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Summary

This paper gives a brief description of the model commonly used to simulate thermo-hydraulic
transients in Cable-in-Conduit Conductors (CICC’s), in particular quench initiation and evolution. A
discussion on the mathematical and physical characteristics of the system of equations is the starting
point to assess the difficulties and advantages of methods used for the numerical solution of this class of
problems. The crucial points in the simulation of quench are highlighted, they are associated with the
fluid flow and the presence of moving boundaries. The implications for a selection of an optimally
suited solution method are discussed.

1. Introduction

What are thermo-hydraulic transients in Cable-in-Condut Condictors (CICC's) ?
Referring to the typicd operation d CICC's in a large fusion magret™, we can
clasgfy them schematicdly in:

¢ dow transients to steady state in namal operation, ceveloping ower atime scde of
1 sto steady state, where the main attention is devoted to the operating margin and
the ayogenic loads;

¢ quench evolution, involving magnet protedion and safety aspeds, developing ona
typicd time scdein therange of 1 ms (initiation) to 100s (magnet dump);

o stahility, focussng on \ery short time scdes, below 100 ms, where main attention
is paid to the instantaneous resporse of the supercondictor to perturbations.

Because of the internal structure of a CICC? (a seded cable with intersticial
compressble helium flow), and its inherent properties (metastable behaviour due to a
limited available helium amournt as hea sink for stabilization) thermo-hydraulic
transients can involve condwction in the cdle, compressble heding induced flow and



moving fronts where the transition to the normal state takes place The typicd time
scaes for hea exchange, hea diffusion and hea convedion, and their couging with
compresshility modes in the helium (see later for a discusson onthese values) are
such that the most interesting range of time scdes is that spanned by the stability and
guench phenomena. Therefore here the dtention is devoted in particular to the quench
initi ation and evolution.

For these two classes of problems, the description d the thermohydraulicsis generally
dore using the following 1-D model®?, taking into acourt:

¢ helium flow alongthe cale length:
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e heda diffusionin the (solid) cable cmporent i:

where the symbadls are defined in App. A, and the subscripts i,j refer to an arbitrary
number of cable mmponrents exchanging hea with the helium and among themselves.
In the next sedion we discuss the mathematica and physicd charaderistics of the
abowve system of equations. Sedion 3 ads with the consequences for the numericd
solution and gudelines for the seledion d a numericd method. Sedion 4is dedicated
to adaptivity as a genera methoddogy for acarate and efficient simulation d
transients.

2. Physical and Mathematical Character of the System

2.1  Orders of Magnitude

The system of Egs. (1)-(4) contains svera intrinsic modes. Starting from the fastest
time scade, we find the pressure wave propagation at the isentropic speed of soundc®.
The helium induced flow can be established oy on a time scde t_ longer than the
time neaded for these waves to travel in the cdle. For a charaderistic length L this
timeis



Taking for L atypicd normal zone length of 10 m and c~250 m/s we obtain a time
scde t_ of the order of 40 ms. Heding induced flow canna be established in atime
shorter than t.

In CICC sthefriction between the helium and the wetted surfaceof the caleis large
compared to inertial effeds™”, meaning that the term onthe r.h.s of Eq. (2) is usually
resporsible for the largest part of the presaure gradient on the I.h.s. The @mnsequence
isthat we can smplify Eq. (2) asfoll ows:
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We can nowv combine Egs. (5) and (1) assuming small pressure and density changes,
i.e. such that

to oltain aparabadlic equation for the presaure:
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where the second ader derivative of presaure is asociated with an equivalent presaure
diffusivity coefficient:
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In the limit implied by Egs. (5) and (6), the daraderistic time 1, for the establi shment
of the presaure profile over a charaderistic lengt L isthus given by:

Taking again L=10 m, and typicd values for f~0.02, D,~1 mm, c=250 m/s and v=5
m/s, we obtain 1, of the order of 600ms and we note that for atypicd CICCt <<t

