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Summary

A computational model describing the initiation and evolution of normal zones in the cable-in-conduit
superconductors designed for the International Thermonuclear Experimental Reactor (ITER) is presented. Because of
the particular geometry of the ITER cables, the model treats separately the helium momenta in the two cooling
channels and the temperatures of the cable constituents. The numerical implementation of the model is discussed in
conjunction with the selection of a well suited solution algorithm. In particular, the solution procedure chosen is
based on an implicit upwind finite element technique with adaptive time step and mesh size adjustment possibilities.
The time step and mesh adaption procedures are described. Examples of application of the model are also reported

1. Introduction

The International Thermonuclear Experimental Reactor (ITER)[1], the most probable next ste
large scale experiment for magnetically confined fusion, will have supercritical-helium, force:
flow cooled superconducting magnets forming a considerable part of the basic tokamak structu
The magnets will be wound using so caltable-in-conduit conductor@CICC's) in unit lengths
ranging between 750 and 1500 m. A CICC consists of a bundle of cabled superconducting a
copper strands jacketed in a helium tight conduit with primary structural function (i.e. support fo
the Lorentz force). Helium, at about 4.5 K inlet temperature, flows in the spaces within the
strands and maintains the cable temperature sufficiently below the maximum allowed by tf
superconducting material (called ttrétical temperature E of the superconductor at the working
conditions of transport current and background magnetic field). A typical CICC's prototype buil
in the frame of the ITER R&D programme is shown in Fig. 1.

In DC conditions the magnet is superconducting and thus operates with zero resistance, i.e.
Joule dissipation. However, due to local (and not foreseen) heat inputs, a section of the cal



could increase its temperature abovg Where the superconductor developes a resistance. In this
so-callednormal zone the current is shared between the superconductor and the coppe
functioning as a shunt. In this case Joule heating takes place in the normal zone and t
compressible, heated helium is expelled. Because of conduction at the ends of the normal zc
and heat convection through the helium expulsion, the normal zone propagates in the magn
The detection of a resistance in the magnet usually triggers protection systems which disconn
the power supply and discharge the magnetic energy (of the order of 100 GJ in the ITER toroic
field system[1]) onto external resistors. This process is usually caljedrechof the magnet.

From the point of view of the design and analysis of a superconducting magnet[2] it is interestir
to predict the evolution of the quench. In particular, the main issues are the maximur
temperature and pressure in the cable (used to verify mechanical stresses due to differen
thermal expansion and pressure load), the helium expulsion (to size the venting lines) and {
normal zone propagation velocity and voltage (in order to set a threshold and requirements on-
sensitivity for the detection of a normal region). Mainly for analysis purposes, several model
were developed in the past years[3-7]. The numerical solutions were based on a variety
methods, ranging from collocation packages [3,7], to time-explicit finite elements (Taylor-
Galerkin) procedure [4], method of lines [5], and finite differences in conjunction with an ODE
integrator in time [6]. This variety of methods witnesses the difficulties in the establishment of :
well optimised procedure. In fact, for none of them a coherent rationalle was given for th
selection of the solution procedure.

In particular, the analytical and numerical approach of Ref. [7] has shown that the physic:
characteristics of the moving normal front in the superconducting cable can lead to significar
difficulties in obtaining accurate simulations. The use of a mesh adaption technique was propos
there in order to improve the accuracy of the results at acceptable memory/CPU requirements.
Ref. [8] it has been shown that the presence of sharp boundary layers in the solution at the nort
front imposes requirements to the mesh size and time step to be used in the analysis in additiol
those arising naturally from the numerical method chosen.

The purpose of this work is to discuss the features of the implementation of a model proposed f
the quench propagation in the ITER CICC's. In Sect. 2 the equations forming the model a
presented, Sect. 3 deals with the selection of the method and the numerical implementation, a
finally, in Sect.4 experimental data are compared to the results of numerical simulations.

As is shown in Fig. 1, the ITER CICC design has the peculiarity of a central cooling hole
separated from the cable bundle by a spiral or a perforated pipe, to allow large massflows unt
reduced friction compared to simpler CICC's without hole. Because of the lower hydraulic
resistance of the cooling hole, the helium flow is expected to have a higher velocity in the hol
compared to the cable bundle. This difference changes the dynamics of the flow and of the h



transfer between the cable and the cooling helium. Therefore some effort is spent initially in tr
presentation of a model for a CICC with dual cooling channel.

2. Model for the Quenching CICC

The quench initiation and propagation in a CICC can be described in a first approximation usir
a 1-D schematization of the cable which ignores the size of the cable cross section comparec
the longitudinal cable length (see Ref. [4] and the references quoted there). This is a go
approximation for existing magnets, as the cable lengths are of the order of several hundreds o
to be compared to transverse dimensions of the order of some cm. Temperature gradients in
cable cross section cannot be fully ignored, as a full homogeneization of the thermal properti
would lead to an overestimate of the thermal capacity of the cable ignoring the time lag in tr
temperature history. A compromise solution, as chosen in [4], is to treat separately the strands
the cable, the helium and the outer conduit. The evolution of the system in time (t) is the
described by the mass, momentum and energy balances in the helium and the heat diffusior
the strands and conduit in the direction of the flow path (x). Coupling of the equations is obtaine
through convective heat fluxes at the wetted or contact surfaces. Particular attention is to

devoted to the non-linearities of the problem, i.e. strong variations of the thermal properties, he
transfer coefficient or the onset of the Joule heat generation term. In the next sections t
equations describing the system are presented.

2.1  Two channels helium flow

According to the results of Ref. [9], summarised in Appendix A, it is possible to assume that il
the time scale of interest for the quench propagation the helium thermodynamic state is the sa
in the cable bundle and in the cooling hgterfect mixinghypothesis), i.e. in particular the
helium pressure and temperature is uniform in the cross section of the cable. This allows
significant simplification in the conservation balances. Assuming in addition that no momentun
is transferred among the two flows, the helium state and motion is described by the following s
of equations (see Appendix A for details) for the pressure p, the tempergend the flow
velocities in the cable bundlegy and in the cooling hole (y):
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wherep is the helium density, {the specific heat at constant volume, c the isentropic sound
speed an@ the Gruneisen parameter (see Appendix A). Note that the equations obtained abo
do not introduce any simplification on the helium state, which is treated consistently as a no
perfect, single-phase fluid. The main advantage of the use of the above non-conservative forn
that pressure and temperature appear explicitly as a variable. This, as it will be shown in t
examples later on, can be used to increase dramatically the stability of the solution algorithm.

