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1. Introduction

The International Thermonuclear Experimental Reactor (ITER)[1], the most probable next step
large scale experiment for magnetically confined fusion, will have supercritical-helium, force-
flow cooled superconducting magnets forming a considerable part of the basic tokamak structure.
The magnets will be wound using so called cable-in-conduit conductors (CICC's) in unit lengths
ranging between 750 and 1500 m. A CICC consists of a bundle of cabled superconducting and
copper strands jacketed in a helium tight conduit with primary structural function (i.e. support for
the Lorentz force). Helium, at about 4.5 K inlet temperature, flows in the spaces within the
strands and maintains the cable temperature sufficiently below the maximum allowed by the
superconducting material (called the critical  temperature Tc of the superconductor at the working
conditions of transport current and background magnetic field). A typical CICC's prototype built
in the frame of the ITER R&D programme is shown in Fig. 1.

In DC conditions the magnet is superconducting and thus operates with zero resistance, i.e. no
Joule dissipation. However, due to local (and not foreseen) heat inputs, a section of the cable



K

could increase its temperature above Tc, where the superconductor developes a resistance. In this
so-called normal zone the current is shared between the superconductor and the copper,
functioning as a shunt. In this case Joule heating takes place in the normal zone and the
compressible, heated helium is expelled. Because of conduction at the ends of the normal zone
and heat convection through the helium expulsion, the normal zone propagates in the magnet.
The detection of a resistance in the magnet usually triggers protection systems which disconnect
the power supply and discharge the magnetic energy (of the order of 100 GJ in the ITER toroidal
field system[1]) onto external resistors. This process is usually called a quench of the magnet.

From the point of view of the design and analysis of a superconducting magnet[2] it is interesting
to predict the evolution of the quench. In particular, the main issues are the maximum
temperature and pressure in the cable (used to verify mechanical stresses due to differential
thermal expansion and pressure load), the helium expulsion (to size the venting lines) and the
normal zone propagation velocity and voltage (in order to set a threshold and requirements on the
sensitivity for the detection of a normal region). Mainly for analysis purposes, several models
were developed in the past years[3-7]. The numerical solutions were based on a variety of
methods, ranging from collocation packages [3,7], to time-explicit finite elements (Taylor-
Galerkin) procedure [4], method of lines [5], and finite differences in conjunction with an ODE
integrator in time [6]. This variety of methods witnesses the difficulties in the establishment of a
well optimised procedure. In fact, for none of them a coherent rationalle was given for the
selection of the solution procedure.

In particular, the analytical and numerical approach of Ref. [7] has shown that the physical
characteristics of the moving normal front in the superconducting cable can lead to significant
difficulties in obtaining accurate simulations. The use of a mesh adaption technique was proposed
there in order to improve the accuracy of the results at acceptable memory/CPU requirements. In
Ref. [8] it has been shown that the presence of sharp boundary layers in the solution at the normal
front imposes requirements to the mesh size and time step to be used in the analysis in addition to
those arising naturally from the numerical method chosen.

The purpose of this work is to discuss the features of the implementation of a model proposed for
the quench propagation in the ITER CICC's. In Sect. 2  the equations forming the model are
presented, Sect. 3 deals with the selection of the method and the numerical implementation, and,
finally, in Sect.4 experimental data are compared to the results of numerical simulations.

As is shown in Fig. 1, the ITER CICC design has the peculiarity of a central cooling hole,
separated from the cable bundle by a spiral or a perforated pipe, to allow large massflows under
reduced friction compared to simpler CICC's without hole. Because of the lower hydraulic
resistance of the cooling hole, the helium flow is expected to have a higher velocity in the hole
compared to the cable bundle. This difference changes the dynamics of the flow and of the heat
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transfer between the cable and the cooling helium. Therefore some effort is spent initially in the
presentation of a model for a CICC with dual cooling channel.

2. Model for the Quenching CICC

The quench initiation and propagation in a CICC can be described in a first approximation using
a 1-D schematization of the cable which ignores the size of the cable cross section compared to
the longitudinal cable length (see Ref. [4] and the references quoted there). This is a good
approximation for existing magnets, as the cable lengths are of the order of several hundreds of m
to be compared to transverse dimensions of the order of some cm. Temperature gradients in the
cable cross section cannot be fully ignored, as a full homogeneization of the thermal properties
would lead to an overestimate of the thermal capacity of the cable ignoring the time lag in the
temperature history. A compromise solution, as chosen in [4], is to treat separately the strands in
the cable, the helium and the outer conduit. The evolution of the system in time (t) is then
described by the mass, momentum and energy balances in the helium and the heat diffusion in
the strands and conduit in the direction of the flow path (x). Coupling of the equations is obtained
through convective heat fluxes at the wetted or contact surfaces. Particular attention is to be
devoted to the non-linearities of the problem, i.e. strong variations of the thermal properties, heat
transfer coefficient or the onset of the Joule heat generation term. In the next sections the
equations describing the system are presented.

2.1 Two channels helium flow

According to the results of Ref. [9], summarised in Appendix A, it is possible to assume that in
the time scale of interest for the quench propagation the helium thermodynamic state is the same
in the cable bundle and in the cooling hole (perfect mixing hypothesis), i.e. in particular the
helium pressure and temperature is uniform in the cross section of the cable. This allows a
significant simplification in the conservation balances. Assuming in addition that no momentum
is transferred among the two flows, the helium state and motion is described by the following set
of equations (see Appendix A for details) for the pressure p, the temperature THe and the flow
velocities in the cable bundle (vB) and in the cooling hole (vH):
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where ρ is the helium density, Cv the specific heat at constant volume, c the isentropic sound

speed and φ the Gruneisen parameter (see Appendix A). Note that the equations obtained above
do not introduce any simplification on the helium state, which is treated consistently as a non-
perfect, single-phase fluid. The main advantage of the use of the above non-conservative form is
that pressure and temperature appear explicitly as a variable. This, as it will be shown in the
examples later on, can be used to increase dramatically the stability of the solution algorithm.

Pressure and temperature in the flow are convected at the average velocity v, obtained as the ratio
of the total helium flux to the total helium area [9], i.e.

v a v a vB B H H= + (5)

where aB and aH are the fraction of the total helium area AHe in the bundle and hole respectively:
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The friction force at the wetted surface is indicated by the terms FB and FH, given by:
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Different friction factors fB  and fH and hydraulic diameters DhH, DhB can be assigned to the two
flows to better match the hydraulic characteristics of the conductor. Finally, the linear heat source
density term QHe is represented by the convective heat flux (in W/m) at the wetted surface of the
strands and of the conduit:

( ) ( )Q Q Q p h T T p h T THe He St He Jk St St St He Jk Jk Jk He= + = − + −, , (8)



u

showing the splitting in the contribution of the strands and of the conduit at temperatures TSt and
TJk respectively, where pSt and pJk are the wetted perimeters of strand and conduit jacket and hSt,
hJk are the corresponding heat transfer coefficients. As a final remark, note that the system of
Eqs. (1)-(4) reduces to the common description of CICC’s flow without cooling channel [3-7]
when AHeH=0 and AHeB=AHe (and eliminating the hole momentum balance, Eq. (2), from the
system). This particular case is therefore retained in the present model, and will be indeed used
for the validation runs presented later on.