Temperature exchange between cable componrents and helium is another fast mode in
the system (1)-(4). The typicd time cnstant t, for the hea exchange between two
comporentsi andj can be mmputed as.
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For any coupe i,j the value of 1, is governed by the comporent with smallest hea
cgoadty. Typicd valuesin a CICC are in the range of 1 ms, determined by the hea
cgpadty of the strands (mostly copper). Becaiuse this value is snaller than the typicd
time scde on which the quench develops, several authors prefer to assume that the
cable aoss ®dionisthermalized during the evolution, i.e. the temperature is uniform
inthe aoss &dion®”.

The @nsequence of the fast thermal equilibrium is that although in principle
temperature waves could move independently in the helium and in the condctor, in
pradicd cases darp fronts are moving at the helium speed. The width of these fronts
can be estimated”® to be of the order of
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where the oonductivity k, the density p and the hea cgpadty C are properly weighted
over the aoss ®dion and temperature and v, is the quench front velocity. The width
A, is typicdly of the order of some an. The ratio between the amourt of hea

transported in the boundry layer by convedion and dffusion is indicaed by the
Pedet number:
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where a is the diffusivity and L indicaes again a typicd length, in ou case of the
order of A . In atypical quench propagation (charaderized by the value given above
for &) the Pedet number Pe computed at the front is of the order of some units,
indicaing that the cntribution d the hed diffusion to the total hea flux aadossthe
front isnot negligible.

These temperature fronts move with the normal zone, and the typicd time depends
therefore on the propagation elocity v,

The a¢ua value of v, depends in turn mostly on the Joule heding strength and in
some smaler term on the cdle daraderistics. Several expressons have been
proposed in literaturé*®, and in fad one of the main oljedives of the anaysis of
quench is its acaurate determination. Typicd values of v, in the order of 1 to 5m/s
and atypicd coil length of the order of 500 m of condtctor give a haraderistic time
7, Of the order of 100s.



The propagation speed can increase drasticdly if helium compresson causes heaing
over the arrent sharing, a phenomenon caled thermo hydaulic quenchbad®**.
Velocities of upto soundspeed ¢ can be obtained in this case, i.e. in the order of some
100m/s.

In summary, we can seethat there is avery large scdtering in the dharaderistic times
implied by the system of Egs. (1)-(4), ranging from the very fast soundwave and hea
transfer modes (some ms) to the very long quench propagation times (some hundeds
of s). In correspondence alarge disparity is generated in the dharaderistic lengths,
ranging from the short boundxry layer at the quench front (some tens of mm) upto the
typicd coil length (some hundeds of m).

2.2 Convection-Diffusion

After some transformationt®*?, which invalve the lossof the wnservation form for the
helium flow equations, it is posgble to write the system of equations (1)-(4) in the
following more alvantageous gymbalic form:
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where u is the aray of unknawns, q is the aray of source terms (possbly nortlinea
and implicitly dependent on the unknown), the matrices C, A, G and S colled
respedively the hea cgpadty and mass terms, the onwvedive terms, the diffusive
terms and the source terms explicitly dependent on the unknaovn. The alvantage of
the compad form of Eqg. (7) is that we can study some of its basic properties based on
simpler model problems.

We obtain a first model substituting the vedors and matrices with scdar, constant
guantities. In addition, we asume that the sourceterms are ze&o (homogeneous form):
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this is the well-known troude maker convedion-diffusion equation which has kept
numericists adive for several yeas®*'¥. In ou case, it represents well the
propagation d the temperature waves when the source term (Joule heding) is taken
zeo. The structure is that of a parabadlic partial differential equation (PDE), reducing
to first order pure mnvedion when a=0. We cadl this the first order hyperbadlic limit
of the equation (in analogy with the wave propagation prenomena in hyperbalic
sewnd ader equations). Depending onthe values of v and o the wave propagation
will be of diffusivetype or convedivetype. In correspondence, the value of the Pedet
number Pe ranges from O (for pure diffusion) to « (for pure mnvedion). An example
of asolution d a omnwvedive diffusive problem is given in Fig. 1for various values of
Pe. From the mathematicd point of view, ared change in the charader of the solution
to the equation (6) is ®en orly at the limiting case of Pe=x, where the order of the
PDE deaeases and the solution changes functiona class