Pressure and temperature in the flow are convected at the average velocity v, obtained as the r
of the total helium flux to the total helium area [9], i.e.

V=agVg ta,v, ®)
where g and gy are the fraction of the total helium areggAn the bundle and hole respectively:
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The friction force at the wetted surface is indicated by the tegremB Fy, given by:
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Different friction factors g and {4 and hydraulic diametersy, Dnhg can be assigned to the two
flows to better match the hydraulic characteristics of the conductor. Finally, the linear heat sour
density term Qe is represented by the convective heat flux (in W/m) at the wetted surface of the

strands and of the conduit;

QHe = QHe,St + QHe,Jk = P« hSt (TSt - THe)+ Pk th(TJk - THe) (8)



showing the splitting in the contribution of the strands and of the conduit at temperajiaed T

Tk respectively, wheregpand pi are the wetted perimeters of strand and conduit jacketgnd h
hyk are the corresponding heat transfer coefficients. As a final remark, note that the system
Egs. (1)-(4) reduces to the common description of CICC’s flow without cooling channel [3-7]
when Ayeq=0 and Apee=Ane (and eliminating the hole momentum balance, Eq. (2), from the
system). This particular case is therefore retained in the present model, and will be indeed us
for the validation runs presented later on.

2.2  Strand and Conduit (Jacket)

Heat diffuses in the strands and in the conduit. In addition heat generation can take place eitl
because of external sources or Joule heating. The temperatures of the strands and of the cor
are assumed to be uniform in the cross section but are kept distinct. This assumption is basec
the good thermal contact of the strands and of the conduit with the flowing helium and th
uniformity of the volumetric heat source. Temperature differences within the cross section of th
CICC can be significant only for times comparable with the current redistribution time in the
cable, i.e. at most for transients in the time scale of stability and recovery. The helium turbulent
tends to decrease these gradients, so that they should become negligible in the time scale of
guench evolution. The equations describing the evolution of the temperature in the stggnds (T
and in the conduit (J) are:
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where Astand Ax are the total cross sectional areae of strands and copdiatndp j are the

area averaged densities of the strand and conduit mater&glan& Gk are the mass averged
specific heats, Ktand Kk are the area averaged conductivities. The linear heat sources densitie
represent the heat exchanged to the heliupe(§and Qe jkas defined in Eq. (8)), the Joule
heat production in strands and conduiyd@e stand Qoule,g) and the external heat sources
(Qext,stand Quxt JK- A last term (@ gk takes into account the possibility for direct heat exchange
between the strands and the conduit, at their contact sudage @nd is defined as:

Qsiok = PstakNsta (TSt - TJk) (11)

where the heat transfer coefficienstfik has the physical meaning of a thermal resistance at the
contact.



2.3  Coupled system of equations for the CICC

The system described by the equations above is schematically represented in Fig. 2, where
structure and the degrees of freedom of the discretization adopted later on are also indicated.
can now write the system of equations to be solved in the following matrix form:
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and the remaining matrices and vectors are defined as follows:

M 00O 0 0 [
g) 1 00 0 0 E
m_m 010 0 0 E w
g) 001 0 0 ¢
0 00 AStpStCSt 0 E
%’ 000 0 Ay P3C [
0 1 C
|:| VB O E 0 0 0[
0 1 C
B 0 v, > 00 oE
a= [ pc? 2 v 0 0 oC (15)
0 B C
@l a9l 0 v 0 OC
U o 0 0 0 0 ot
0 C
g 0 0 0 00 OF



Mm 0 0O 0 0 [
g) 000 O 0 E
0000 O 0 C 16
9"Hooo o 0 F (16)
D 000 AKy 0L
%) 0 0O 0 AKur
O 2f L
0 - oo 0 0 O 0 0 C
0 Dew C
2f
B 0 Al g 0 0 E
O 2 Dy 5 h h C
s=2om,f, = 2ppm,f, == 0 0 —@A?: = —@:4 x L ay)
D hB hH e e [
|:|2 aB fB i 2 aH fH VI?I O 0 pSIhSI kath |:
D Cv hB Cv DhH AHep Cv AHep C\/ [
B 0 0 0 pSthSt ~Pst h51 - pSt,thSt,Jk pSt,thSt,Jk E
g 0 0 0 pyhy pSt,thSI,Jk —Pachy — pSt,thSt,Jk £
3 0
o C
[l 0 L
9=C 0 - (18)
|:Q.]oule St ext St [
L
%Joule,.]k Qext Jk E

The a matrix contains the only non-self-adjoint terms and can be shown to describe the wa\
propagation phenomena in the helium. The majroontains the diffusive contributions (only in
strands and conduit), while the matsxiefines the source terms showing an explicit dependence
(at least linear) on the system variables. Finally the vegtontains the external source terms,
which can be implicitly and non-linearly dependent on the system variables (as for the Jou
heating). Note that source terms definedstare all expressed in the primary helium variables
and are therefore directly amenable of implicit numerical treatment.

24 Source terms



The heat generation in the strands and in the conduit is either due to external sources or to
Joule heating in the regions where the operating current is higher than the current carryi
capacity of the superconductor. The external heat sources in the strands and in the conduit
due to movements and stress release, electromagnetic losses due to field changes, nuclear
sources or external radiation and conduction sources[10]. They are general in nature and prov
the initial energy input causing the thermal transient. They are not specified further and au
intended as the free parameter for the determination of the stability of the cable to extern
perturbation[2]. Note that for generality the heat generation terms in strands and conduit are ke
separate, thus allowing for the possibility of investigating the different effects of heating the
strands (as it is the case for AC losses in superconducting cables[10]) or the structure (
typically happens when heat sources external to the magnets or nuclear heating are applied[11

Neglecting the current redistribution transients it is possible to calculate the Joule heat deposit
in the stabilizer, in the superconductor and, in principle, in the conduit in the general case
arbitrary critical current density dependence on temperature and field[4]. The procedure is full
described in Ref. [4] and is therefore not given here.

2.5 Transport coefficients and correlations

The description of the model for the quenching CICC must be completed by giving explicit form:
of the transport coefficients (i.e. the friction factors and heat transfer coefficient). The frictior
factors and the heat transfer coefficients of bundle and hole are specified through correlatior
based on experimental measurements and appropriate fits. Typical correlations for helium flow
CICC’s can be found in Refs. [12-15].

