and fast field cycles (minor loops).

1. Introduction

A superconducting cable subjected to changes of the magnetic field or of the
operating current will dissipate power, the so called AC loss. This power must be
calculated accurately in order to estimate the cooling power needed to maintain
the magnet at the operating temperature. Here we will show how the main AC
loss components can be computed with sufficient accuracy using simple
analytical models. The AC loss can be split into two main origins:

¢ hysteresis loss in the superconducting filaments;
¢ coupling loss within strands and among strands in a cable or composite.

The first component, hysteresis loss, is caused by persistent currents induced in
the filament by field changes. These currents shield the filament interiors and
produce a magnetization of hysteretic nature. Hysteresis loss involves thus the
superconducting filaments only. The second component, coupling loss, is
originated by electromagnetic coupling among filaments in a strand, and among
strands in a cable. Hence these coupling currents flow partially in the
superconductor, partially in resistive contacts among them, and they dissipate
power in the resistive transition. Coupling losses thus involve the cable as a
whole unit. The next sections deal with each component separately in detail,
proposing a flexible calculation algorithm to cope with most practical situations
in a superconducting magnet.



2. Hysteresis loss

The calculation of hysteresis loss in a superconducting filament can be quite a
complex task, especially when the magnetic field variation is arbitrary. Here an
approximate approach is followed, based on the following assumptions:

¢ the change of each magnetic field component is treated independently, that is
the effect of variation of each component is independent from the variation of
the other two components. The only coupling between field components
arises through the value of the critical current density;

e the critical current is assumed to be uniform throughout the filament cross
section;

e transport current effects are neglected.

Undere these assumptions the magnetic and electric field profiles inside the
tilament could be computed. In practice this is possible for a cylindrical filament
in parallel field, but remains a complex task for a cylindrical filament in
transverse field. Therefore, in addition to the assumptions above, we
approximate a cylindrical filament in a transverse field with a slab of appropriate
scaled thickness (see later for the scaling). We are now ready to proceed in the
solution of the two cases needed, namely the slab and the cylinder in a parallel
varying field.

2.1  Slabin parallel field
We start introducing the following normalisation quantities:

e critical current density at zero field J.,=J.(0)
e virgin penetration field H,=],D,/2

where D, is the scaled effective filament diameter (see later), and we normalise
all variables as follows:

e space co-ordinate x=X/D,2

e critical current density j=J(B)/],

e magnetic field h=H/ Hpo

e magnetization m=M/ Hpo

e electric field e=E/m,H,D,/2
e power p=P/mHS

Using the normalised quantities, the equations governing the field penetration in
a superconducting slab can be written as follows (indexes of components are not



indicated as all vectors have a single component, namely z for the magnetic field
and y for the current density and eletric field):
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The sign of the current density on r.h.s. in Eq. (2.1) is determined by the direction
of the field change and the previous history. The solution of Eq. (2.1) for the
penetration layer can be readily found under the assumption of constant j inside
the slab (equal - in the Bean approximation - to the critical current value
corresponding to the applied external field):

h, + j(1-x) forM <o
h= glq (2.3)
h, - j(1-x) forE >0

where h, is the normalised external field. Equation (2.3) represents a linear
decrease in field inside the slab, as shown in Fig. 1. Note that two cases must be
considered for the progress of the penetration layer inside the slab, namely the
case of penetration of a virgin slab (no previous shielding current layer) and the
case of the penetration of a previously established shielding layer. The field
profile has the same slope, starting from the external value h, at x=1, but the
penetration depth x, is different in the two cases. In fact, x, is given by:
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Figure 1.  Penetration of the magnetic field in a superconducting slab. Case of virgin slab (left)
and previously penetrated slab (right).



The electric field in the penetration layer (between x, and 1) is given by:
e= he(x— xp) (2.5)

and is zero outside the penetration layer. The local value of the dissipated power
density is obtained as the product of the electric field and current density in the
penetration layer:

p= hej(x—xp) (2.6).

From Eq. (2.6) we can compute the average power density in the slab:

1
p= jhej(x—xp)ix

(2.7).
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The final quantity of interest is the average volume magnetization:
1
m= j hdx — h, (2.8).
0

To obtain it we need to integrate the contribution from all shielding layers in the
slab, where the integral of a single layer extending from x," to x,"" equals:

o= (7 —x; ) ) )+2h(xg+l) (2.9).