The solution d a system of the type of Eq. (7) in the general case of finite diffusivity
belongs to the Hil bert space H', meaning that it is continuouws and that its derivative
belongs to L,*". In fad, in most of the caes, the solution kelongs to H’, this fad
expressng the fundamental regularity of the diffusion process In the hyperbdlic limit,
however, the solution lies in the Hilbert spaceH” meaning that it belongs to L, but
that its derivative in general does nat. The physicd phenomenon indicaing this loss
of regularity is the gpeaance of shocks (discontinuities) in the solution, as often
encourtered in inviscid and viscous fluid flow simulations™®. We will return later on
thisissue when dscussng the numerics.

For the moment we just observe that for some of the equations of the system (1)-(4)
the ontribution d diffusivity is indeed zero. In particular for the helium balances of
mass momentum and energy the entries in the diffusion matrix G in Eq. (7) are nil,
and for these eguations we muld therefore exped a first-order hyperbdic charader’,
with the gpeaance of associated dscontinuities. In redity nonlinea source and
couding terms have astrong influence on the solution. Firstly, presaure waves are
strondy damped by wall friction (which lumps viscosity effeds into a nonlinea
source). As already mentioned, friction is the dominating force balancing the presaure
gradient for most condtions examined here. The nsequence is that in namal
condtions no pesauure and welocity shocks can be generated, and the pressure and
velocity profiles are usually broad and regular.

Temperature waves in the helium are we&kly damped by thermal couging to the cdle
and the a@nduwtion through the solid, as demonstrated by the small size of the
boundxry layer 1. The dfed is that sharp, bu continuows temperature fronts can
travel alongthe cdle. These fronts are those that require most careful treament, as

' As dore onventionally, we define L,[ab] as the Banach space (complete and normed) of those

functions f(x) which are square-integrable over the interval [a,b] with the norm defined by
1
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With H"(Q) we indicate the Sobdev spacedefined as the set of those functions f(x) belongngto L,(Q)
together with all their derivatives up to the m-th order, i.e.
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Both H™(Q) and L (2) are Hilbert spaces, they posses an inner product rule and abasis.

? More rredly, the system of Eqgs. (7) shoud be decomposed using charaderistic analysis in a set of
demuped PDE's for the charaderistic variables, conveded and dffused alongthe charaderistics of
the hyperbadlic problem. Thisis possble for alinea problem of fluid flow, but becomes a difficult task
for the nonlinea system of Egs. (7). However, the qudlitative anclusions given here ae not affeded
by the results of a more rigorous treament.



the problem is grongy nortlinea with resped to temperature due to the Joule heaing
term, as discussed next.

2.3  Moving Boundary

The non-homogeneous form of the system of Egs. (7) has an additional interesting
feaure that has a strong influence on the numericd simulations. It is a moving
boundry problem, where the boundxry is represented by the locaion where the
transition to the normal condicting state takes place Usualy the implicit free
boundiry equation:

T=T,

is not written explicitly in the solution algorithms, buh rather implied by the hea
source caculation (Joule heding in the stabili zer).

This grong source can be regarded at al effeds as the motor of the heaing induced
flow which drives the front. Recdling nowv that the system is in a metastable
equili brium, i.e. whenever a large enough prturbation takes placeit tends towards a
therma runaway, we can exped that an error in the determination d the moving
boundry locaion can indeed have cdastrophic dfeds on the acoracgy of the
solution.