The description of the direct contact among strands and conduit, i.e. the coeffigigmtanul
hst gk requires much empiricism. An equivalent heat transfer coefficient, playing the role of the
thermal resistance at the contact, is assigned to model, at least to the first order, this effect. 7
contact perimeter depends on the void fraction and strand size in the bundle, and can be of
order of 50 % of the inner conduit perimeter[16]. While a direct measurement of the contac
perimeter is possible (i.e. using optical scanning of a cross section), the contact resistance
unknown, and therefore can only be taken as a parameter for sensitivity studies.

2.6 Boundary and initial conditions

The system needs a consistent set of boundary conditions to allow its solution. In a coil ea
cable length is connected to (large) inlet and outlet plena which provide constant pressure a
temperature ambient conditions. The helium flow is usually in subsonic conditions, at Macl
numbers of the order of 0.1 during a quench and well below in normal operation. According to



linearised characteristic analysis[17], for the helium flow it is therefore necessary to prescrit
two Riemann variables at inflow and one at outflow sections. As the use of Riemann variables
not straightforward with the present selection of variables for the flow (p,v,T), the choice
preferred here is to impose at inlet cross sections pressure and temperature (2 variables), an
outlet cross sections only pressure (1 variable). Note that during a quench, because of press
waves propagation, inflow and outflow sections must be determined depending on the sign of t
flow velocity. For the variables that cannot be specified at inflow/outflow sectifre® dlow
condition is used, assuming that the variable does not change through the boundary. Tt
condition is explicitly imposed only when balancing diffusion is present in the discretized
equation, setting the boundary flux equal to zero. This procedure has been found to be stable :
to provide a useful mean to impose physically known (i.e. measured) boundary conditions to tl
helium.

For the conduction equation in the cable, an assumption is made that the cable ends (strands
conduit) are adiabatic, i.e. the conduction heat flux at the boundary is zero. This is physical
justified by the fact that in goodcoil design the heat flux through the current leads, at the cable
ends, must be kept as small as possible to decrease the steady state heat loss from r«

temperature. This condition, name%zo, is imposednaturally by the finite elements

technique used in the space discretization (see Sect. 3.2).

Finally, the initial conditions are those of unperturbed flow under a specified pressure dro
(computed approximately from the incompressible limit of Egs. (2) and (3), with linear pressurt
drop along the length of the cable) and equal temperature in the cable components (no ste:
state temperature gradient within a cross section).

3. Numerics and Solution Algorithm

3.1 General Remarks

The model discussed in the previous section is apparently physically simple, but poses sol
remarkable problems in the selection of the numerical algorithm for its solution. The firsi
difficulty is connected with the mathematical nature of the system of equations. The
homogeneous part of the helium mass, momentum and energy balances form a first orc
hyperbolic system. In their conservative form they are equivalent to the system of 1-D Eule
equations for the flow of a compressible fluid [18]. This is the case when the flow velocity is
small and the inertial terms are large, i.e. for early times in the transients. As the flow develop
the velocity increases and the viscous dissipation dominates in the momentum balance. T
condition leads, after proper manipulation of the equation system, to a non-linear parabol



equation for the evolution of pressure. This indicates that the equation system looses i
hyperbolic character as the dominance of the viscous term increases. It is important to note t
this transition takes place continuously during the transient.

The equations describing the heat conduction in the strands and jacket are in any case
parabolic nature, although the large coupling term to the helium temperature tends to drive tl
temperature evolution of both. This strong thermal coupling of the strand and jacket temperatu
with the helium temperature results in a second numerical problem. The order of magnitude
the time constants for the evolution of the temperature difference between components is giv
by the ratio of the heat capacity to the heat transfer flux (using symbols in analogy with th
previous definition):

and has typical values of the order of a fraction of a ms for the strands in the cable (which h
generally the smallest heat capacity and the highest convection heat flux at the wetted surfac
This compares to the typical time constants of the quench evolution, around some s to some t
of s, and shows how the system obtained coupling strands and heliunstiff ofathematical
nature.

A further problem is represented by the propagation of the normal zone. Due again to the stro
thermal coupling, the temperature of the strand follows closely that of the helium at the norm:
front, so that a discontinuity in the temperature and density is present at the front, as shown
Ref. [7]. The transition to the normal conducting state causes a threshold rise of the Joule heati
and the moving front leads therefore to a problem of the free-boundary type. As shown in Ref.[
and [8], a fine discretization of this region is necessary to resolve the transition accurately ai
thus properly compute the propagation speed of the front (typical mesh size below 1 cm).

Finally, the material properties (heat capacities, thermal conductivities and electrical resistivitie:
in the temperature range of interest are highly non-linear. As an example, the heat capacitiy
metals changes in the range of 5 to 50 K approximately with the third power of the absolui
temperature, while the copper resistivity rises with approximately the fifth power of temperatur
between 20 and 50 K [19]. The helium is in close vicinity to its critical point, and a pseudo-phas
transition causes a large (one order of magnitude) change in density and specific heat [2!
Accurate interpolation of measured properties in the conditions of interest can be a heay
computational burden.

Although much effort has been devoted in past times to the solution of each of the above issL

(parabolic/hyperbolic equations, stiffness, free boundary, non-linearity), no standard numeric:
method is known to treat optimally th&nsemblen the form presented here. More specific to
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the previous work on quench simulation, as referenced in Sect. 1, a major difficulty oftel
encountered was the computational burden associated both to explicit methods [4-6], because
the necessity to operate them at very small time steps for stability (us tteange for a mesh size

of 5 mm), and implicit procedures [3,7], because of the complexity in the evaluation of the
jacobians, their inversion and iterations.

The novelty of the numerical implementation discussed here is in the application or adaption
known techniques to deal more efficiently with the problem. In particular, finite elements have
been chosen for the discretization in space, finite differences for time marching. The choice h
been guided by the generality and flexibility of these methods. A balancing diffusion is used o
those equations which need stabilisation (convection dominated). A crude linearization we
accepted in view of the small time steps forced by the necessity of tracking the free bounda
motion. The variable selection for the helium flow, and in particular the use of temperature an
pressure as thermodynamic variables, allowed implicit treatment of the stiff terms (temperatu
coupling and sound waves) and thus increased dramatically the stability of the time integratio
This allowed to retain in the model all fast modes at no penalty on the time stepping. Finall
space and time adaptivity provided a boost to the code efficiency. The next sections describe 1
details of these choices.

