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Summary

We describe in this note the heat transfer correlations implemented in the heattransfer
library. The correlation are mainly focussed at describing heat transfer in helium.

1. Introduction

A key to the proper simulation of thermohydraulic transients in cables is the
knowledge of the heat transfer between cable and helium. In turn it is
customary to describe heat transfer by means of correlations. The correlations
take very different form and nature depending on the helium conditions, the
flow regime and the heat exchange geometry. We have created a series of
dedicated functions that implement well-known correlations for heat transfer
in the boundary layer of smooth tubes, as well as dedicated correlations for
Cable-in-Conduit Conductors (CICC’s) and for heat transfer among parallel
channels. These correlations can be used as a library and called from user’s
programs, or user’s routines in programs. Here we describe in details the
correlations and the functions implemented in the heat t r ansf er library.

2. Correlations

The definition of the heat transfer coefficient that we use is such that the heat
flux per unit length along the flow direction x can be written as:

q' = ph(T, -T) (1)

where @' is the linear flux density, p is the wetted perimeter, 1 is the heat
transfer coefficient, T, is the wall temperature and T is the helium
temperature. Depending on the particular geometry or condition, other



variables and parameters will be defined as needed in the following sections.
The following definitions of non-dimensional numbers are useful:

Reynolds number Re = Dy (2)
U

where p is the helium density, v is the flow velocity, D, is the hydraulic
diameter and v is the dynamic viscosity.

uC
Prandtl number Pr = Kp 3)

where C, is the helium specific heat at constant pressure, and K is the thermal
conductivity.

Nusselt number Nu =

(4)

2.1. Laminar flow in a pipe

The laminar limit for a fully developed flow in a round pipe is obtained in
terms of Nusselt number as:

NuLam’nar =4 (5)

From Eq. (4) we can derive at once the heat transfer coefficient:
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2.2.  Laminar flow in a CICC

In the case of a CICC it has been shown experimentally [1] that the laminar
limit Egs. (5) and (6) largely under-estimate the minimum Nusselt number
observed. In fact the experimental data seem to indicate that the minimum
Nusselt number is rather compatible with the laminar limit of a flow
between parallel plates:

NuLam‘narCICC = 8235 (7)

We use again Eq. (4) to write:



K

Nlaminarcice = NU aminaraice D_ (8).
h

2.3. Dittus-Bolter correlation
The classical Dittus-Bolter correlation for the flow in a pipe is given by:

Nu,, = 0.023 Re®® Pr°* 9)

and the heat transfer coefficient is derived as above:

hpg = Nupg (10).
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2.4. Dittus-Bolter-Giarratano correlation

Giarratano, Arp and Smith [2] have shown that the Dittus-Bolter correlation
should be slightly modified to be best accomodated to the flow of supercritical
helium. The modified correlation is written as follows:

-0.716
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Nupss = 0.0259 Re®® Pro* - - (11)

followed by:

K
hone = NUnpe —
DBG DBG Dh

(12).

2.5. Dittus-Bolter-Yaskin correlation

Yaskin [3] has proposed an alternative to the modification of the Dittus-Bolter
correlation provided by Eq. (11). The modification applies specifically to the
case of heat transfer to supercritical helium and can be written as:

f
Nosr — 402 M g1 —7)7 (13)
Nupg [ Nupg U

where Nu,,, is the modifiued Nusselt number after Yaskin, Nu,; is the
Nusselt number after the Dittus- Bolter correlation, Eq. (9), and f is the



thermal expansivity of helium, defined based on density p and temperature T
as follows:

p=-2HeH (14)

where the derivative is taken at constant pressure. The correlation Eq. (13) can
be written in a simpler manner solving the second order equation for the
ratio of Nussel numbers, obtaining:

NUupgy = YNUpg (15)

where we have defined the parameter y as:

_1+04z-+1+08z
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0.082% (16)

and the parameter z as:
z=p(T,-T) (17).

We finally obtain the heat transfer coefficient using the corrected Nusselt
number from Eq. (15):

K
ogy = Nupgy D (18).

h

2.6. Mixing flows

In some conductors, such as those recently developed for ITER, helium can
flow in a cooling flow channel located in the middle of the cable. This
channel is delimited by the cable itself, and possibly by a support spiral or
perforated pipe. As it has been shown by Long [4], heat transfer among the
cooling flow in the cable hole and the helium permeating the cable bundle
can be substantially enhanced by mixing of the two flows at the boundary (or
through the perforation). Long has derived the following expression for the
mixing heat transfer among the two flows:

hMix = apCpﬁy (19)

where 0 is the open fraction of the boundary perimeter between the two flows
and @, is the r.m.s. of the transverse velocity fluctuations at the boundary of
the two flows. This last is obtained as:
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where f,;, is the void fraction in the cable bundle, t,,,,, is its radial thickness,
and the functions Re(fB) and Im(p) are respectively the real and imaginary

parts of the complex quantity B. The above expressions contains several
terms, of which we give the definition in the following. The parameters k

and w are respectively the pressure flucutation wave number and angular
frequency, given by:
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k=— 21
b (21)
and
w = ku, (22)

where A is the wavelength of the pressure perturbation and u, is its average
convection velocity. The first can be estimated from the hole hydraulic
diameter D,,, ,, as:

A =10 DhHo|e (23)

while the second is computed using the hole flow velocity v,,,,:

u, = 0.8V, (24)
The pressure fluctuation amplitude p, is given by:

p, =4.24r1, (25)
where 71, is the shear stress at the wall, computed as follows:

To = 2f0eMVie (26)

and we have introduced the hole friction factor f,;,. The complex quantity f is
computed as follows:

a, +tiw
\a +iw

B= = Re(p) + 1m(p) (27)



where the quantities a, and a, are obtained as:

L 9)
1+2J, Re,,
and
f..n/K
a, =My (29).
i Ky
1+2J, Rey, \/K
Above we introduced 1, the kinematic viscosity, defined as:
U
n=Y (30)
Jo;
and the permeability Reynolds number:
Re,, = BB (31)
n

that depends on the equivalent porous longitudinal velocity @, that we
obtain from the flow velocity in the cable bundle v,

qx = fHeVBundIe (32)

Finally the pore shape factors in longitudinal and transverse directions |, and
J, have been fitted from data in [6]:

J, = 0.0122f,, 0% (33)
J, = 0.0017f,,, %% (34).

We have obtained in a similar way the pore size factors in longitudinal and
transverse directions K, and K, respectively:

K, = 0.0011f, %" (35)

K, = 0.0003f,,2%" (36).



2.7.  Boundary layer filling

During heating transients the pipe wall changes temperature and the helium
is subjected to a time variable heat flux. In this case a temperature diffusion
wave propagates in the boundary layer, and the heat transfer coefficient (seen
from the pipe wall) is variable in time [5,6]. In some particular cases analytical
solutions can be found for the equivalent heat transfer coefficient at early
times during this process. The analytical solutions reported here correspond
to a sudden step in the wall temperature, and to a sudden step in the wall
heat flux.

2.7.1. Step in wall temperature

If the wall temperature has a sudden step at time t, the equivalent heat
transfer coefficient is given by:

_ | KeG,
hBLAT - \ m (37)

that is obtained from the analytic solution of the heat diffusion equation in a
semi-infinite media, valid for t > ¢,.

2.7.2. Step in wall heat flux

If the wall heat flux has a sudden step at time t,, the equivalent heat transfer
coefficient is given similarly to the one written above by:

e = 2 39)
21 t-t,

again obtained from the analytic solution of the heat diffusion equation in a
semi-infinite media, and valid for t > t,.

2.8. Kapitza thermal resistance

The phonon mis-match between any solid-fluid interface results in a thermal
resistance that can be appreciable especially in situations when other thermal
resistances are small (e.g. heat transfer in superfluid helium). This interface
thermal resistance is usually called Kapitza resistance and the equivalent heat
transfer coefficient can be roughly approximated by the following epression:



Neapion = A(T, + T)(TZ +T2) (39)

where the fit parameter a is a strong function of the surface material and state.
An order of magnitude estimate for a copper strand can be obtained taking:

a =200.0

3. Library

The correlations above have been implemented in the following FORTRAN
functions available in the heattransfer.a library. All functions must be
declared as real in the calling program. The calling parameters are also of

real type.

correlation equation function

laminar in pipe (6) h_L_Pi pe(K, Dh)

laminar in CICC (8) h_L_Cl CC(K, Dh)

Dittus-Bolter (10) h_DB( Re, Pr, K, Dh)

Dittus-Bolter-Giarratano (12) h_DBE Re, Pr, K, Dh, T, TWal | )
Dittus-Bolter-Yaskin (18) h_DBY(Re, Pr, K, Beta, Dh, T, TWal | )

flow mixing (19) h_M x(D, Cp, Vi s,vH, vB, fH, DhH, t B, p, f He)
temperature step (37) h BL_TStep(Ti ne, Ti ne0, D, Cp, K)

heat flux step (38) h_BL_qgSt ep(Ti e, Ti me0, D, Cp, K)

Kapitza resistance (39) h_Kapitza(T, Tw)

the calling parameters in the above routines have the following meaning:

parameter units definition

K (W/m K) helium thermal conductivity
D (Kg/m?) helium density

Cp (J/Kg K) helium specific heat at constant pressure
Vis (Kg/ms) helium (dynamic) viscosity
Bet a (1/K) helium expansion coefficient
T (K) helium temperature

Tw (K) wall temperature

Re - Reynolds number

Pr (-) Prandtl number

Dh (m) hydraulic diameter

fH (-) hole friction factor

vH (m/s) hole velocity

vB (m/s) bundle velocity

DhH (m) hole hydraulic diameter

tB (m) cable bundle radial thickness
p (-) hole-bundle perforation

f He (-) bundle void fraction

Ti me (s) time
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