We can demonstrate eaily that in the cae that the helium convedion is the
dominating medianism driving the quench the propagation speed depends on the
length and the strength of the heaing source We take the model problem Eq. (8) in
the pure hyperbdic limit (a=0) and add a temperature dependent source term to
simulate the presence of the Joule heding. For clarity we rewrite this equation as
follows (the variable T stands for the temperature of the fluid):

TvE H(T-T,) ©)

where the heavyside function H(T- T_) indicates the step in hea generation y as the
temperature increases above athreshold T_. Now however, in contrast with the model
problem of Eq. (8), we no longer assume that the velocity v is a onstant. In order to
induce amoving front, we take v as given by mass conservation within the quenched
region. If X (t) isthe locaion d the quench front at time t, and assuming symmetry at
x=0, massconservation in the quenched length can be written as foll ows:
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resultingin an explicit relationfor the evolution X (t). A temperature increese in the
initially quenched length X, induces expulsion d the heaed helium (because of the
deaease of the helium density) and thus the propagation d this model quench. To
simplify matters, the helium can be aswumed to behave & a perfed gas, and the



presaure is taken as a onstant. It can be shown that the propagation velocity is then
given by

= 10

and is a @nstant. The solution d this problem is $own in Fig. 2 for an initia
qguenched length of 1 m starting at x=0 and the dhoice of parameters indicaed in the
inset. The interesting pant is that Eq. (10) shows, in this model case, the dependence
of the quench propagation welocity on the product of length of the normal zone and
strength of the heaing source Therefore any error in the determination d the
guenched length at a cetain time will result in a (numericdly) wrong popagation
velocity and will necessarily cause larger errors as time proceals.

Note finally in Fig. 2 that because of the assumptions made in the model (no
condwction) the quench front is a sharp transition from the temperature in the heaed
helium bubde (adso incressing a a nstant rate y) to the unperturbed fluid
temperature a&head of the moving boundry. This stuation is fairly close to redity
(recdl the discusson onthe boundry layer thicknessat the front A ) and we exped
that also in redity the temperature a the front has a sharp drop similar to a shock.

A last remark must be made on the influence of hea condwtion onthe moving
boundry. This case is obtained from the model problem Eqg. (9) adding the diffusion
term. A closed solution for this case is  far not available’, but numericd simulation
and analyticd approximations $how that in this case massconservation is not satisfied
in the quenched region, i.e. new helium is engufed as the quench front propagates
slightly faster than the helium. The aldtional speed o the front is in fad a
reminiscence of the propagation speed for adiabatic magnets®, where the hea
cgpadty and condctivity are again properly weighted over the CICC comporents.

3. Numerical Methods

Amongthe fads discussed abowve, those that bea strong consequences for a numericd
solution are three

e the hyperbdic charader of some of the euations, and in particular for the
temperature propagation

¢ the strong nonlineaity invalved in the moving boundary

¢ thelarge disparity of time scaes

® Work in this field, and in the field of convergence of a numericd approximation, is being presently
performed in collaboration with A. Shajii, MIT



We try here to gve an impresson d the type of difficulties that can be generated by
these dharaderistics, concentrating ontwo widely used classes of numericd methods,
Finite Diff erences (FD) and Finite Elements (FE).

3.1  Hyperbolicity

The solution d hyperbdlic systems of equations was attadked very ealy inthe field of
numerics, with the dtempt to solve the system of Navier-Stokes equations.
Difficulties arised aso very ealy, as 0n as the simplest first-order hyperbadlic
equation was discretized, ramely Eq. (8) where we take a=0"".

Let us take this equation and, following namal pradice in the frame of FD"?
substitute asecond ader approximation in space ad time of the derivatives'. We can
then solve numericdly for the same cndtions presented in Fig. 1 (in the cae of
Pe=0). The results are shown in Fig 3. Evidently, the exad solution is grongy
deformed, oscill ations appea at the front and the sharp front itself is gneaed.