3.2  Space discretization

The space discretization scheme adopted here for the solution of Eq. (12) uses the finite eleme
method (FEM)[21]. Defining a nodal approximatith of the variablesi using the following
interpolation based on linear shape functibins

u=N,U,
and writing the system of Egs. (12) as a weighted residual at the nodes, with weight functiol
identical to the shape functions, we obtain the following semi-discrete system of ordinanr

differential equations in time

M%+(A+G—S)U:Q (19)

where the matricell, A, G, S and the vecto are defined as the following integrals over the
conductor length L:

M= [N'm N dx (20)
L
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The matrices and vectors above are non-linear, as they depend on the material properties ant
the solution.

The symmetric weighting used above is known to be optimal for self-adjoint problems (e.g. spa«
discretization of a parabolic equation) butsisb-optimalfor first-order hyperbolic problems,
such as the system of Euler equations. This fact is indicated by the appearance of oscillation:
sharp fronts. For such problems upwind methods (e.g. Petrov-Galerkin weighting, Taylo
Galerkin, Characteristic-Galerkin) are known to lead to better answers [18,21-24]. Still, th
mathematical complexity of the coupled system of Eqgs. (12), which present both hyperbolic ar
parabolic aspects, does not allow a clear-cut selection.

The method chosen here is to correct the oscillatory behaviour using an addiiaaating
diffusion. For scalar convection with velocity v, it has been shown [25,26] that non-oscillatory
solutions are obtained adding to the space-centered discretization an artificial diffusion g

9, = @ (25)

whereAx is the size of the space discretization (assumed uniform throughout the mesh). Tt
scheme obtained in this case is the well known (first-order) upwind differencing[18]. Severa
justifications have been given to this additional diffusion, which balancesetjsivenumerical
diffusion introduced by central differencing of the first order space derivative [27]. In the FEM
context it can be interpreted as the effect of a non-symmetric weighting of the residuals [28], or
can be shown to be equivalent to the symmetrization of the original problem obtained using
variable change [29].

In order to determine the necessary amount of diffusion, and its vector form, we borrow from th
split algorithms[30-32] the idea to separate the modes of the system of equations and to tre

12



separately the fast modes (sound waves) and the slow modes (convection). In our case
eigenvalue analysis shows that the sound modes for system of Egs. (12) are determined by
off-diagonal terms of matria (of Eq. (15)), while the convection modes are related only to the
diagonal terms ofa. The sound propagation is associated to an equivalent second-orde
hyperbolic problem (i.e. self-adjoint) for which therefore we do not add numerical diffusion. The
balancing diffusion is determined from the diagonah,ofe. the convection velocities for each
flow. The simple procedure adopted here is therefore to use the symmetric weighting and to a
to the system (12) the following diagonal diffusion:

0, C
@, 0 0 0 0 of
5T E
H
: 0 a, 0 0o 0 oE
g, =g O 0 apMSﬁ 0 0 of (26)
0 C
0 aTMA_X oC
0 2 C
0 0 0 or
H o 0 0 o o of

which clearly acts only on the helium equations and represents the direct extension of tt
artificial upwinding diffusion for the scalar model problem, given by Eq. (26). The diffusion
coefficientg in Eq. (12) is replaced by * gy) and accordingly the matri& of Eq. (22) will
contain the upwinding contribution. The parametgrsnust be chosen in the interval [0...1] and
control the artificial damping of the scheme. Any choice pfiifferent from O will produce a
first order accurate algorithm, while only for a choiceof0 it is possible to achieve global
second order accuracy (in a linear problem, at the penalty of an oscillatory solution). Th
freedom in the independent selectiorogfcan be exploited to performselectiveupwind of the
different equations. In particular, as the propagation of pressure waves is of seconda
importance for the study of quench propagation (see the examples presented later), we can d:
strongly the momentum balances and the pressure (continuity) equation selectin
ayy=ay,g=0p=1 while the temperature (energy) equation can be integratedyt to produce
more accurate results.

It is interesting to compare the amount of numerical diffusion introduced in the scheme to th
physical diffusion present in the problem, to show that, in reasonable conditions, the effect of tf
numerical stabilization does not affect the results of the simulation. As already said, typical me:
sizes needed to resolve the temperature gradients are in the oredi08frB[7,8], and typical
helium flow velocity is in the order of 1 m/s. Therefore themericaldiffusivity added to the
problem would be in the order of X503 m%s. This compares, for a CICC as the one in Fig. 1,
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to a physicaldiffusivity (at the quench front) of the order ok 02 m?/s. Although the orders of
magnitude are similar, this comparison shows that the mesh size needed to resolve the feature
the solutions also guarantees that the effect of the numerical diffusion is tolerable.

3.3 Time discretization

The non-linear ODE system Eq. (19) is integrated in time using a stafdarglicit finite
difference approximation:

n+0 n n+l ntl _ | n
M =(1- 6)0U| +90U| = v v (27)
ot ol a At

where the time derivative of the varialdleis approximated at time ®+with 6 in the interval
[0...1]) using the values at times n and n+1. The approximation above is known to be first ord
accurate for any choice &, apart from the casg=1/2 when a second order approximation is
produced. More accurate methods could be used, based on more than two time stations. ~
advantage of th@-implicit scheme chosen here is that the time step adaption discussed later dot
not require additional interpolations/extrapolations.

Using the approximation (27) in Eqg. (19) we obtain finally the following system of non-linear
algebraic equations:

mw—ATe +(A™ +G™ - S”*")Efu =Q" (AT 4G - s %)

for the time increments of the variald®J), defined as:

AU :Un+1_Ur'|

3.4  Linearisation and stability

The matrices and vectors in Eqg. (28) depend on the solution, and in principle férzabyan
iterative technique would be necessary. We choose here to linearise the problem computing
matrices based on the solution obtained at tmneeglecting their variation in time, so that the
algebraic system of equations to be solved is now:

14



é'ﬂ+e(An+Gn—sn)Bau Q-(A"+ G - (29).

The system (29) is solved by direct inversion of the matrix at the |.h.s. Note that because of tl
neglect of the changes in the matrices in Eq. (29) we can formally obtain only first order time
accuracy. We justify this choica posteriorias, once more, the time step is forced to relatively
small values by the necessity to follow the motion of the propagating front.