2.2 Strand and Conduit (Jacket)

Heat diffuses in the strands and in the conduit. In addition heat generation can take place either
because of external sources or Joule heating. The temperatures of the strands and of the conduit
are assumed to be uniform in the cross section but are kept distinct. This assumption is based on
the good thermal contact of the strands and of the conduit with the flowing helium and the
uniformity of the volumetric heat source. Temperature differences within the cross section of the
CICC can be significant only for times comparable with the current redistribution time in the
cable, i.e. at most for transients in the time scale of stability and recovery. The helium turbulence
tends to decrease these gradients, so that they should become negligible in the time scale of the
quench evolution. The equations describing the evolution of the temperature in the strands (TSt)
and in the conduit (TJk) are:
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where ASt and AJk are the total cross sectional areae of strands and conduit, ρSt and ρJk are the
area averaged densities of the strand and conduit materials, CSt and CJk are the mass averged
specific heats, KSt and KJk are the area averaged conductivities. The linear heat sources densities
represent the heat exchanged to the helium (QHe,St and QHe,Jk as defined in Eq. (8)), the Joule
heat production in strands and conduit (QJoule,St and QJoule,Jk) and the external heat sources
(Qext,St and Qext,Jk). A last term QSt,Jk takes into account the possibility for direct heat exchange
between the strands and the conduit, at their contact surface pSt,Jk, and is defined as:

( )Q p h T TSt Jk St Jk St Jk St Jk, , ,= − (11)

where the heat transfer coefficient hSt,Jk has the physical meaning of a thermal resistance at the
contact.
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2.3 Coupled system of equations for the CICC

The system described by the equations above is schematically represented in Fig. 2, where the
structure and the degrees of freedom of the discretization adopted later on are also indicated. We
can now write the system of equations to be solved in the following matrix form:
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where the vector of unknown u is defined as:
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and the remaining matrices and vectors are defined as follows:
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The a matrix contains the only non-self-adjoint terms and can be shown to describe the wave
propagation phenomena in the helium. The matrix g contains the diffusive contributions (only in
strands and conduit), while the matrix s defines the source terms showing an explicit dependence
(at least linear) on the system variables. Finally the vector q contains the external source terms,
which can be implicitly and non-linearly dependent on the system variables (as for the Joule
heating). Note that source terms defined by s are all expressed in the primary helium variables
and are therefore directly amenable of implicit numerical treatment.

2.4 Source terms
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The heat generation in the strands and in the conduit is either due to external sources or to the
Joule heating in the regions where the operating current is higher than the current carrying
capacity of the superconductor. The external heat sources in the strands and in the conduit are
due to movements and stress release, electromagnetic losses due to field changes, nuclear heat
sources or external radiation and conduction sources[10]. They are general in nature and provide
the initial energy input causing the thermal transient. They are not specified further and are
intended as the free parameter for the determination of the stability of the cable to external
perturbation[2]. Note that for generality the heat generation terms in strands and conduit are kept
separate, thus allowing for the possibility of investigating the different effects of heating the
strands (as it is the case for AC losses in superconducting cables[10]) or the structure (as
typically happens when heat sources external to the magnets or nuclear heating are applied[11]).

Neglecting the current redistribution transients it is possible to calculate the Joule heat deposited
in the stabilizer, in the superconductor and, in principle, in the conduit in the general case of
arbitrary critical current density dependence on temperature and field[4]. The procedure is fully
described in Ref. [4] and is therefore not given here.

2.5 Transport coefficients and correlations

The description of the model for the quenching CICC must be completed by giving explicit forms
of the transport coefficients (i.e. the friction factors and heat transfer coefficient). The friction
factors and the heat transfer coefficients of bundle and hole are specified through correlations,
based on experimental measurements and appropriate fits. Typical correlations for helium flow in
CICC’s can be found in Refs. [12-15].

The description of the direct contact among strands and conduit, i.e. the coefficients pSt,Jk and
hSt,Jk, requires much empiricism. An equivalent heat transfer coefficient, playing the role of the
thermal resistance at the contact, is assigned to model, at least to the first order, this effect. The
contact perimeter depends on the void fraction and strand size in the bundle, and can be of the
order of 50 % of the inner conduit perimeter[16]. While a direct measurement of the contact
perimeter is possible (i.e. using optical scanning of a cross section), the contact resistance is
unknown, and therefore can only be taken as a parameter for sensitivity studies.

2.6 Boundary and initial conditions

The system needs a consistent set of boundary conditions to allow its solution. In a coil each
cable length is connected to (large) inlet and outlet plena which provide constant pressure and
temperature ambient conditions. The helium flow is usually in subsonic conditions, at Mach
numbers of the order of 0.1 during a quench and well below in normal operation. According to a
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linearised characteristic analysis[17], for the helium flow it is therefore necessary to prescribe
two Riemann variables at inflow and one at outflow sections. As the use of Riemann variables is
not straightforward with the present selection of variables for the flow (p,v,T), the choice
preferred here is to impose at inlet cross sections pressure and temperature (2 variables), and at
outlet cross sections only pressure (1 variable). Note that during a quench, because of pressure
waves propagation, inflow and outflow sections must be determined depending on the sign of the
flow velocity. For the variables that cannot be specified at inflow/outflow sections a free flow
condition is used, assuming that the variable does not change through the boundary. This
condition is explicitly imposed only when balancing diffusion is present in the discretized
equation, setting the boundary flux equal to zero. This procedure has been found to be stable and
to provide a useful mean to impose physically known (i.e. measured) boundary conditions to the
helium.

For the conduction equation in the cable, an assumption is made that the cable ends (strands and
conduit) are adiabatic, i.e. the conduction heat flux at the boundary is zero. This is physically
justified by the fact that in a good coil design the heat flux through the current leads, at the cable
ends, must be kept as small as possible to decrease the steady state heat loss from room

temperature. This condition, namely 
∂
∂
T

x
= 0, is imposed naturally by the finite elements

technique used in the space discretization (see Sect. 3.2).

Finally, the initial conditions are those of unperturbed flow under a specified pressure drop
(computed approximately from the incompressible limit of Eqs. (2) and (3), with linear pressure
drop along the length of the cable) and equal temperature in the cable components (no steady
state temperature gradient within a cross section).

3. Numerics and Solution Algorithm

3.1 General Remarks

The model discussed in the previous section is apparently physically simple, but poses some
remarkable problems in the selection of the numerical algorithm for its solution. The first
difficulty is connected with the mathematical nature of the system of equations. The
homogeneous part of the helium mass, momentum and energy balances form a first order
hyperbolic system. In their conservative form they are equivalent to the system of 1-D Euler
equations for the flow of a compressible fluid [18]. This is the case when the flow velocity is
small and the inertial terms are large, i.e. for early times in the transients. As the flow develops,
the velocity increases and the viscous dissipation dominates in the momentum balance. This
condition leads, after proper manipulation of the equation system, to a non-linear parabolic
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equation for the evolution of pressure. This indicates that the equation system looses its
hyperbolic character as the dominance of the viscous term increases. It is important to note that
this transition takes place continuously during the transient.