With the intention o curing some of these problems, the ncept of upwind
diff erencing was introduced™”. Upwinding consists in taking ore-sided dfferences for
the first-order space derivative, biased along the velocity diredion, justifying this
approximation with the fad that a moving fluid can only be dfeded by what is
coming aong the dharaderistic lines (i.e. what is upstream). The use of one-sided
differences results in a strong damping d the oscill ations, bu aso in a further
deformation d the shape of the front, a smeaing in the spaceprofile, as shownin Fig.
4. This is caused by the fad that this upwind method can orly be acarrate to first
order in space Physicdly, this corresponds to adding a spurious semnd ader space
derivative term to the equation, i.e. a diffusion. We saw in Fig. 1that the dfed of a
diffusion in Eq. (8) is the front smeaing, exadly as observed in the numericd
simulation d Fig. 4.

With similar reasoning, we exped a seand ader numericd scheme to be freefrom
spurious diffusion into the solution. However in this case the aror appeas as a third
order spacederivative, which is equivalent to a dispersion, a scatering in the modes
into which the solution can be decomposed®. For the initial condtion o a step
function the mode demmposition hes a very high frequency content, so that a
dispersion generates sgnificant wiggles aroundthe front.

Althoughthe model problem Eqg. (8) is very simple, it generates the full spedrum of
problems associated with hyperbadlicity. A general conclusion that can be drawn from
the éowve observations is that while seaond ader methods provide abetter definition
of the front sharpness compared to the first order upwind methods, they will result
inevitably in wiggles in the solution. So far, however, a pure phenomendogicd
explanationis given. The degper questionis why first order hyperbadlic equations pose

“ The order of amethodis the lowest exporent n of the spaceor time step A appeaingin an expresson
of the aror ¢ of the numericd discretization o the type (c is a mnstant):

e=cA



such dfficulties, in contrast e.g. to secnd ader, parabalic problems where standard
second-order differencing resultsin full y satisfadory algorithms.

Such a question can be explained elegantly in the context of FE. The Gaerkin
weighted approach generates a nodal equation which is identicd to that obtained by
FD central differencing. It follows that the properties of a FE approximation can be
diredly extended to the correspondng FD approximation. Generally the FE solution
of a differential equation consists of functions belongng to H', e.g. decevise
continuows padinomias, with dscontinuows but integrable derivatives over the
discretised damain. But as we nated in Sed. 2 the genera solution to a first order
hyperbolic problem is in a wider classof function, remely H°. This means that both
centered FD and Galerkin FE look for a solution in a dassof functions that does not
necessarily contain the exad solutionto the problem. In ather words, bah methods try
to approximate the problem as best as they can do, b using functions that are not
discontinuows enoughto represent the red solution. As it is the cae for an urstable
interpolation d a set of paints, the interpaating function fail s, wiggles are generated
(traili ng/leading waves) and the solution can indeed become unstable.

On the other hand, it can be proven that the use of the FD upwinding in the context of
a more genera classof FE approximations (Petrov-Galerkin weighting) corresponds
to a transformation o the eguation to be solved into a better behaved system’, which,
in particular steady state caes, can be solved exadly by FE (and poper FD
upwinding). Again, in ather words, the functional classto which the solution belongs
is lowered so that a well-behaved approximation can be found. This procedure,
however, is applicable only to the steady state limit, and so far no general optimal
procedure muld be foundfor the transient case.

For the moment we anclude that a standard solution d a first-order hyperbadlic
problem implies fundamental difficulties in the definition d moving fronts, where
these ae ather affteded by spurious diffusion (which makes the solution
monaonots) or by oscill ations.

3.2  Non-Linearity and Moving Boundary

As it was down in the discusson d the system charader of Sed. 2, a wrong
determination d the position d the moving boundry results in an error on the
instantaneous length of the quenched region and thus on the intensity of the heaing.
In turn thiswill speed-up propagation and, ower alongenoughtime, asignificant error
will buld up. Because the problem is in metastable equili brium, the exad solution
will never be recovered, i.e. the wrong solution will tend to dverge inevitably from
the exad one astime procedls.