Unconditional linear stability is obtained, as usual, for any choicé ®f1/2, including the
influence of source terms which depend linearly on the solution (e.g. temperature coupling).
the non-linear case, test problems have shown that stable (but unaccurate) integration can
obtained using = 1 at extremely high Courant numbers (of the order 6fak@ above). We
attribute this exceedingly large stability domain to the use of pressure as one of th
thermodynamic variables. An analysis of the stability and convergence properties of thi
algorithm is in progress[38].

3.5 Adaptive meshing

In order to resolve the temperature gradients at the propagating front, it is necessary to use typi
mesh sizes in the fraction of cm range[7,8]. This compares to flow path Iengths of the order
100 to 1000 m. A uniformly refined mesh could require therefore as many &5 1 nodes to
obtain an acceptable solution. Clearly this is not acceptable from the point of view of memor
occupation and CPU time, also because while in close vicinity of the propagating front th
gradients in the solution are large, in the rest of the flow path the mesh required for accurau
reasons is much coarser. Adaptivity is the clear answer to this problem.

Most of the latest development in adaptive meshing has been devoted to steady ste
problems[33]. Once an error estimator has been defined, the mesh is adapted based on the €
distribution in the equilibrium reached. For transients the mesh adaption can be more involved,
in principle each time step representseguilibrium to be achieved within a specified error in the
space discretization.The mesh adaption thus would involve a repetition of the step and, possit
iterations.

In the case of quench simulation the selection of the error indicator is not straightforward. Th
problem is not self-adjoint, and an energy norm does not give any bound[22]. In additior
iterations are costly for a non-linear problem and should be avoided when necessary. On the ot
hand, experience shows that most of the numerical error can be introduced by a wror
propagation of the quench fronts[8], whose position and velocity appear to be the critice
indicators for the quality of the solution. As we indeed have a clear definition of the moving
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boundary at each time step - the transition from superconducting to normal-conducting can |
located in an element - we can avoid to use a general purpose error control procedure to loca
the regions to be refined. We rather try to generate a fine mesh in close vicinity of the front ar
decrease the mesh density with increasing distance from the front.

In particular, at each time step aleal mesh density distribution is generated over the existing
mesh. The mesh density (d) distribution chosen here is given by a gaussian profile centered at
normal front location g with maximum and minimum densitiegnélx, dmin assigned by the
user:

_(X_th)2
d = max@dmin ;dmaxe TE

H H

(30)

The width of the gaussian profile governs the number of elements used in the refinement
around each front, and can be eiher prescribed or set automatically as a ffactighe
maximum allowed element size:

1
d

max

o=0

so to guarantee that even in the worst case of a refinement required on an element of 1
maximum allowed size a smooth mesh is generated.

In presence of several fronts the resulting density distributions is taken as the upper envelope
all gaussians. The element density is then used to generate the new mesh. The main issue at
stage is the interpolation of the variables from the old mesh to the new one. The approach cho
is to define a backgrouniaard mesh (the initial mesh) which cannot be modified and to refine or
coarsen the mesh, according to the desired element density, inserting or resofvioges by

successive element bisection or element joining. This guarantees that the interpolation in regic
were the mesh is refined always satisfies the previous FE solution, while the coarsening ne\
looses the initial features of the mesh. This procedure was found to give the best results 1
transient solutions. Note that as the minimum and maximum element sizes are given by the us
no direct control on the absolute magnitude of the error is possible. Work is in progress to defit
the a priori dependence of the error in the propagation velocity on the mesh (and time step) size

Using this front-tracking procedure explicitely, i.e. at the end of each time step to predict th

mesh to be used for the next step, no iteration is performed. The order of magnitude of the tir
step selected (see next section) allows generally an accurate prediction of the mesh.
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3.6  Adaptive time step selection

The key objective of this section is to have a simple time step control to achieve (approximatel
the desired accuracy avoiding iterations and repetitions of the step. To achieve this, we write t
homogeneous part of the ODE system (19) in the following form using the matrix of eigenvalue
A and the characteristic varablesf the problem:

X i Ar=0 (31)
o

where by definition X is the matrix of the right eigenvectors) we have that:
A =X MTA +G-9JX

r=X"

Equation (31) is a system of decoupled ODE’s in time, and the problem thus reduces to the tir
integration of a scalar equation for each degree of freedom of the problem:

Xy ar=0 (32)
&

Assuming constam; during a time step, th@-implicit finite difference discretization of Eq. (32)
gives the numerical amplification factor:

(T 1-A (L-6)At

A= (33)
r" 1+A,6At

which compares to the exact amplification factor:

A= (34).

The relative error (for a single step), defined as:

o0-fa-fAacos |

e @+ A,60t)

can then be limited to a set maximwn., by appropriate selection of the product AfAt,
solving the inequality:
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|1-2,@-o)nt
|e—}nAt (1+/\|9At) ].‘S gmax (35)

Equation (35) is non-linear, but it must be solved only once to determirgptineal value of the
product A; Aty (i.e. the one giving at most an ergy,, per time step). The time step to be taken
at a certain time is then determined by corresponding valug;of

At

Ai(t)

Equation (36) is used after the end of a step to estimate the following time step to be taken. T
difficulty in the above procedure consists clearly in the evaluation of the decomposition of th
system in the form of Eqg. (32). As we are only searching for an approximate error contrc
procedure, we assume here that the eigenvalues of equeasinrbe approximated at each time as

At(t) = (36).

y o lou 14y

= 37
T ua U, At (37)

wherey; represents the i-th variable in the systemldni its discrete counterpart (note that the
approximation above is valid only for a diagonal system).

The accuracy criterion is equivalent to a limit on the maximum relative variation of the variable
Ui during one time step, and shows relation to the work reported in ref. [34]. A final importani
remark is that, as we are not primarily interested in the pressure wave propagation for quen
simulations, we can restrict the accuracy control to the temperature evolutions. Therefore at ee
time step the estimated eigenvalues for the helium, strand and conduit temperatures are evalui
using Eq. (37). The time step width is adapted according to the result of the accuracy control. /
for the mesh adaption, the simple prediction of the new time step has been found to wo
satisfactorily (no iteration is performed).