The equations describing the heat conduction in the strands and jacket are in any case of
parabolic nature, although the large coupling term to the helium temperature tends to drive the
temperature evolution of both. This strong thermal coupling of the strand and jacket temperature
with the helium temperature results in a second numerical problem. The order of magnitude of
the time constants for the evolution of the temperature difference between components is given
by the ratio of the heat capacity to the heat transfer flux (using symbols in analogy with the
previous definition):

τ ρ= AC
ph

and has typical values of the order of a fraction of a ms for the strands in the cable (which has
generally the smallest heat capacity and the highest convection heat flux at the wetted surface).
This compares to the typical time constants of the quench evolution, around some s to some tens
of s, and shows how the system obtained coupling strands and helium is of stiff mathematical
nature.

A further problem is represented by the propagation of the normal zone. Due again to the strong
thermal coupling, the temperature of the strand follows closely that of the helium at the normal
front, so that a discontinuity in the temperature and density is present at the front, as shown in
Ref. [7]. The transition to the normal conducting state causes a threshold rise of the Joule heating,
and the moving front leads therefore to a problem of the free-boundary type. As shown in Ref.[7]
and [8], a fine discretization of this region is necessary to resolve the transition accurately and
thus properly compute the propagation speed of the front (typical mesh size below 1 cm).

Finally, the material properties (heat capacities, thermal conductivities and electrical resistivities)
in the temperature range of interest are highly non-linear. As an example, the heat capacitiy of
metals changes in the range of 5 to 50 K approximately with the third power of the absolute
temperature, while the copper resistivity rises with approximately the fifth power of temperature
between 20 and 50 K [19]. The helium is in close vicinity to its critical point, and a pseudo-phase
transition causes a large (one order of magnitude) change in density and specific heat [20].
Accurate interpolation of measured properties in the conditions of interest can be a heavy
computational burden.

Although much effort has been devoted in past times to the solution of each of the above issues
(parabolic/hyperbolic equations, stiffness, free boundary, non-linearity), no standard numerical
method is known to treat optimally their ensemble in the form presented here. More specific to
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the previous work on quench simulation, as referenced in Sect. 1, a major difficulty often
encountered was the computational burden associated both to explicit methods [4-6], because of
the necessity to operate them at very small time steps for stability (in the µs range for a mesh size
of 5 mm), and implicit procedures [3,7], because of the complexity in the evaluation of the
jacobians, their inversion and iterations.

The novelty of the numerical implementation discussed here is in the application or adaption of
known techniques to deal more efficiently with the problem. In particular, finite elements have
been chosen for the discretization in space, finite differences for time marching. The choice has
been guided by the generality and flexibility of these methods. A balancing diffusion is used on
those equations which need stabilisation (convection dominated). A crude linearization was
accepted in view of the small time steps forced by the necessity of tracking the free boundary
motion. The variable selection for the helium flow, and in particular the use of temperature and
pressure as thermodynamic variables, allowed implicit treatment of the stiff terms (temperature
coupling and sound waves) and thus increased dramatically the stability of the time integration.
This allowed to retain in the model all fast modes at no penalty on the time stepping. Finally,
space and time adaptivity provided a boost to the code efficiency. The next sections describe the
details of these choices.

3.2 Space discretization

The space discretization scheme adopted here for the solution of Eq. (12) uses the finite elements
method (FEM)[21]. Defining a nodal approximation U i of the variables u  using the following
interpolation based on linear shape functions Ni:

u N U≈ i i

and writing the system of Eqs. (12) as a weighted residual at the nodes, with weight functions
identical to the shape functions, we obtain the following semi-discrete system of ordinary
differential equations in time

( )M
U

A G S U Q
∂
∂t

+ + − = (19)

where the matrices M, A, G, S and the vector Q are defined as the following integrals over the
conductor length L:

M N m N= ∫ T

L

dx (20)
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The matrices and vectors above are non-linear, as they depend on the material properties and on
the solution.

The symmetric weighting used above is known to be optimal for self-adjoint problems (e.g. space
discretization of a parabolic equation) but is sub-optimal for first-order hyperbolic problems,
such as the system of Euler equations. This fact is indicated by the appearance of oscillations at
sharp fronts. For such problems upwind methods (e.g. Petrov-Galerkin weighting, Taylor
Galerkin, Characteristic-Galerkin) are known to lead to better answers [18,21-24]. Still, the
mathematical complexity of the coupled system of Eqs. (12), which present both hyperbolic and
parabolic aspects, does not allow a clear-cut selection.

The method chosen here is to correct the oscillatory behaviour using an additional, balancing
diffusion. For scalar convection with velocity v, it has been shown [25,26] that non-oscillatory
solutions are obtained adding to the space-centered discretization an artificial diffusion gu:

g
v x

u =
∆
2

(25)

where ∆x is the size of the space discretization (assumed uniform throughout the mesh). The
scheme obtained in this case is the well known (first-order) upwind differencing[18]. Several
justifications have been given to this additional diffusion, which balances the negative numerical
diffusion introduced by central differencing of the first order space derivative [27]. In the FEM
context it can be interpreted as the effect of a non-symmetric weighting of the residuals [28], or it
can be shown to be equivalent to the symmetrization of the original problem obtained using a
variable change [29].

In order to determine the necessary amount of diffusion, and its vector form, we borrow from the
split algorithms[30-32] the idea to separate the modes of the system of equations and to treat
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separately the fast modes (sound waves) and the slow modes (convection). In our case an
eigenvalue analysis shows that the sound modes for system of Eqs. (12) are determined by the
off-diagonal terms of matrix a (of Eq. (15)), while the convection modes are related only to the
diagonal terms of a. The sound propagation is associated to an equivalent second-order
hyperbolic problem (i.e. self-adjoint) for which therefore we do not add numerical diffusion. The
balancing diffusion is determined from the diagonal of a, i.e. the convection velocities for each
flow. The simple procedure adopted here is therefore to use the symmetric weighting and to add
to the system (12) the following diagonal diffusion:

gu

B
B

H
H

p

T

v x

v x

v x

v x

=






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

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
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
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
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






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0 0 0 0 0

0
2

0 0 0 0

0 0
2

0 0 0

0 0 0
2

0 0

0 0 0 0 0 0

0 0 0 0 0 0

(26)

which clearly acts only on the helium equations and represents the direct extension of the
artificial upwinding diffusion for the scalar model problem, given by Eq. (26). The diffusion
coefficient g in Eq. (12) is replaced by (g + gu) and accordingly the matrix G of Eq. (22) will
contain the upwinding contribution. The parameters α i must be chosen in the interval [0...1] and

control the artificial damping of the scheme. Any choice of α i different from 0 will produce a

first order accurate algorithm, while only for a choice of α i=0 it is possible to achieve global
second order accuracy (in a linear problem, at the penalty of an oscillatory solution). The
freedom in the independent selection of α i can be exploited to perform a selective upwind of the
different equations. In particular, as the propagation of pressure waves is of secondary
importance for the study of quench propagation (see the examples presented later), we can damp
strongly the momentum balances and the pressure (continuity) equation selecting
αvH=αvB=αp=1 while the temperature (energy) equation can be integrated with αT=0 to produce
more accurate results.