Now we saw from both model problems Egs. (8) and (9) that the quench propagation
is also associated with sharp temperature fronts. But the definition d sharp fronts can
be adifficulty using standard numericd methods. If spurious diffusivity is added to

° The problem is transformed to make it self-adjoint, i.e. symmetric with resped to weight and shape
functions. It can be proven that in this case the solution is a minimal of a functiona and ogimal
convergence properties can be establi shed.
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the solution (to suppress oscill ations as in a first order upwind agorithm) the front
moves necessrily at a higher numerical velocity (due to the alditional hea flux
asciated with the numericd diffusivity). In the case that oscill ations are present in
the solutions (as for a seaond ader agorithm) the propagation can be faster or slower
depending onthe numerica temperature gradient.

The nonlineaity of the moving bound@ry in a physicdly unstable situation results in
a remarkably low rate of convergence'® towards the exad solution. In fad, it can be
proven that in the purely hyperbalic limit of the model problem of Eq. (9) the small est
amourt of numericd diffusion hes always a cdastrophic dfed (provided that along
enoughtime dapses). Pradicdly typicd nodes gadng in the order of 10 mm and
below, and typicd time steps in the order of 1 ms may be necessary to adieve
accetable results.

3.3 Stiffness

The presence of severa modes with a large disparity in time constant can result in a
stiffness of the system of equations to be solved. Thisis the cae for the time scde of
the soundwaves and that of the hea exchange between cable comporents (see &so
Ref. [7] for a discusson ontime scdes). If insufficient damping is present in the
numerica approximation (e.g. a purely explicit treagment of the stiff terms), then
unstable solutions could be generated when the time step exceals the shortest time
constant of the system. Althoughcare must be taken in the proper treagment of these
terms, stiff nes can be vigorously cured by an implicit treament of the stiff modes. The
priceto be paid isthe inversion d amatrix containing the terms treaed implicitly. For
the cae of the CICC this implies that the temperature of helium and cable
comporents must be solved simultaneously. Note that this means that the helium
temperature must appea explicitely as a variable in the equation systems, ruling ou
the mnservative form of the flow equations as srown in Egs. (1)-(4). Finally, implicit
treament does not necessarily imply iterations. As an example, a lineaizaion
procedure for the system of Egs. (1)-(4) that produces dable resporses withou
iterations is given in Ref. [13]. There the choice of variables (presaure, velocity and
temperature) for the helium flow is such that all fast modes can be treaed implicitly
and the stability domain for the time step is grealy enhanced.

3.4  Some Guidelines for the Selection of a Numerical Algorithm

Some spedfic problems in the quench simulation are @mmon to those of
computational fluid dyramics (e.g. for the cae of shock resolution). Here, however,
the general methoddogies adopted for computational fluid dyramics canna be
diredly extended. The reasonisthat the equations to be couped are different in nature
(only some of them show strong hygerbalic behaviour), and in fad some of them can
change nature from hyperbdic (convedion daminated) to parabdic (diffusion
dominated) as time dapses (e.g. for presauure when friction forces dominate). The
consequence is that no optimal treament is possble (or results in very involved
procedures). On the other hand bdh FD and FE are general methoddogies with the
advantage of flexibility and well known properties. The question is whether a suitable
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and satisfadory solution can be found to adapt these methods to the difficulties
inherent to the simulation d quenches.