4. Verification of the Model

The model developed here is highly non-linear and its implementation rather complex. Therefo
it is not easy to verify its validity, both from the point of view of the physical assumptions made
and of the numerical implementation. Checks have been made against other existing compu
codes and available experimental results. Unfortunately, up to now, no experimental results &
available for the conductor geometry with central cooling hole to be used in ITER. For this
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reason all comparisons were restricted to single 1-D flows. Data are available on supercritic
helium cooling and quench propagation. Two comparisons have been selected and presen
here. The first regards data on thermal induced flow produced in the HELITEX test facility a
KfK [35], while the second is based on quench propagation in a small size CICC [36,37].

4.1 Comparion to the HELITEX data from Ref. [35]

The first test of the model presented here was performed on the rather old experimental d.
produced and analysed by Benkowitsch and Krafft [35] on transient induced flow in supercritice
helium contained in a copper pipe. A 32 m long channel, with square cross section, was initial
filled with stagnant supercritical helium. The inlet valve was closed and the experiment began
the stored energy of a capacitor bank was discharged in a resistive heater of 15 m length, loca
at the inlet. Pressure was recorded at various locations along the length. The main data for
geometry, friction factor and heating pulses are reported in Tab. 1. In the experiments, the ing
energy was taken as a parameter.

The maximum pressure measured at the sensors and the corresponding value computed
shown in Fig. 3. The calculations were performed using a fixed (i.e. not adaptive) 200 elemer
mesh, and did not show mesh dependence below (100 elements) and above (400 elements)
size. As shown in Fig. 3, the maximum pressure increase is reproduced accurately within 15
over the whole input energy range. The deviation of measurements and simulation resul
increases at high input energies. In these conditions the temperature increase of the compon:
surrounding the test section (valves, insulation) contributes significantly to the energy balanc
and thus decreases the maximum pressure as observed. Finally, a phase change was taking |
during the experiment at the test section outlet, especially at higher input energies. This was o1
roughly taken into account using the gas density in the simulation as soon as the phase bounc
was reached. Still, the agreement of simulation and measurement is satisfactory.

4.2  Comparion to the quench propagation data from Ref. [36,37]

The experimental data measured by Ando et al. [36,37] on quench propagation and pressi
increase in a small size CICC were used as a second verification of the capabilities of the mod
A conductor with the data reported in Tab. 2 was wound for a length of 26 m and inserted in a
T background field. Starting from the operating conditions given in Tab. 2, a quench was initiate
at different operating currents between 1.5 kA and 2 kA by firing a 4 cm long heater with a ver
fast pulse (0.1 ms nominal duration). The normal length evolution was monitored by means ¢
voltage taps placed along the conductor length. A pressure sensor measured the press
evolution in the centre of the normal zone.
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For the simulation it was assumed that the conductor length was symmetric (i.e. only 13 m we
analysed), with the open end at constant pressure, set at 1 MPa. An adaptive mesh with minim
mesh size of 1 mm and a total number of element in the order of 500 was used. The time step \
adaptively chosen between 0.1 and 2.5 ms, but for most of the time the integrator operated at
maximum time step. Note that this corresponds to a Courant number (based on the sound sp
modes) between 500 and 1000 (depending on the temperature). A similar model, but based on
explicit time integrator [4], would therefore produce comparable results but with 1 to 2 orders ¢
magnitude penalty on the CPU time owing to the larger number of smaller time steps.

The friction factor was obtained correcting a smooth tube correlation by a factor 3 (see Tab. :
The quench was initiated in the simulation by a heat input over 4 cm in the centre of th
conductor length. The heating duration was 0.1 ms and the power was adjusted in order to ji
initiate the quench. In the first calculations it was observed that the quench propagated faster tt
measured, and that the propagation velocity had a strong dependence on the local value of
heat transfer coefficient at the normal front, especially during the initial phase. In fact, in the
beginning of the quench, the helium has a low speed (below 1 m/s), and the propagation is ¢
both to the helium front motion and to the heat flux through the strands along the conductor. Tt
flow conditions for a normal zone with a length of some cm can be far from the range of validit
of the 1-D correlations. For this reason it was assumed here that the heat transfer coefficie
between strands and helium could be significantly higher than computed by the 1-D correlatior
and a lower inferior limit for h was set at 2500 Vék in order to match the initial propagation
data (in the interval 0 to 1 s) for the 2 kA case.

The results of the simulations compared to the experimental measurements are reported in Fig
through 6. Figure 4 shows the location of the normal front in 3 cases (2 kA, 1.8 kA and 1.5 kA
Considering the uncertainties in the description of the experiment, the agreement betwe
measurement and simulation is excellent. In the 2 kA case the normal front accelerates after 2..
A similar acceleration is seen in the measurement only at a later time (around 2.5 s) and can
attributed to a change in the propagation mode happening when the helium compression &
frictional heating at the front increases the helium temperature up to the current sharing level
phenomenon called often Thermal-Hydraulic Quench Back (THQB)[5]. This change in the
propagation is confirmed looking at the pressure traces (in Fig. 5) for the 2 kA case, where ti
pressure in the centre peaks because an increasing amount of helium is engulfed in the nori
region. Note that the mismatch between the onset of THQB seen in the normal front locatic
curves is the cause for the mismatch in the location of the peaks in the pressure traces. The ol
of THQB was found to be critically dependent on the friction factor coefficient assumption (se«
Tab. 2), where assuming e.g. a correction factor N=2 on the smooth tube correlation, no THQ
was computed. This could be an indication that the value of the friction factor used in th
simulation is slightly too high, a fact consistently confirmed by the presence of a THQB in the
late times of the simulation for 1.8 kA which is not observed experimentally.
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The computed pressure trace for the 2 kA case (in Fig. 5) appears initially too low compared
the measurement (apart from the THQB peak). A possible explanation could be that the bounds
condition assumed for the calculation was of constant pressure at the exit, where in reality tl
pressure relief lines on the sample could introduce additional pressure gradients adding to i
pressure value in the ambient where helium is discharged.

Finally, in Fig. 6 are shown the traces of the cable temperature in the centre of the sample. F
this quantity no direct measurement is available. However, the measurement of voltage along t
conductor adjacent to the heater can be used to deduce the copper resistivity and, from kno
scaling laws, the copper temperature. The estimated temperature for a 1.7 kA run is reported ¢
s as the two crosses in Fig. 6 (two adjacent taps were used for this estimate, giving a 20
difference in the temperature computed). The values computed for 1.8 and 1.5 kA are correc
above and below the estimated temperature and indicate that the prediction is indeed in t
correct range.