It is interesting to compare the amount of numerical diffusion introduced in the scheme to the
physical diffusion present in the problem, to show that, in reasonable conditions, the effect of the
numerical stabilization does not affect the results of the simulation. As already said, typical mesh
sizes needed to resolve the temperature gradients are in the order of 5×10-3 m[7,8], and typical
helium flow velocity is in the order of 1 m/s. Therefore the numerical diffusivity   added to the
problem would be in the order of 2.5×10-3 m2/s. This compares, for a CICC as the one in Fig. 1,
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to a physical diffusivity (at the quench front) of the order of  1×10-2 m2/s. Although the orders of
magnitude are similar, this comparison shows that the mesh size needed to resolve the features in
the solutions also guarantees that the effect of the numerical diffusion is tolerable.

3.3 Time discretization

The non-linear ODE system Eq. (19) is integrated in time using a standard θ-implicit finite
difference approximation:

( )∂
∂

θ
∂
∂

θ
∂
∂

θ
U U U U U
t t t t

n n n n n+ + +

= − + ≈
−

1
1 1

∆
(27)

where the time derivative of the variable U is approximated at time n+θ (with θ in the interval
[0...1]) using the values at times n and n+1. The approximation above is known to be first order
accurate for any choice of θ, apart from the case θ=1/2 when a second order approximation is
produced. More accurate methods could be used, based on more than two time stations. The
advantage of the θ-implicit scheme chosen here is that the time step adaption discussed later does
not require additional interpolations/extrapolations.

Using the approximation (27) in Eq. (19) we obtain finally the following system of non-linear
algebraic equations:

 ( ) ( )M
A G S U Q A G S U

n
n n n n n n n n

t

+
+ + + + + + ++ + −









 = − + −

θ
θ θ θ θ θ θ θθ

∆
∆ (28)

for the time increments of the variable ∆U, defined as:

∆U U U= −+n n1

3.4 Linearisation and stability

The matrices and vectors in Eq. (28) depend on the solution, and in principle for any θ ≠ 0 an
iterative technique would be necessary. We choose here to linearise the problem computing the
matrices based on the solution obtained at time n, neglecting their variation in time, so that the
algebraic system of equations to be solved is now:
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( ) ( )M
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n
n n n n n n n n

t∆
∆+ + −









 = − + −θ (29).

The system (29) is solved by direct inversion of the matrix at the l.h.s. Note that because of the
neglect of the changes in the matrices in Eq. (29) we can formally obtain only first order time-
accuracy. We justify this choice a posteriori as, once more, the time step is forced to relatively
small values by the necessity to follow the motion of the propagating front.

Unconditional linear stability is obtained, as usual, for any choice of θ ≥ 1/2, including the
influence of source terms which depend linearly on the solution (e.g. temperature coupling). In
the non-linear case, test problems have shown that stable (but unaccurate) integration can be
obtained using θ = 1 at extremely high Courant numbers (of the order of 104 and above). We
attribute this exceedingly large stability domain to the use of pressure as one of the
thermodynamic variables. An analysis of the stability and convergence properties of this
algorithm is in progress[38].

3.5 Adaptive meshing

In order to resolve the temperature gradients at the propagating front, it is necessary to use typical
mesh sizes in the fraction of cm range[7,8]. This compares to flow path lengths of the order of
100 to 1000 m. A uniformly refined mesh could require therefore as many as 10

5
 to 106 nodes to

obtain an acceptable solution. Clearly this is not acceptable from the point of view of memory
occupation and CPU time, also because while in close vicinity of the propagating front the
gradients in the solution are large, in the rest of the flow path the mesh required for accuracy
reasons is much coarser. Adaptivity is the clear answer to this problem.

Most of the latest development in adaptive meshing has been devoted to steady state
problems[33]. Once an error estimator has been defined, the mesh is adapted based on the error
distribution in the equilibrium reached. For transients the mesh adaption can be more involved, as
in principle each time step represents an equilibrium to be achieved within a specified error in the
space discretization.The mesh adaption thus would involve a repetition of the step and, possibly,
iterations.

In the case of quench simulation the selection of the error indicator is not straightforward. The
problem is not self-adjoint, and an energy norm does not give any bound[22]. In addition,
iterations are costly for a non-linear problem and should be avoided when necessary. On the other
hand, experience shows that most of the numerical error can be introduced by a wrong
propagation of the quench fronts[8], whose position and velocity appear to be the critical
indicators for the quality of the solution. As we indeed have a clear definition of the moving
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boundary at each time step - the transition from superconducting to normal-conducting can be
located in an element - we can avoid to use a general purpose error control procedure to localise
the regions to be refined. We rather try to generate a fine mesh in close vicinity of the front and
decrease the mesh density with increasing distance from the front.

In particular, at each time step an ideal mesh density distribution is generated over the existing
mesh. The mesh density (d) distribution chosen here is given by a gaussian profile centered at the
normal front location xq, with maximum and minimum densities dmax, dmin assigned by the
user:

( )
d d d e

x xq

=




î


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



−
−

max ;min max

2

22σ (30)

The width of the gaussian profile σ governs the number of elements used in the refinement

around each front, and can be eiher prescribed or set automatically as a fraction β of the
maximum allowed element size:

σ β=
1

dmax

so to guarantee that even in the worst case of a refinement required on an element of the
maximum allowed size a smooth mesh is generated.

In presence of several fronts the resulting density distributions is taken as the upper envelope of
all gaussians. The element density is then used to generate the new mesh. The main issue at this
stage is the interpolation of the variables from the old mesh to the new one. The approach chosen
is to define a background hard mesh (the initial mesh) which cannot be modified and to refine or
coarsen the mesh, according to the desired element density, inserting or removing soft nodes by
successive element bisection or element joining. This guarantees that the interpolation in regions
were the mesh is refined always satisfies the previous FE solution, while the coarsening never
looses the initial features of the mesh. This procedure was found to give the best results for
transient solutions. Note that as the minimum and maximum element sizes are given by the user,
no direct control on the absolute magnitude of the error is possible. Work is in progress to define
the a priori dependence of the error in the propagation velocity on the mesh (and time step) size.