The general case of arbitrary variation of the magnetic field can be solved
keeping track of the shielding layers and their appearance/disappearance as the
external field changes. The magnetic field changes are subdivided in swings at
constant ramp-rate. The information to be stored consists therefore in the
penetration depth x, of a shielding current layer, the magnetic field &, that caused
it and the direction of the shielding currents. This allows the reconstruction of
the complete h profile inside the slab (needed to compute the magnetization).
Once the normalised power is computed, the energy is obtained by numerical
integration in time. Note that it is advantageous to work in scaled coordinates
throughout this process. The normalised variables obtained are rescaled at the
end of each field swing using the normalization factors given at the beginning of
this section.



2.2  Scaling of the slab solution

The solution presented in the previous section for a slab can be scaled to
represent the penetration of a cylinder in transverse field. To obtain a good
approximation the scaling is done so that the asymptotic behaviour of the
equivalent slab and cylinder is the same for small and large field changes. To
obtain the scaling, we write the following known expressions for the volume loss
energy per cycle Q in the case of a slab in a parallel alternating field with total
field swing B, (peak to peak amplitude of the field change):
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and in the case of a cylinder in a tranverse alternating field:
2
B 2(2/3—/32) for f <1
21,3
Q. =1 12 (2.11)
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The parameter £ in the two equations above is proportional to the ratio of the
field swing to the penetration field B ;:

f=—m (2.12)

where we need finally to remember that the (first) penetrastion field for a slab
and a cylinder are given by:

D
slab: B, = #oJ. 75 (2.13)
. DC
cylinder: B, =ud.— (2.14)
T

with D_and D_respectively slab thickness and cylinder diameter. If we now look
at the asymptotic behaviours of slab and cylinder in the limits f— 0, and f — o,



it can be easily verified that we can obtain the same dissipated energy per cycle if
we:

e use a slab effective thickness obtained from the effective filament diameter as:
8
D3 = _—_pD¥ 2.15),
o =5 Det (2.15)
e and scale the energy per cycle by the factor F=2.309.

The scaling that we propose is thus based on the use of the analytical slab
solution, using the effective slab thickness given by Eq. (2.15) and multiplying
the magnetization, power and energy of the equivalent slab by a factor F.

2.3 Cylinder in parallel field

A cylinder in parallel field is described by equations that are very similar to those
of a slab, treated previously. Therefore it is possible to compute the field
penetration using the same procedure as for the slab, provided that minor
modifications in the computed quantities are made. Here we will give the
modifications needed. Firstly, the normalization procedure is the same, with the
same normalization factors. In this case the space variable x stands for the radius
in the cylinder. The equations governing the penetration are:
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where Eq. (2.16) is in fact identical to Eq. (2.1), while Eq. (2.17) contains terms
that are originated from the rot differential operator in cylindrical symmetry.
Because of the coincidence of Egs. (2.1) and (2.16), the field penetration has the
same solution, namely Egs. (2.3) and (2.4). The electric field, on the other hand, is
given by:

1 X2 =X2
e= _he b (2.18)
2 X
so that now the local dissipated power density is given by:
ih, X*=x3
p=Jl P (2.19).
2 X

From Eq. (2.19) we compute the average power density in the cylinder:
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The average volume magnetization is given in this case by:
1 1

m== [h2mdx-h, (2.21)
T 0

where the integral of a single shielding layer extending from xp” to xp"” equals:
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3. Coupling loss

For the calculation of the coupling loss we make the assumption that the cable
can be described macroscopically by three time constants 7, and three
demagnetization shape factors n,[2]. Each time constant and demagnetization
factor 7, and n, refer to a direction k in the cable. The convention is further that
the first two directions are normal to the cable, while the third is parallel to the
transport current. We have chosen this uniform treatment, that neglects a
separate representation of parallel field losses, because there is a clear lack of
evidence from experimental data that parallel field loss in a cable has a
significant impact. The second assumption is that the cable is not saturated, and
coupling currents can flow unperturbed in the cable. This hypothesis holds for
operation far from the critical surface and sufficiently small field changes. As for
hysteresis magnetization and loss, we will consider the three cable directions as
completely independent, and solve for each direction independently from the
other. Therefore we will drop the subscript k for the time constants and the
demagnetization shape factors.

The first step in the calculation of the coupling current magnetization and loss is
the integration of the equation for the internal field in the cable [1]:
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where B, is the field in the composite and B, is the external, changing field. If the
external field is assumed to change linearly with time, i.e.:

B, = B + Bt (3.2)

e

Eq. (3.1) can be solved, leading to the general integral:

t

B =Bl +Bl(t-7)+Ce -~ (3.3)

where C is an arbitrary constant. The last term in Eq. (3.3) is a decaying
exponential with time constant 7, that describes the shielding phase for fast field
changes. Once the exponential has decayed, the internal field is equal to the
external field delayed by 7, as it is clear from the first two terms. Equation (3.3)
must be specialized to match the initial condition on the internal field:

B,(0)= B 64

leading to the following complete solution for the internal field:

t

B =B +Bit-7)+[B° - (B -Blr, Je - (3.5)
and for the internal field derivative:

B = B!- B - (B2 Bir)l (3.6).