In summary it seems that although the ideal representation based on the model discussed he
not fully satisfactory (e.g. the consideration on the boundary conditions, a slight variation of th
operating current not taken into account in the simulation, the neglect of additional hee
capacities external to the cable), this comparison shows that the inner consistency achieved
the simulations is good. Also, it is important to recognize that the propagation of the quenc
depends critically upon parameters that are not known with certainty (friction factor, heat transfi
coefficient), and therefore any predictive application of this model can only be performed i
conjunction with a parametric study on the influence of these critical parameters.

5. Conclusions

A model for the simulation of quench initiation and its evolution in the Cable-in-Conduit
Conductors being designed for ITER has been presented. The model includes a separ
treatment of the hydraulics in the cable bundle and in the central cooling channel and prope!
describes the temperature differences within the components of the cable cross section. T
numerical implementation has been discussed, showing that a low order implicit finite elemen
algorithm coupled with automatic time step and mesh size control gives satisfactory results
terms of accuracy and computational speed.

The main feature of the numerical method is that it is able to obtain stable results at extreme
high Courant numbers (of the order and greater tha) 48d therefore large time steps. This in

turn allows small element sizes without penalty on the number of time steps. The stability of th
algorithm in the solution of the fluid flow is mostly attributed to the direct use of pressure as
thermodynamic variable. To achieve this, the conservation equations have been written in a n
standard, non-conservative form without introducing approximations to the gas behaviour. TF
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capability of time stepping on a time scale larger than the characteristic time of sound wa\
propagation gives, for typical simulations, a gain of 1 to 2 orders of magnitude CPU tim¢
compared to existing explicit solvers (as, e.g., the one of Ref. [4]). This model however, i
contrast to the results of Ref. [7] where sound waves and temperature gradients in a cross sec
are suppressed, retains generality and can be applied to conditions where these effects
important simply by time stepping on the appropriate time scale.

The solver presented here is currently used for the design and analysis of the ITER conduct:
[39]. Some examples of application have been reported to demonstrate the reliability of the co
produced. Experimental results could be reproduced with satisfactory accuracy, although mo
work on the validation on the specific details of the treatment of the two flows is needed.
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Appendix A. Non-conservative form of the helium flow equations

The flow of helium in long conductors is described by the 1-D balances of mass, momentum ai
energy for a compressible fluid with ignorable viscosity but significant friction at the wetted
perimeter. In computational fluid-dynamics it is customary to use the conservative form of th:
flow equations, as only this form guarantees that the numerical fluxes respect the physic
conservation laws [18]. Here we prefer to use a non-conservative form of the equation to allo
direct coupling of the temperatures of the various components (the convective heat fluxes cont:
the temperatures explicitly). This choice is also guided by the fact that all superconductol
examined will have constant flow cross section along the length, so that no shock should appe
in the solution. Temperature and pressure are taken as state variables. The first, temperatur:
chosen -as already said- for homogeneity with the state variable of the strand and conduit a
thus allow direct, implicit coupling of the energy balances. The second, pressure, is chos:
because it improves greatly the non-linear stability properties of the numerical integration of th
flow equations.

For a 1-D channel with cross section A, hydraulic diametgrfiiction factor f and a linear heat
flux Q, the conservative form of the flow equations (for densjtgnass fluxpv and total energy
densitype) is:

d£+d(pv) _
K

0([)«) d(gx«) P__ g A1)

o"(pe) d[(pe+ p)/]

where the total specific energy e is the sum of specific internal energy i and specific kineti
energy \2/2:

2

e=i+—
2

and the friction force at the wetted surface F is defined as:

F=2r M
D,
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The system (A1) is identical to the 1-D Euler equations [18] apart from the addition of the wal
friction (in the momentum balance) and of the heat influx (in the energy balance).

The above system can be written in terms of pressure p, velocity v and temperature T using 1
following thermodynamic relations

dp=2"2dp-Pan (A2)
C C
. Op Odp
di=2-c, 7P +car (A3)
=7 p

where the coefficients (Cand c are respectively the specific heat at constant volume and the
isentropic speed of sound in the helium, wipis the Gruneisen parameter defined as:

_DpatQ
Q= %HS

where the derivative is taken at constant entt®@phhe Gruneisen parametgiis equal toy-1 for
an ideal gasy(is the ratio of specific heats). In Eq. (A2) the fluid specific enthalpy has been used
defined as:

h=i+2
0

Using the relations (A2-A3) and substituting into the conservative set (Al), we obtain the
following sysytem of non-conservative equations for p, v and :

NN 1B

x X pox

d ., N P ﬂ’?

b pci 4yt = + pVF Ad

>+ pe St = g v (A)
Q
—+pvF

CLR T

a X X pC,

where the equation for pressure has taken the role of the mass continuity equation, while t
energy equation is substituted by an equation for temperature. In this form the wall frictio
dissipation and the heat influx contribute to both mass and energy balances. In addition to t
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advantages quoted earlier, this form of the equations allows a direct specification of the bounde
conditions on pressure and temperature, two variables that are directly measured in experimen

The ITER CICC's have the particularity of a central cooling hole that allows large massflows ¢
reduced pressure drop compared to CICC's without additional cooling hole. The flow in such
geometry is more difficult to describe than in case of an homogeneous flow, as mass trans
takes place between the different regions of the cable. We assume here that the two flows car
treated as separate 1-D channels with additional terms describing the mass, momentum
energy transfer betweent them. In principle, even under the 1-D simplifying assumptions,
system of six equations (continuity, momentum and energy balances for each flow) couple
through mass, momentum and energy exchange term should be solved for the helium flow.
first tentative reduction of this system was performed in Ref. [9], along the lines reported in th
following.

The central cooling hole is separated from the bundle either by a perforated tube or a spiral whi
sustains the cable bundle. As one of the objectives is to maintain the good hydraulic contact
the two channels, the perforation is large compared to the helium cross section. This implies tt
the pressure loss in transverse direction to the cable axis (i.e. from the bundle to the cooling ho
is small, and therefore pressure equilibration is fast (the typical time scale is that of the soul
wave propagation transverse to the conductor, with characteristic length around 1 cm and tir
constants in the range of tensys).