Using this front-tracking procedure explicitely, i.e. at the end of each time step to predict the
mesh to be used for the next step, no iteration is performed. The order of magnitude of the time
step selected (see next section) allows generally an accurate prediction of the mesh.
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3.6 Adaptive time step selection

The key objective of this section is to have a simple time step control to achieve (approximately)
the desired accuracy avoiding iterations and repetitions of the step. To achieve this, we write the
homogeneous part of the ODE system (19) in the following form using the matrix of eigenvalues
Λ and the characteristic varables r of the problem:

∂
∂
r

r
t

+ =Λ 0 (31)

where by definition (X is the matrix of the right eigenvectors) we have that:

[ ][ ]Λ = + −− −X M A G S X1 1

r X U= −1

Equation (31) is a system of decoupled ODE’s in time, and the problem thus reduces to the time
integration of a scalar equation for each degree of freedom of the problem:

∂
∂

λ
r

t
ri

i i+ = 0 (32)

Assuming constant λ i during a time step, the θ-implicit finite difference discretization of Eq. (32)
gives the numerical amplification factor:
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which compares to the exact amplification factor:

A eex ti= −λ ∆ (34).

The relative error (for a single step), defined as:
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can then be limited to a set maximum εmax by appropriate selection of the product of λ i ∆t,
solving the inequality:
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Equation (35) is non-linear, but it must be solved only once to determine the optimal value of the
product λ i ∆topt (i.e. the one giving at most an error εmax per time step). The time step to be taken

at a certain time t is then determined by corresponding value of λ i:
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t
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λ

(36).

Equation (36) is used after the end of a step to estimate the following time step to be taken. The
difficulty in the above procedure consists clearly in the evaluation of the decomposition of the
system in the form of Eq. (32). As we are only searching for an approximate error control
procedure, we assume here that the eigenvalues of equation i can be approximated at each time as

λ
∂
∂i

i

i

i

i
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t U

U

t
≈ − ≈ −

1 1 ∆
∆

(37)

where ui  represents the i-th variable in the system and U i is its discrete counterpart (note that the
approximation above is valid only for a diagonal system).

The accuracy criterion is equivalent to a limit on the maximum relative variation of the variable
ui  during one time step, and shows relation to the work reported in ref. [34]. A final important
remark is that, as we are not primarily interested in the pressure wave propagation for quench
simulations, we can restrict the accuracy control to the temperature evolutions. Therefore at each
time step the estimated eigenvalues for the helium, strand and conduit temperatures are evaluated
using Eq. (37). The time step width is adapted according to the result of the accuracy control. As
for the mesh adaption, the simple prediction of the new time step has been found to work
satisfactorily (no iteration is performed).

4. Verification of the Model

The model developed here is highly non-linear and its implementation rather complex. Therefore
it is not easy to verify its validity, both from the point of view of the physical assumptions made
and of the numerical implementation. Checks have been made against other existing computer
codes and available experimental results. Unfortunately, up to now, no experimental results are
available for the conductor geometry with central cooling hole to be used in ITER. For this
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reason all comparisons were restricted to single 1-D flows. Data are available on supercritical
helium cooling and quench propagation. Two comparisons have been selected and presented
here. The first regards data on thermal induced flow produced in the HELITEX test facility at
KfK [35], while the second is based on quench propagation in a small size CICC [36,37].

4.1 Comparion to the HELITEX data from Ref. [35]

The first test of the model presented here was performed on the rather old experimental data
produced and analysed by Benkowitsch and Krafft [35] on transient induced flow in supercritical
helium contained in a copper pipe. A 32 m long channel, with square cross section, was initially
filled with stagnant supercritical helium. The inlet valve was closed and the experiment began as
the stored energy of a capacitor bank was discharged in a resistive heater of 15 m length, located
at the inlet. Pressure was recorded at various locations along the length. The main data for the
geometry, friction factor and heating pulses are reported in Tab. 1. In the experiments, the input
energy was taken as a parameter.

The maximum pressure measured at the sensors and the corresponding value computed are
shown in Fig. 3. The calculations were performed using a fixed (i.e. not adaptive) 200 elements
mesh, and did not show mesh dependence below (100 elements) and above (400 elements) this
size. As shown in Fig. 3, the maximum pressure increase is reproduced accurately within 15 %
over the whole input energy range. The deviation of measurements and simulation results
increases at high input energies. In these conditions the temperature increase of the components
surrounding the test section (valves, insulation) contributes significantly to the energy balance
and thus decreases the maximum pressure as observed. Finally, a phase change was taking place
during the experiment at the test section outlet, especially at higher input energies. This was only
roughly taken into account using the gas density in the simulation as soon as the phase boundary
was reached. Still, the agreement of simulation and measurement is satisfactory.

4.2 Comparion to the quench propagation data from Ref. [36,37]

The experimental data measured by Ando et al. [36,37] on quench propagation and pressure
increase in a small size CICC were used as a second verification of the capabilities of the model.
A conductor with the data reported in Tab. 2 was wound for a length of 26 m and inserted in a 7
T background field. Starting from the operating conditions given in Tab. 2, a quench was initiated
at different operating currents between 1.5 kA and 2 kA by firing a 4 cm long heater with a very
fast pulse (0.1 ms nominal duration). The normal length evolution was monitored by means of
voltage taps placed along the conductor length. A pressure sensor measured the pressure
evolution in the centre of the normal zone.
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For the simulation it was assumed that the conductor length was symmetric (i.e. only 13 m were
analysed), with the open end at constant pressure, set at 1 MPa. An adaptive mesh with minimum
mesh size of 1 mm and a total number of element in the order of 500 was used. The time step was
adaptively chosen between 0.1 and 2.5 ms, but for most of the time the integrator operated at the
maximum time step. Note that this corresponds to a Courant number (based on the sound speed
modes) between 500 and 1000 (depending on the temperature). A similar model, but based on an
explicit time integrator [4], would therefore produce comparable results but with 1 to 2 orders of
magnitude penalty on the CPU time owing to the larger number of smaller time steps.

The friction factor was obtained correcting a smooth tube correlation by a factor 3 (see Tab. 2).
The quench was initiated in the simulation by a heat input over 4 cm in the centre of the
conductor length. The heating duration was 0.1 ms and the power was adjusted in order to just
initiate the quench. In the first calculations it was observed that the quench propagated faster than
measured, and that the propagation velocity had a strong dependence on the local value of the
heat transfer coefficient at the normal front, especially during the initial phase. In fact, in the
beginning of the quench, the helium has a low speed (below 1 m/s), and the propagation is due
both to the helium front motion and to the heat flux through the strands along the conductor. The
flow conditions for a normal zone with a length of some cm can be far from the range of validity
of the 1-D correlations. For this reason it was assumed here that the heat transfer coefficient
between strands and helium could be significantly higher than computed by the 1-D correlations,
and a lower inferior limit for h was set at 2500 W/m2K, in order to match the initial propagation
data (in the interval 0 to 1 s) for the 2 kA case.