On the basis of the results of the previous discusson, we can try to set some general
guidelines for the seledion d awell-suited solution algorithm.

e High ader of acaracy (2nd) is preferrable to resolve acarately the front.
Alternatively a low (1st) order method could be used, with the alvantage of
producing monaonows and wvery stable results and to automaticdly suppress the
higher modes from the solution. The drawbad is the necessty to handle alarge
number of small elements;

e implicit treament for modes that are nat interesting a too fast (presaure waves,
thermal cougding) must be dhasen. The implicit treament of the presaure waves is
necessry to overcome the Courant stability condtion for small mesh spadng, a
must due to the necessty of using small elements for acarracy at the front;

e methods that solve the evolution in a moving frame have no clea advantage
compared to standard Eulerian (fixed reference frame) formulations. The parabolic
charader of the system is nat negligible, and therefore amoving reference frame
(Lagrangian) always results in convedion contributions to the equations, so that
the main attradive of a Lagrangian formulationis lost. On the other hand, coding a
Lagrangian solver can be a complex matter. Therefore in general the Eulerian
formulationis preferrable;

A last word must be spent on standard numericd padkages. The choiceis difficult and
restricted. Because of their generality in the treament they tend to be less efficient
than a dedicaed agorithm, and no @dkage caable of deding with the PDE feaures
discus=d here is presently known to the author. On the other hand, ODE solvers have
the alvantage of tested properties and controlled convergence through the several
error control feaures (usualy) included.

The seledion d the ODE solver depends on whether the problem is previously
discretised in time or space (by any aher method). Variable order collocaion
padkages”, with moving collocation pants”, for the solution d a boundry value
problem in space have proven in the past yeas as the preferred choice for their
efficiency in the solution d the time-discretised problem. They are preferred to ODE
solvers for an initial value problem (for the spacediscretised problem) as the space
adaptivity can be aldresed by the former in a much more consistent manner. Note
finaly that the same isaues raised above on FD and FE methods (order of acaracgy,
numericd diffusion, stiffnesg apply to the time or spacediscretizaion leading to the
ODE system solved by the package.

4. Adaptivity

The main oucome of the discusson d the previos dion is that, if FD or FE
methods must be retained for quench simulation, extremely low rate of convergence
must be expeded, and thus snall nodes adng and time step are mandatory to
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produce useful, converged results. To gve an impresson, atypicd CICC length in a
coil is of the order of 1000 m, and the necessary mesh size for an acarate quench
smulation is below 1 cm. A uniform mesh ower this length would require 10° nodes,
and a total of (at least) 4x10° degrees of freedom, a problem of remarkable size
Fortunately, in recent yeas adaptivity has undergone asubstantial development™ as
an efficient and acarate method to follow sharp fronts in wave propagéation
phenomena and to identify a moving boundry. Both these requirements must be
satisfied by a quench smulation code.

Most of the latest development in adaptive meshing hes been devoted to mesh design
for steady state problems®®. Once an error estimator is defined, the mesh is adapted
based on the eror distribution oliained at the eguilibrium readed. For transient
situations, however, the situation can beaome more invalved. In principle eab time
step represents an equili brium state to be adieved within a cetain error in the space
discretization. Transient mesh refinement needs a repetition d the step, and, in
principle, iterations.

In the cae of quench simulation the definition d the eror is not straightforward. As
the problem is not self-adjoint the energy nam does not give ay bound”. In
addition, experience shows that most of the eror is caused by the wrong
determination d the locaion d the free boundry, and consequently of the quench
propagation speed™.

An efficient procedure for the mesh adaption which does not require repetition d the
time step, na a cdculation d the aror estimate, can be based dredly onthe tradking

of the normal fronts. A spedfied and small mesh sizeis used at the front, while far

away from the front the mesh is adapted to a larger size Such a procedure has been

coded into a FE program™ and atypicd result of aquench simulationis siownin Fig.

5. The front initiated in the cantre of a100m long CICC propagates (asymmetricdly)

in the two dredions up and dovnstream. In corresponcence to the fronts, marked by
the sharp temperature increase from the stealy state value, the mesh density (defined

as the inverse of the dement size) is maintained around a pre-set value of 200
elements/m (i.e. 5 mm element size). As on as the front has passed a location, the
mesh density deaeases towards the minimum alowed, in this case of abou 3

elements/m (i.e. approx. 30cm element size). The step in the mesh density around 50
m is the initially refined length used as a sead to guaranteethat in the first steps an

acarate solutionis obtained. More detail s on the procedure ae given in Ref. [13].

