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Summary

We describe here a model for the simulation of hydraulic networks, dedicated especially to the
simulation of time variable boundary conditions for superconducting cables cooling and quench
simulation.

1. Introduction

One of the known limitations of present quench simulation models is the fact
that boundary conditions are usually described by ideal reservoirs or valves,
providing either constant pressure and temperature, or constant flow. Such
limitations were addressed in a first attempt[1] using a simplified modelling
technique for the assembly of manifolds, pipes, valves and pumps, the
hydraulic network that provide the actual massflow to the coil, and in
particular to the cable analysed. Based on that work we show here how the
model can be improved and augmented. In particular we aim at the
development of an implicit method for the coupled solution of the elements
of the hydraulic network. In addition we wish to show how to augment the
modelling capability by the addition of a compressible, transient flow pipe
element.

We make here the general assumptions already taken in [1]. The assembly of
components in the hydraulic system will be generally defined the hydraulic
network. The network is composed of

* volume nodes (called reservoirs in [1]) with perfect mixing of helium and
zero flow, and



* junctions (called connections in [1]) where the flow can be steady state or
transient.

Junctions interconnect volume nodes, that can, in principle, have negligible
volume. This is a first improvement with respect of the model discussed in
[1], as there all volume nodes needed a non-negligible volume to advance the
time integration. The junction definitions are based on the four following

types:

* 1-D steady state flow pipe, with space-averaged flow properties and
instantaneous propagation of waves and profiles,

* 1-D transient flow pipes, describing full compressible flow and propagation
delay and waves,

» valves, with concentrated head loss and isenthalpic flow,

e pumps, with concentrated head and isentropic (ideal) flow.

All components, except transient flow pipes, were already present in [1]. The
compressible, transient flow pipe is a costly component in term of CPU and
memory, that however augments considerably the model capabilities.

The next section defines the model for each component, and the way the
components are assembled into the complete network. The model has been
implemented in Flower 2.0, a dedicated add-on package for Gandalf [2] of
CryoSoft.

2. Network model

2.1  Volume node

A volume node represents a point where two or more junctions are
interconnected. In this point the flow velocity is not defined, and is assumed
to be zero in this model. Such a node can have a negligible volume in case
that it represents merely a connecting point, or it can have a non-negligible
volume if it represents a physical buffer, such as a storage tank. The main
equations to be solved for a volume are the balances of mass and energy
conservation. In integral form we can vrite that for a volume V the mass and
energy conservation are:
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where p is the density and i is the specific internal energy of the fluid. The
2
sum of the massflows ® and of the stagnation enthalpy flux maw +V_2i[is

intended over all the in- and outflows of the volume. Finally, & is the
heating power in the volume from external sources. Note that the internal
specific energy has been used in Eq. (2.2) because we have assumed zero
velocity, and that the enthalpy h; and velocity v, are intended as the values at
the in- and out-flow surfaces.

The form above was used in [1]. The major drawback of this form is that mass
and energy fluxes in the junctions connecting volumes are driven by pressure
gradients. Pressure, however, does not appear explicitly in the equations.
Therefore the evaluation of the fluxes and their influence on the pressure in
the volume nodes required an iterative procedure that in several cases could
fail to converge. For this reason, we follow here a different approach. We use

the known relations involving the Gruneisen parameter ¢ the isentropic
sound speed c and the specific heat at constant volume C_:
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to transform by simple algebra Egs. (2.1) and (2.2) into the following equations
for the volume node pressure and temperature:
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These equations are in the final form used. We simply remark that they
contain explicitly mass and energy fluxes from the junctions. Both depend on
the type of junction, and need to be determined in the network assembly
process.



2.2  Steady state flow pipe

The flow in this pipe is assumed to reach steady state instantanously, that is
all transient phenomena involving sound wave propagations, mass and
energy transport along the pipe are neglected. On the other hand it is not
possible to neglect the mass and energy associated with the fluid in the pipe.
An approximate way to take this into account is to lump the mass and energy
into the volumes connected by the pipe. This corresponds to the assumption
that the pressure and temperature at the inlet and outlet of the pipe are
identical to those in the connected volume nodes. The two pipe ends, inlet
and outlet, can be thus seen as additional volumes for which we can write
similar equations to those derived for a volume (subscript in and out stand
for the inlet and outlet of the pipe):
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where A is the cross section, L is the pipe length and the overbar quantities
are intended as upwinded (i.e. computed upstream in the pipe). In this
simplified model we compute the mass flow as:

M=a(p, = Po) (2.11)

where the flow coefficient a is given by:

a=A | Do P (2.12)
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and we have defined the hydraulic diameter D,, and the friction factor f. The
power input (at the r.h.s. of Egs. (2.7)-(2.11)) at inlet and outlet takes into
account the distribution of energy inflow along the pipe length. By virtue of
the fact that we assume steady state flow conditions we have that for an

external power input @, .
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In the case of a distributed heat exchange with the wall at given temperature
T, over a wetted perimeter p,, things are slightly more involved. If we
neglect transients, we know that the energy balance along a heat exchanger
can be written using the enthalpy / as follows:

. oh
m = p(To = T) (2.14)

where 1 is the heat transfer coefficient at the wall. If the flow is approximately
incompressible, we could also write that:

I _ P 2.15).
m— Cp(T0 T) (2.15)

Equation (2.15) can be solved analytically, leading to the following
approximate expression for the temperature change between inlet and outlet
in the heat exchanger:
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The result above can be used to calculate the total heat removed or added in
the heat exchanger. We firstly take the enthalpy difference corresponding to
the temperature difference across the heat exchanger, and we lump the
corresponding energy flux at the outflow as follows:
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It is useful to put the system of Eqgs (2.7)-(2.11) in a matrix form:
M%+AU =Q (2.18)



where we have defined the matrices and vectors as follows:
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and we have introduced the flow velocity:

m

Ap

ve (2.23)

evaluated at inlet and outlet. In this matrix form the values at the inlet and
outlet of the junction appear already explicitly in a non-linear ODE.

2.3  Steady state flow valve

We assume that a valve acts on the flow with a pressure drop that can be
approximated in the incompressible case as:

Ap = 2&pvM (2.24)

where we call & the head loss factor. This can be, in general, a function of the
flow and fluid state in the valve. The flow through the valve in compressible
conditions can be approximated using the steady state flow pipe model

presented previously, substituting the head loss factor & to the group fL/D,.
The resulting set of equations is therefore identical to the one presented for
the steady state pipe, with the following modification:

1 p
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Note that for check valves or burst disks the definition of a can be strongly

non-linear, and that a=0 in the case of a closed valve. We assume further that
the valve has no heat input. The resulting matrix form has the same form as
Eq. (2.18), with the definitions of Egs. (2.19)-(2.21), and null source:

Q=0 (2.26).

2.4  Pumps

The flow in an ideal pump or compressor is assumed isentropic, with a 100 %
efficiency. In both cases the pump is assumed to have a known and explicit
characteristic providing the massflow as a function of the pressure head. For
the volumetric pump the characteristic is simply

= iy (2.27)



(the massflow is constant as provided by the user). For a compressor the
approximation chosen is the following;:

= Ef‘no%]_ %E E for Ap=0 (2.28)
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where Ap is the pressure difference between outlet and inlet of the pump, the
massflow & is delivered when there is no pressure difference at the extreme
of the pumps, and Ap, is the maximum head that can be sustained with zero
mass flow. The characteristic above is plotted below. Note that the pump

allows backflow in the case that the pressure difference at the extremes is
higher than the one sustained by the compressor.
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As for the valve, we can put the flow equations in a similar form to the pipe,
where however now the flow velocity is a known quantity determined by the
massflow. In addition, because the flow in the pump is assumed to be
isentropic, we have to take into account the work performed by the pump on
the fluid. We can do this by writing the following known relation:

dh=Tds+Ldp (2.29)
0

where S is the entropy. In our case we have that dS=0 and the enthalpy
change across the pump is:
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and the heat deposited at the in- and outflow is given by:
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The flow in the pump can be finally put into the matrix form of Eq. (2.18),
with the same variable and M matrix definitions as in Eq. (2.19) and (2.20),
and the following definitions:
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2.5 Compressible flow pipe

The compressible flow pipe has flow cross section A, hydraulic diameter D,,,
wetted perimeter p,, friction factor f, heat transfer coefficient 1 with the pipe
wall at temperature T,, and heating linear power density deposited # . For
this element we write the descriptive equations in the following convenient
(v,p,T) form:
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The equations above provide a complete and exact description of
compressible flow in the pipe. See Ref. [2] for more details on the derivation.
Wave propagation and mass convection can be properly modelled with such
a component. Boundary conditions are needed at the end of the pipe. The
boundary conditions used are of prescribed pressure and temperature in the
case of inflow, prescribed pressure in the case of outflow. Egs. (2.34)-(2.36) are
solved by a finite element method, integrating over the length, and leading to
a matrix equation with the form:

M%+(A+S+G)U =Q (2.37)

where the nodal variables are those defined by Eq. (2.19) and the matrices are
analogous to those defined in [2]. In the form above the equation has the
same nodal variables as for the volume nodes and steady state junctions. This
is very convenient to allow direct coupling of degrees of freedom.

2.6  Network assembly and solution

The components elencated in the previous sections produce matrix equations
for pressure and temperature in the volume nodes and velocity, pressure and
temperature in the in- and outlet of the junctions. The network assembly is
done:

» assigning the same degree-of-freedom to the pressure and temperature of
steady state junctions and connected volumes;

* imposing boundary conditions on pressure and inlet temperature of the
compressible flow pipes, taking as boundary values those from the
connected volumes;

* coupling the in- and outflows of compressible flow pipes to the mass and
energy fluxes in the connected volume nodes.

We see at once that negligible volume nodes will be overridden by the
volume contributions from the connected junctions. This is not true for the
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compressible flow pipes, for which coupling of boundary conditions and
fluxes does not imply lumping of volumes. The resulting system is solved
implicitly, by matrix inversion at each time step. This improves largely the
robustness of the scheme.
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