The results of the simulations compared to the experimental measurements are reported in Figs. 4
through 6. Figure 4 shows the location of the normal front in 3 cases (2 kA, 1.8 kA and 1.5 kA).
Considering the uncertainties in the description of the experiment, the agreement between
measurement and simulation is excellent. In the 2 kA case the normal front accelerates after 2.2 s.
A similar acceleration is seen in the measurement only at a later time (around 2.5 s) and can be
attributed to a change in the propagation mode happening when the helium compression and
frictional heating at the front increases the helium temperature up to the current sharing level, a
phenomenon called often Thermal-Hydraulic Quench Back (THQB)[5]. This change in the
propagation is confirmed looking at the pressure traces (in Fig. 5) for the 2 kA case, where the
pressure in the centre peaks because an increasing amount of helium is engulfed in the normal
region. Note that the mismatch between the onset of THQB seen in the normal front location
curves is the cause for the mismatch in the location of the peaks in the pressure traces. The onset
of THQB was found to be critically dependent on the friction factor coefficient assumption (see
Tab. 2), where assuming e.g. a correction factor N=2 on the smooth tube correlation, no THQB
was computed. This could be an indication that the value of the friction factor used in the
simulation is slightly too high, a fact consistently confirmed by the presence of a THQB in the
late times of the simulation for 1.8 kA which is not observed experimentally.
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The computed pressure trace for the 2 kA case (in Fig. 5) appears initially too low compared to
the measurement (apart from the THQB peak). A possible explanation could be that the boundary
condition assumed for the calculation was of constant pressure at the exit, where in reality the
pressure relief lines on the sample could introduce additional pressure gradients adding to the
pressure value in the ambient where helium is discharged.

Finally, in Fig. 6 are shown the traces of the cable temperature in the centre of the sample. For
this quantity no direct measurement is available. However, the measurement of voltage along the
conductor adjacent to the heater can be used to deduce the copper resistivity and, from known
scaling laws, the copper temperature. The estimated temperature for a 1.7 kA run is reported at 6
s as the two crosses in Fig. 6 (two adjacent taps were used for this estimate, giving a 20 K
difference in the temperature computed). The values computed for 1.8 and 1.5 kA are correctly
above and below the estimated temperature and indicate that the prediction is indeed in the
correct range.

In summary it seems that although the ideal representation based on the model discussed here is
not fully satisfactory (e.g. the consideration on the boundary conditions, a slight variation of the
operating current not taken into account in the simulation, the neglect of additional heat
capacities external to the cable), this comparison shows that the inner consistency achieved by
the simulations is good. Also, it is important to recognize that the propagation of the quench
depends critically upon parameters that are not known with certainty (friction factor, heat transfer
coefficient), and therefore any predictive application of this model can only be performed in
conjunction with a parametric study on the influence of these critical parameters.

5. Conclusions

A model for the simulation of quench initiation and its evolution in the Cable-in-Conduit
Conductors being designed for ITER has been presented. The model includes a separate
treatment of the hydraulics in the cable bundle and in the central cooling channel and properly
describes the temperature differences within the components of the cable cross section. The
numerical implementation has been discussed, showing that a low order implicit finite elements
algorithm coupled with automatic time step and mesh size control gives satisfactory results in
terms of accuracy and computational speed.

The main feature of the numerical method is that it is able to obtain stable results at extremely
high Courant numbers (of the order and greater than 103) and therefore large time steps. This in
turn allows small element sizes without penalty on the number of time steps. The stability of the
algorithm in the solution of the fluid flow is mostly attributed to the direct use of pressure as
thermodynamic variable. To achieve this, the conservation equations have been written in a non-
standard, non-conservative form without introducing approximations to the gas behaviour. The
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capability of time stepping on a time scale larger than the characteristic time of sound wave
propagation gives, for typical simulations, a gain of 1 to 2 orders of magnitude CPU time
compared to existing explicit solvers (as, e.g., the one of Ref. [4]). This model however, in
contrast to the results of Ref. [7] where sound waves and temperature gradients in a cross section
are suppressed, retains generality and can be applied to conditions where these effects are
important simply by time stepping on the appropriate time scale.

The solver presented here is currently used for the design and analysis of the ITER conductors
[39]. Some examples of application have been reported to demonstrate the reliability of the code
produced. Experimental results could be reproduced with satisfactory accuracy, although more
work on the validation on the specific details of the treatment of the two flows is needed.

References

[1] R.J. Thome, Magnet Program Overview for the International Thermonuclear Test Reactor, IEEE Trans.
Mag., 30, 4, 1595-1601, 1994.

[2] L. Bottura, Stability, Protection and AC Loss of Cable-in-Conduit Conductors - A Designer's Approach,
Fus. Eng. Des., 20, 351-362, 1993.

[3] V. Arp, Computer Analysis of Qench Transients in Force-Flow Cooled Superconductors for Large MHD
Magnets, Proc. of Superconducting MHD Magnet Design Conf., MIT, Cambridge, 1978.

[4] L. Bottura, O.C. Zienkiewicz, Quench Analysis of Large Superconducting Magnets. Part I: Model
Description, Cryogenics, 32(7), 659-667, 1992.

[5] C. Luongo, R.J. Loyd, F.K. Chen, S.D. Peck, Thermal-hydraulic Simulation of Helium Expulsion from a
Cable-in-Conduit Conductor, IEEE Trans. Mag., 25, 2, 1589-1595, 1989.

[6] R.Wong, Program CICC Flow and Heat Transfer in Cable-in-Conduit Conductors, Proc. of 13th Symp. on
Fus. Eng., Knoxville, 1989.

[7] A. Shajii, J.P. Freidberg, Quench in Superconducting Magnets, Part I: Model and Numerical
Implementation, J. Appl. Phys., 76, 5, 3149-3158, 1994.

[8] L. Bottura, A. Shajii, On the Numerical Studies of Quench in Cable-in-Conduit Conductors, Presented at
1994 Appl. Superconductivity Conf., 16-22 October, 1994, Boston, Ma, USA.

[9] L. Bottura, Thermohydraulics of CICC's with central cooling hole, Presented at 1994 Appl.
Superconductivity Conf., 16-22 October, 1994, Boston, Ma, USA, to appear in: IEEE Trans. Appl. Sup.,
1995.

[10] M.N. Wilson, Superconducting Magnets, Clarendon Press, 1983.

[11] N. Mitchell, Conductor Design for the ITER Toroidal and Poloidal Magnet Systems, IEEE Trans. Mag., 30,
4, 1602-1607, 1994.

[12] H. Katheder, Optimum Thermohydraulic Operation Regime for Cable-in-Conduit Superconductors,
Cryogenics, 34, 595-598, 1994.



K t

[13] P.J. Giarratano, V.D. Arp, R.V. Smith, Forced Convection Heat Transfer to Supercritical Helium,
Cryogenics, 11, 385-393, 1971.

[14] W.B. Bloem, Transient Heat Transfer to a Forced Flow of Supercritical Helium at 4.2 K, Cryogenics, 26,
300-308, 1986.

[15] G. Krafft, Heat Transfer Below 10 K, in Cryogenic Engineering, B.A. Hands ed., 171-192, Academic Press,
1986.

[16] X. Cheng, W. Lehmann, Thermohydraulic Performances of the Cable-in-Conduit Conductor for the
Wendelstein 7-X Magnet System, KfK Report FZKA 5517, Karlsruhe, 1995.

[17] W.J. Usab, E.M. Murman, Embedded Mesh Solutions of the Euler Equations Using a Multiple-Grid
Method, Adv. Comp. Transonics, Pineridge Press, 447-472, 1985.

[18] C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 1, J.Wiley & Sons, 1988.