5. Conclusions

We have discussed here the dass of problems posed by the simulation o
thermohydaulic transients in CICC, and in perticular the simulation o quench.
Mainly they are mnneded with the hyperbadlic nature of some of the equations, and
the presence of the moving sharp transition front. Although no best suited to ded
with these problem, standard, eulerian FE and FD methods can still be an efficient
mean of simulation provided that they are coded:
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o tredingimplicitly pressure waves (modes on the time scde of the soundspeed) and
thermal couding amongthe cdle comporents,

e using adaptivity to concentrate the dfort onthe definition d the quench front.

Standard upwinding (and al first order methods) has the advantage of providing
monaonows Dlutions (avoiding nonlinea instabilities triggered by ascill ation
asociated with higher order methods) but must be @ded extremely efficiently to
achieve mnvergence with areasonable dfort. Higher order of acairacy can be in this
resped preferrable, bu may imply complex coding. An ogimum can be readed
switching the order of acaracy during the evolution, thus extending the mncept of
mesh adaptivity to a more general context of global algorithm adaption.

Numericd quench simulation dates back more than 20 yeas, bu it still provides a
very useful test bench for sophisticated numnericd methods.
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Appendix A. Symbols and Notation
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convedion matrix

cross dion d solid material i

helium cross ®dion

isentropic speed of soundin the helium

hea capadty

cgpadty matrix

hea capadty of solid material i

hydrauli c diameter for helium flow

total speafic helium energy

friction facor for helium flow

diffusion matrix

hea transfer coefficient between helium and solid material i
therma condwctance (hea transfer coefficient) between solid materias |
andi

helium internal spedfic energy

thermal conductivity

thermal condctivity of solid material i

length, charaderistic length

helium presaure

helium-wetted perimeter of solid material i
contad perimeter between solid materialsj andi
Pedet number

source vedor

linea hea sourceon material i

source matrix

time

temperature

current sharing temperature

helium temperature

temperature of solid material i

vedor of unknown

helium velocity, velocity

guench front propagation velocity

space oordinate dongthe cdle diredion

locaion d the quench front in x

thermal diffusivity

presaure diffusivity

width o the temperature boundxry layer at the quench front
helium density, density

density of solid materia i

charaderistic time for the thermal couding d cable comporents
charaderistic time for the establi shment of the presaure profile
charaderistic time for the propagation d quench
charaderistic time for the propagation d soundwaves



Figurel. Solutionto the mnvedion-diffusion model problem Eqg. (8) in the domain x=[-...:0] for a
step in the unknowvn at x=0 and dfferent values of the Pe number. Pe=0 corresponds to
pure diffusion, Pe=wo to pue cnvedion. Constant properties are aumed in the solution.
The arow marks theincreasing time diredion.
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Figure 2. Solution to the moving boundry convedive-diffusive model problem Eg. (9) in the domain
x=[0...10Q for an initial quenched length of 1 m left-justified at x=0 and a unit hea source
y. Constant properties are assumed in the solution. The arow marks the increasing time
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Figure 3. Numericd solution of the convedion-diffusion model problem Eqg. (8) obtained with a FD
scheme of second ader acarracy in space ad time (central differences). The arow marks
the increasing time diredion.
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Figure4. Numericd solution d the convedion-diffusion model problem Eqg. (8) obtained with a FD
scheme of first order acaracy in space (upwind dfferences) and time (badkward
differences). The arow marks the increasing time diredion.
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Figure5. Propagation d a quench oltained with adaptive scheme. The evolution d the temperature
profile shows the propagation d the normal fronts. In parallel, the mesh density increasesin
the dose vicinity of the front to resolve the strong gadient. Note the asymmetry due to an
initial, nonzero flow.
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