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Summary

We describe the calculation algorithm for vector potential generated by an
isoparametric brick with uniform current density. The calculation is fully
analytic and stable inside and outside the brick.

1. Introduction

The calculation of vector potential generated by a current distribution is of
interest, especially for the evaluation of self and mutual inductances. In
particular we wish to show here how it is possible to compute the vector
potential generated by an 8-nodes isoparametric brick with flat faces. We start
with the definition of the vector potential A generated by an arbitrary
distribution of current:
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where | is the current density in the volume V and r,, is the module of the
distance between a point Q centered in the volume element dV, and the point
P where we wish to compute the vector potential. We show this situation
below.




It is useful to recall two fundamental properties of vector functions g:
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namely the volume integral of the divergence of g equals the flux of g over
the surface S (with normal n) bounding the volume, and the surface integral

of the surface divergence of g equals the line integral of g along a line I
bounding the surface, with tangent versor t. In the following section we show
how using Egs. (1.2) and (1.3) the calculation of vector potential of Eq. (1.1) can
be done completely analytically for a brick element with plane faces, a very
attractive feature to boost speed and accuracy in numerical calculations.

2. Vector potential calculation

In general we can write that:
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and in accordance with the two relation above, and Eq. (1.2), the volume
integral of Eq. (1.1) can be transformed in a surface integral:
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To compute the surface integral of Eq. (2.2) we take an isoparametric brick and
we decompose the surface integral in the sum of the integrals of all faces. In

addition we choose a reference frame in each face such that the ( axis has the
orientation of the normal n (pointing outwards). Because of this choice we
will have that (by definition)
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where { o 18 the (-component of the distance Tpp and is a constant for the face i.
Based on this, the surface integral becomes now:
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where the sum extends, for the isoparametric brick to 6 faces.
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that is such that:
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Using then Eq. (2.6) and Eq. (1.3) we can write that each surface integral in the
sum of Eq. (2.4) can be decomposed in line integrals as follows:
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where index j runs over the single lines I'; delimiting each surface S. We

finally choose the reference frame for the line integrals such that the ¢
direction is coincident with the versor t, and we get by this choice that
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This furtherw simplification leads to the final form of the integral to be
computed:

0 1 u

0
dr. 2.9).
EPQZE”PQ Jro+ ‘ZPQ‘ J%

The line integral is of the general form:
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where we defined:

r’=x>+y*+27° (2.11).

Using the result above, the analytic expression of the vector potential is
finally:
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where we have indicated with subscripts i and j the distances in { and n
direction that are constants in the integral, and indices 1 and 2 stand for

values of the distance in & direction and total distance r calculated at the
initial and final points in each line (extremes of integration).