[19] R.P. Reed, A.F. Clark eds., Materials at Low Temperature, ASM, 1983.

[20] V.D. Arp, R.D. McCarty, Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to
2000 MPa, NIST Technical Note 1334, 1989.

[21] O.C. Zienkiewicz, The Finite Element Method, Vol. 2, 4th ed.,McGraw Hill, 1991.

[22] R. Loehner, Finite Element Methods for Hyperbolic Partial Differential Equations, PhD Thesis, Unversity
of Wales, Dept. of Civil Eng., 1984.

[23] J. Donea, A Taylor-Galerkin Method for Convective Transport Problems, Int. Jour. Num. Meth. Eng., 20,
101-119, 1984.

[24] O.C. Zienkiewicz, R. Loehner, K. Morgan, J. Peraire, High-Speed Compressible Flow and Other Advection-
Dominated Problems of Fluid Dynamics, Finite Element in Fluids, 6, 41-48, 1985.

[25] B.P. Leonard, A Survey of Finite Differences of Opinion on Numerical Muddling of the Incomprehensible
Defective Confusion Equation, Finite Elements for Convection Dominated Flows, T.R. Hughes ed., AMD
34, ASME, 1979.

[26] I. Christie, D.F. Griffits, A.R. Mitchell, O.C. Zienkiewicz, Finite Element Methods for Second Order
Differential Equations with Significant First Derivatives, Int. Jour. Num. Meth. Eng., 10, 1389-1396, 1976.

[27] J  Donea, Recent Advances in Computational Methods for Steady and Transient Transport Problems, Nucl.
Eng. Des., 80, 141-162, 1984.

[28] N. Brooks, T.R.J. Hughes, Streamline Upwind/Petrov-Galerkin Formulation for Convection Dominated
Flows with Particular Emphasis on the Incompressible Navier-Stokes Equation, Comp. Meth. Appl. Mech.
Eng., 32, 199-259, 1982.

[29] G.L. Guymon, V.H. Scott, L.R. Herrmann, A General Numerical Solution of the Two-Dimensional
Diffusion-Convection Equation, Water Resources Res., 6, 1611-1617, 1970.

[30] A.J. Chorin, Numerical Solution of the Navier-Stokes Equations, Math. Comp., 22, 745-762, 1969.

[31] J. Donea, S. Giuliani, H. Laval, L. Quartapelle, Finite Element Solution of the Unsteady Navier-Stokes
Equations by a Fractional Step Method, Comp. Meth. Appl. Mech. Eng.ng, 30, 53-73, 1982.



K N

[32] O.C. Zienkiewicz, J. Szmelter, J. Peraire, Compressible and Incompressible Flow; an Algorithm for All
Seasons, Comp. Meth. Appl. Mech. Eng.ng, 78, 105-121, 1990.

[33] J. Peraire, M. Vahdati, K. Morgan, O.C. Zienkiewicz, Adaptive Remeshing for Compressible Flow
Computations, J. Comp. Phys., 72, 449-466, 1987.

[34] D. Givali, I. Henigsberg, A Simple Time-Step Control Scheme, Comm. Num. Meth. Eng., 9, 873-881, 1993.

[35] J. Benkowitsch, G. Krafft, Numerical Analysis of Heat-Induced Transients in Force Flow Helium Cooling
Systems, Cryogenics, 20, 209-215, 1980.

[36] T. Ando, M. Nishi, T. Kato, J. Yoshida, N. Itoh, S. Shimamoto, Propagation Velocity of the Noermal Zone
in a Cable-in-Conduit Conductor, Adv. Cryo. Eng., 35, 701-708, 1990.

[37] T. Ando, et al., Experimental Investigation of Pressure Rise of Quenching Cable-in-Conduit
Superconductor, Proc. of 12th Int. Cryo. Eng.ng Conf., Southampton, 1988.

[38] R. Zanino, S. De Palo, L. Bottura, A Two-Fluid Code for the Thermohydraulic Transient Analysis of CICC
Superconducting Magnets with Application to ITER, paper presented to Workshop on Computation of
Thermohydraulic Transients in Superconductors, CHATS-95, Lausanne, Switzerland, 6-8 June, 1995, to
appear in: Jour. Fus. En., 1996.

[39] M. Shimada, N. Mitchell, Quench Simulation and Stability Estimation for the ITER Conductors, paper
presented to Workshop on Computation of Thermohydraulic Transients in Superconductors, CHATS-95,
Lausanne, Switzerland, 6-8 June, 1995, to appear in: Jour. Fus. En., 1996.



K u

Appendix A. Non-conservative form of the helium flow equations

The flow of helium in long conductors is described by the 1-D balances of mass, momentum and
energy for a compressible fluid with ignorable viscosity but significant friction at the wetted
perimeter. In computational fluid-dynamics it is customary to use the conservative form of the
flow equations, as only this form guarantees that the numerical fluxes respect the physical
conservation laws [18]. Here we prefer to use a non-conservative form of the equation to allow
direct coupling of the temperatures of the various components (the convective heat fluxes contain
the temperatures explicitly). This choice is also guided by the fact that all superconductors
examined will have constant flow cross section along the length, so that no shock should appear
in the solution. Temperature and pressure are taken as state variables. The first, temperature, is
chosen -as already said- for homogeneity with the state variable of the strand and conduit and
thus allow direct, implicit coupling of the energy balances. The second, pressure, is chosen
because it improves greatly the non-linear stability properties of the numerical integration of the
flow equations.

For a 1-D channel with cross section A, hydraulic diameter Dh, friction factor f and a linear heat
flux Q, the conservative form of the flow equations (for density ρ, mass flux ρv and total energy

density ρe) is:
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where the total specific energy e is the sum of specific internal energy i and specific kinetic
energy v2/2:

e i
v= +

2

2

and the friction force at the wetted surface F is defined as:

F f
vv

Dh

= 2
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The system (A1) is identical to the 1-D Euler equations [18] apart from the addition of the wall
friction (in the momentum balance) and of the heat influx (in the energy balance).

The above system can be written in terms of pressure p, velocity v and temperature T using the
following thermodynamic relations

d
c

dp
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dhρ
φ φρ
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+

−
1

2 2
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where the coefficients Cv and c are respectively the specific heat at constant volume and the
isentropic speed of sound in the helium, while φ is the Gruneisen parameter defined as:

φ
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where the derivative is taken at constant entropy S. The Gruneisen parameter φ is equal to γ-1 for

an ideal gas (γ is the ratio of specific heats). In Eq. (A2) the fluid specific enthalpy has been used,
defined as:

h i
p= +
ρ

Using the relations (A2-A3) and substituting into the conservative set (A1), we obtain the
following sysytem of non-conservative equations for p, v and :
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where the equation for pressure has taken the role of the mass continuity equation, while the
energy equation is substituted by an equation for temperature. In this form the wall friction
dissipation and the heat influx contribute to both mass and energy balances. In addition to the
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advantages quoted earlier, this form of the equations allows a direct specification of the boundary
conditions on pressure and temperature, two variables that are directly measured in experiments.