T

From Eq. (3.6) we calculate the instantaneous magnetization and power
dissipated as:

M=-"g (3.7)
Ho
p="7ge (3.8)
Ho

and finally the energy during a field swing:
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(3.9).

For each field direction k, the calculation algorithm uses Eq. (3.5) to keep track of
the internal field during a swing, and Egs. (3.7), (3.8) and (3.9) to compute
magnetization, instantaneous power and energy dissipated in the swing. The
calculation must therefore keep track of the internal field at the end of the swing,
that is used as initial condition for the following swing.

4. Examples

4.1  Hysteresis loss in a strand

The first test is a calculation of the hysteresis loss in a multifilamentary strand
with cylindrical filaments submitted to a changing parallel or transverse field.
We have taken a constant | value of 10" A/mm” and a filament diameter of 100
um. This case, of rather academic nature, has been chosen in order to compare
the numerical results to known analytic solutions. We have computed the loss
per cycle, taking a periodic variation of the external applied field, with a peak-to-
peak amplitude B,. The analytical solution for transverse field variation has been
already given in Eq. (2.11). For parallel field variations the loss per cycle is given

by:

282 ( —ﬂ—zj forp<1
Q=1 o3 (4.1)
B,2(1 1
—| —=- forp>1
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where the parameter S is defined as given in Eq. (2.12), and, as discussed
previously, the penetration field is identical to that of a slab of the thickness
equal to the cylinder diameter, see Eq. (2.13). These analytical results are
compared in Fig. 2 with the results of the calculation algorithm the we have
proposed. Note that there we have normalised the results to the quantity B,’/2,
proportional to the magnetic energy variation.

As we expect, the results of the cylinder in parallel field are identical to those
obtained analytically, the only difference between the calculations being the
numerical integration of the energy from the average power dissipation in the
filament instead of the analytical integration for this simple cycle. In the case of



the cylinder in transverse field, the scaled slab solution approximates very well
the analytical result (which, in itself, is again only an approximation). The
maximum error is around penetration, and is of the order of 20 %. We believe
that this is an acceptable error, because of the high flexibility gained with our
algorithm, that can treat any field cycle and delivers instantaneous power rather
than energy dissipated in a closed field cycle.
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Figure2.  Comparison of analytical results and our algorithm for the calculation of the
hysteresis loss per cycle in a cylindrical superconducting filament in parallel or
transverse field, as a function of the peak-to-peak field swing B,. The loss per cycle
has been normalised to the magnetic energy change B,’/24,

4.2  Coupling loss in a strand

As a second test, we have used the coupling loss algorithm to compute the
coupling current loss in a strand with a time constant 7 of 100 ms, subjected
either to a single trapezoidal field cycle or to a continuous harmonic field
variation. In both cases the amplitude of the field change was B,. In the case of
the trapezoidal field cycle we have taken equal ramp-up and ramp-down time
T,, and very long flat-top times (compared to the ramp time T,). In the case of
the harmonic field variation we have taken a period T, corresponding to an
angular frequency @ = 27/T The analytical solution for the case of a trapezoidal
field cycle can be once more written in terms of the energy dissipated per cycle,

and is given by:

10



L= P P
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Similarly for the continuous, harmonic field changes we can write:

B: rwr
:_T (4.3).
2U, 077 +1

The comparison of the analytical and numerical solution in these two simple, but
complete, cases is reported in Figs. 3 and 4. For the trapezoidal field variations
the field changes linearly, and therefore only 4 field swings were necessary for
the numerical solution (ramp-up, flat-top, ramp-down, flat-top). In the case of the
harmonic variation, the periodic dependence of the field had to be approximated
with piecewise linear segments. Care was taken for this approximation (typically
100 points were used to describe a complete waveform). In both cases the
numerical solution obtained cannot be distinguished from the analytical one.
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Figure3.  Comparison of analytical results and our algorithm for the calculation of the

coupling loss per cycle in a strand subjected to a trapezoidal field cycle, as a function
of the ramp time T,. The loss per cycle has been normalised to the magnetic energy
change B,’/2,
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Figure4.  Comparison of analytical results and our algorithm for the calculation of the
coupling loss per cycle in a strand subjected to a continuous, harmonic field
variation, as a function of the period of the harmonic wave T. The loss per cycle has
been normalised to the magnetic energy change B,”/24,.
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