The mass exchange, and therefore density equilibration, between the two flows takes place w
characteristic times governed by the transverse flow velocity. Assuming that typical values ¢
transverse velocity are in the same order of magnitude of the longitudinal velocity, typically
between 0.1 and 1 m/s, the time scale over a characteristic length of 1 cm is of the order of 1C
100 ms.

The quench phenomenon evolves on a time scale of the order of seconds, and therefore it car
assumed that for quench propagation studies pressure and density in the two flow channels is
same. This implies the the thermodynamic state is the same, and therefore all oth
thermodynamic variables will be equal, and in particular temperature. Under this assumption it
possible to add the continuity and energy balances for the two flows. Assuming in addition th.
the momentum transfer among the two flows is small and that the contribution of the kineti
energy to the energy balance is also small (this is always verified for helium in subsonic
cryogenic conditions), we can reduce the original six equations to four balances: a glob
continuity equation (obtained by adding the single continuity equations of the flows) a globa
energy balance (obtained by adding the single energy balances) and the two independ
momentum balances:
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d£+ d(pv) =0

ot X
d(p‘/B)+ d(ové) L -pF

ot ox OX ® (A5)
oprs), opsi), o0 _ .

T ox X
o(ee), Alee+ )] _o
Y ox A

In the equations above it must be noted how the density and energy are convected at the effec
velocity of the homogenised flow, v, defined as in Eq. (5) in the main text. Now using the
thermodynamic relations Egs. (A2) and (A3) we obtain the final set of non-conservative
equations for the helium in terms of helium temperature, pressure and flow velocities:

(A6)

F, + F
+ aB¢THe % + ay <0THe WH +V dTHe — (aBVB B aHVH " ) N Q
dx x X PG, ApC,

The set above is the one used in the solution of the transient (note that in the text the total heli
cross section is indicated byyA and the linear heat flux isHQ).
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Appendix B. Symbols and Notation

The following symbols have been used in the text. Duplicate symbols have been reported f
each entry used. Superscripts and subscripts are not indicated when they have obvious meat
in the text.

relative cross section of helium in the bundle and in the hole aB,
matrix of convection coefficients

Cross section

amplification factor

discretized matrix of convection coefficients
helium isentropic speed of sound

Courant number

specific heat

helium specific heat at constant pressure
helium specific heat at constant volume
mesh density

hydraulic diameter

helium total specific energy

helium friction factor

specific wall friction force

matrix of diffusion coefficients

matrix of upwind diffusion coefficients
discretized matrix of diffusion coefficients
heat transfer coefficient

helium specific enthalpy

helium internal specific energy

thermal conductivity

matrix of mass (time derivative) coefficients
discretized matrix of mass (time derivative) coefficients
nodal shape function

helium pressure

wetted perimeter

source vector

linear heat flux

discretized source vector

characteristic variable

matrix of characteristic variables

source matrix

discretized source matrix
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time

temperature

unknown

vector of unknowns

nodal unknown

vector of nodal unknowns

velocity

length

matrix of right eigenvectors

upwind parameter

mesh refinement extension parameter
mesh size (space step)

time step

vector of increments of the nodal unknowns
relative error

helium Gruneisen parameter

ratio of specific heats in the helium
eigenvalue

matrix of eigenvalues

implicitness parameter for time integration
density

gaussian width of mesh density distribution function
time constant
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Table 1. Data for the HELITEX experiment by Benkowitsch and Krafft[35].

Copper tube geometry:

Channel length (m) 32
Helium cross section ( 4
hydraulic diameter (mm) 2
initial temperature (K) 4.14
initial pressure (bar) 1.013
Friction factor:
-) laminar regime:
(716
8 Re
-) turbulent regime:
¢ = 70076
"8RS
Heat flux into the helium:
t
S Q— fortsrt,

T,

Qt(t): O =

e 2 fort>r1,

Q(t) for x<15
Qxt)=0 ()
OO0 for x>15

where the time constants are defined as follows:

11 (Ms) 77
12 (Ms) 286
and the energy input and associated linear heat flux are:
E Q) Qo (W/m)
25 4.816
50 9.632
75 14.464
100 19.260
150 28.892
200 38.520
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Table 2. Data for the quench propagation experiment by Ando et al [36,37].

Conductor geometry:

Strand diameter (mm)

Number of strands

NbTi cross section (mf)

Copper cross section (

Conduit (SS) cross section (ngbn
Helium cross section (

Wetted perimeter strands (mm)
Wetted perimeter conduit (mm)
Hydraulic diameter (mm)
Copper RRR (-)

Operating and critical conditions:

Magnetic field (T)
Temperature (K)
Pressure (MPa)
Massflow (g/s)

Critical temperature (K)
Critical current (kA)
Operating currents (kA)

0.98
18
34

10.2

251

13.3
55

0.69
60

4.2
1.0
0.0
6.24
3.0
15-2.0

Friction factor:

-) laminar regime:

_ 16
Re

-) turbulent regime:

f, = N [0.046 Re**

N=3
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Figure 1. Prototype of a 40 kA CICC developed for fusion application in the Central Solenoid coil of the ITER
experiment.

Multi-dof
node

Figure 2. Schematic representation of the components and their mutual thermal coupling (the links connectin
them) in the model developed. The schematic picture shows the degrees of freedom identified and ti
discretization adopted within the cable cross section.
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Figure 3. Maximum pressure at the sensors P1 and P3 (at inlet and in the middle of the pipe) in the experiment
Ref. [35] as a function of the input energy as measured and computed.
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Figure 4. Normal front location
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in the experiment of Ando et al. [36,37], as measured (symbols) and compute:



[n] 2.0 kA experiment

3.0E+06
4

2.0 kA computed

2.0E+06

Pressure (Pa)

1.0E+06

0.0E+00

Figure 5. Pressure in the centre of the normal zone in the experiment of Ando et al. [36,37], as measured (symba
and computed (lines)
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2.0 kA computed
~~~~~~~ 1.8 kA computed

.......... 1.5 kA computed

100

+ 1.7 kA experiment

Strand Temperature (K)
50

Time (s)

Figure 6. Temperature of the cable in the centre of the normal zone in the experiment of Ando et al. [36,37], ¢
computed (lines) as a function of the operating current. The crosses are estimated values obtained frc

voltage reading for an operating current of 1.7 kAtJ0 K scattering is due to the uncertainty in the
reading.
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