The ITER CICC's have the particularity of a central cooling hole that allows large massflows at
reduced pressure drop compared to CICC's without additional cooling hole. The flow in such a
geometry is more difficult to describe than in case of an homogeneous flow, as mass transfer
takes place between the different regions of the cable. We assume here that the two flows can be
treated as separate 1-D channels with additional terms describing the mass, momentum and
energy transfer betweent them. In principle, even under the 1-D simplifying assumptions, a
system of six equations (continuity, momentum and energy balances for each flow) coupled
through mass, momentum and energy exchange term should be solved for the helium flow. A
first tentative reduction of this system was performed in Ref. [9], along the lines reported in the
following.

The central cooling hole is separated from the bundle either by a perforated tube or a spiral which
sustains the cable bundle. As one of the objectives is to maintain the good hydraulic contact of
the two channels, the perforation is large compared to the helium cross section. This implies that
the pressure loss in transverse direction to the cable axis (i.e. from the bundle to the cooling hole)
is small, and therefore pressure equilibration is fast (the typical time scale is that of the sound
wave propagation transverse to the conductor, with characteristic length around 1 cm and time
constants in the range of tens of µs).

The mass exchange, and therefore density equilibration, between the two flows takes place with
characteristic times governed by the transverse flow velocity. Assuming that typical values of
transverse velocity are in the same order of magnitude of the longitudinal velocity, typically
between 0.1 and 1 m/s, the time scale over a characteristic length of 1 cm is of the order of 10 to
100 ms.

The quench phenomenon evolves on a time scale of the order of seconds, and therefore it can be
assumed that for quench propagation studies pressure and density in the two flow channels is the
same. This implies the the thermodynamic state is the same, and therefore all other
thermodynamic variables will be equal, and in particular temperature. Under this assumption it is
possible to add the continuity and energy balances for the two flows. Assuming in addition that
the momentum transfer among the two flows is small and that the contribution of the kinetic
energy to the energy balance is also small (this is always verified for helium in subsonic,
cryogenic conditions), we can reduce the original six equations to four balances: a global
continuity equation (obtained by adding the single continuity equations of the flows) a global
energy balance (obtained by adding the single energy balances) and the two independent
momentum balances:
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In the equations above it must be noted how the density and energy are convected at the effective
velocity of the homogenised flow, v, defined as in Eq. (5) in the main text. Now using the
thermodynamic relations Eqs. (A2) and (A3) we obtain the final set of non-conservative
equations for the helium in terms of helium temperature, pressure and flow velocities:
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The set above is the one used in the solution of the transient (note that in the text the total helium
cross section is indicated by AHe and the linear heat flux is QHe).
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 Appendix B. Symbols and Notation

The following symbols have been used in the text. Duplicate symbols have been reported for
each entry used. Superscripts and subscripts are not indicated when they have obvious meaning
in the text.

relative cross section of helium in the bundle and in the hole aB, aH
matrix of convection coefficients a
cross section A
amplification factor A
discretized matrix of convection coefficients A
helium isentropic speed of sound c
Courant number C
specific heat C
helium specific heat at constant pressure Cp
helium specific heat at constant volume Cv
mesh density d
hydraulic diameter Dh
helium total specific energy e
helium friction factor f
specific wall friction force F
matrix of diffusion coefficients g
matrix of upwind diffusion coefficients gu
discretized matrix of diffusion coefficients G
heat transfer coefficient h
helium specific enthalpy h
helium internal specific energy i
thermal conductivity K
matrix of mass (time derivative) coefficients m
discretized matrix of mass (time derivative) coefficients M
nodal shape function N
helium pressure p
wetted perimeter p
source vector q
linear heat flux Q
discretized source vector Q
characteristic variable r
matrix of characteristic variables r
source matrix s
discretized source matrix S
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time t
temperature T
unknown u
vector of unknowns u
nodal unknown U
vector of nodal unknowns U
velocity v
length x
matrix of right eigenvectors X
upwind parameter α
mesh refinement extension parameter β
mesh size (space step) ∆x

time step ∆t

vector of increments of the nodal unknowns ∆U
relative error ε
helium Gruneisen parameter φ
ratio of specific heats in the helium γ
eigenvalue λ
matrix of eigenvalues Λ
implicitness parameter for time integration θ
density ρ
gaussian width of mesh density distribution function σ
time constant τ
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Table 1. Data for the HELITEX experiment by Benkowitsch and Krafft[35].

                                                                                                                                                                        

Copper tube geometry:

Channel length (m) 32
Helium cross section (mm2) 4
hydraulic diameter (mm) 2
initial temperature (K) 4.14
initial pressure (bar) 1.013

                                                                                                                                                                                                            

Friction factor:

-) laminar regime:
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16
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-) turbulent regime:
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8
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0 25
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Heat flux into the helium:
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where the time constants are defined as follows:

τ1 (ms) 77
τ2 (ms) 286

and the energy input and associated linear heat flux are:
E (J) Qo (W/m)
25 4.816
50 9.632
75 14.464
100 19.260
150 28.892
200 38.520
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Table 2. Data for the quench propagation experiment by Ando et al [36,37].

                                                                                                                                                                                                            

Conductor geometry:

Strand diameter (mm) 0.98
Number of strands 18
NbTi cross section (mm2) 3.4
Copper cross section (mm2) 10.2
Conduit (SS) cross section (mm2) 25.1
Helium cross section (mm2) 13.3
Wetted perimeter strands (mm) 55
Wetted perimeter conduit (mm) 19
Hydraulic diameter (mm) 0.69
Copper RRR (-) 60

Operating and critical conditions:

Magnetic field (T) 7
Temperature (K) 4.2
Pressure (MPa) 1.0
Massflow (g/s) 0.0
Critical temperature (K) 6.24
Critical current (kA) 3.0
Operating currents (kA) 1.5-2.0

                                                                                                                                                                                                            

Friction factor:

-) laminar regime:

f =
16

Re
-) turbulent regime:

f N

N
T = ⋅

=

−0 046

3

0 25. Re .
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Figure 1. Prototype of a 40 kA CICC developed for fusion application in the Central Solenoid coil of the ITER
experiment.

Figure 2. Schematic representation of the components and their mutual thermal coupling (the links connecting
them) in the model developed. The schematic picture shows the degrees of freedom identified and the
discretization adopted within the cable cross section.
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Figure 3. Maximum pressure at the sensors P1 and P3 (at inlet and in the middle of the pipe) in the experiment of
Ref. [35] as a function of the input energy as measured and computed.

Figure 4. Normal front location in the experiment of Ando et al. [36,37], as measured (symbols) and computed
(lines)
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Figure 5. Pressure in the centre of the normal zone in the experiment of Ando et al. [36,37], as measured (symbols)
and computed (lines)

Figure 6. Temperature of the cable in the centre of the normal zone in the experiment of Ando et al. [36,37], as
computed (lines) as a function of the operating current. The crosses are estimated values obtained from
voltage reading for an operating current of 1.7 kA. A ±10 K scattering is due to the uncertainty in the
reading.


