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Summary

Cryogenic valves are usually characterised through design coefficients, indicated as K, in DIN/IEC534. In
this note we show how to use the K, coefficient to compute the head loss factor for valves to be used in
models of the type inplemented in f | ower .

1. Introduction

Cryogenic control valves are often specified using a valve sixing factor, K, that
has been detailed in the norm DIN/IEC534. The physical meaning of K, is the
numerical value in m’/h of water at 5 to 40 °C flowing through the valve under a
pressure drop of 1 bar. This value has an analog in the US in the coefficient c,,
defined as the numerical value in US gal/min of water at 5 to 40 °C flowing
through the valve under a pressure drop of 1 psi. The conversion between the
two factors is thus straightforward:

K,=0.86c,
Both coefficients are widely used as design parameters for valves, and they can
be found in the catalogs of valves manufacturers. In this note we show how these

coefficients can be used directly in a simple model of the flow through the valve,
as the one implemented in the hydraulic network solver f | ower [1].

2. K, -value in accordance with DIN/IEC534

The valve sizing factor K, is often quoted in the characteristics of a flow
regulation cryogenic valve, and is in fact the main design parameter for the



selection of a specific valve type. According to DIN/IEC534 the sizing factor K,
for turbulent compressible flow can be computed as:
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where W is the mass-flow in [Kg/h]. The two quantities p, and p, are respectively
inlet pressure in [bar] and density in [Kg/m’]. The parameter X is the non-
dimensional pressure drop ratio defined as:
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where p, is the outlet pressure. The parameter Y is a non-dimensional expansion
factor between 0.667 and 1 defined as:
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Above F, is a specific heat ratio factor given by:

F = El 4)

K

where «is the ratio of specific heat under constant pressure and constant density
conditions, C, and C;
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The factor X, in Eq. (3) is typically in the range of 0.65 (for flow closing the valve)
to 0.75 (for flow opening the valve). Finally F is a non-dimensional piping
geometry factor defined as:
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where d is the valve diameter in [mm] and the sum is defined as:

Z§=§1+§2+§Bl_482 (7)



The four non-dimensional terms in Eq. (7) are the upstream resistance coefficient
with inlet reducer ¢

6= %F— ( Dd] J ®)

where D, is the reducer diameter, the downstream resistance coefficient ¢

reducer
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the valve inlet Bernoulli coefficient ¢B;:
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is the inlet diameter and D.

inlet

where d, , is the valve inlet diameter (both in [mm],

and finally the valve outlet Bernoulli coefficient ¢B,:
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where d_,, is the outlet diameter and D ,, is the valve outlet diameter (bpth in
[mm]). In the case that inlet and outlet valve diameter are the same, the two
coefficients ¢B, and ¢B, cancel out from the sum in Eq. (7).
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3. Simplified flow model for the valve

In spite of the apparent complexity of the equations necessary to determine the
flow in the valve, it can be shown that Eq. (1) can be easily converted into the
following form:

2& nf?
Pr= P =22 (12)
that is identical to the one used in the hydraulic network solver f | ower [1] and
where nfis the mass-flow in [Kg/s], p is an average density that we can take for
simplicity identical to the inlet density, A is the cross section of the valve in [m’]



and £is a non-dimensional head loss factor. The factor 10” in front of the r.h.s. of
Eq. (12) is used to convert the pressure drop from [Pa] to [bar].

To show that Eq. (12) is identical to Eq. (1), we can write explicitly the definition
of the head loss factor using the factors defined in the previous section. We start
writing the relation between mass-flow in [Kg/h] and [Kg/s]:

W = 3600 (13)

We can now use Eq. (13) in Eq. (1) and group terms conveniently to obtain:

3600 nf
VXp, (14).
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If we now use the definition Eq. (2) to substitute in Eq. (14) and take the square of
the result we obtain:
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We now compare Egs. (12) and (15), and we see immediately that the head loss
factor is related to the valve design parameters by:

10°(3600)( A )
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and eliminating the numerical factor we obtain the desired result:
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Note that most of the coefficients appearing in Eq. (17) are known (the valve
cross section A, the valve sizing factor K, as well as the valve piping factor F).
The expansion factor Y depends on the pressure drop ratio, and therefore should
be recomputed during the flow calculation. However its range of variation is
small (0.667 to 1) and therefore an approximate value can be determined that
satisfies well the whole range of expected pressure drop across the valve. In fact
we can approximate Eq. (17) if we assume a large diffuser diameter before and
after the valve, compared to the valve diameter, and a small pressure drop ratio,
resulting in F,~» 1 and Y » 1, so that we have:




£~ 648 10‘{%) (18)

that is generally a good approximation of the more complex Eq. (17).

4. Examples of calculation

We take as an example two very different valves of the manufacturer WEKA AG
(CH). The first valve, type DN2, is a small size control valve for which we select a
K, of 0.004 (type 2/10-0.1). The valve has a diameter d of 2 [mm] and a cross
section A of 3.14 10° [m’]. We assume for simplicity that the walve has the same
inlet and outlet diameter so that the Bernoulli terms ¢B, and ¢B, cancel out. We
take a reducer diameter D of 5 [mm] before and after the valve. In this case
we have that:

reducer

¢, =0353 £ =0.706
so that the valve piping factor is:
F,=0.9997

very close to 1. If we further assume that the pressure drop is small with respect
to the absolute pressure itself, we can safely take:

Y=1.
Using Eq. (17) we obtain finally a head loss factor of:
&~ 400.

If we use now Eq. (12) to compute the flow of water at 25 °C (p = 1000 [Kg/m])
under a pressure drop (p, - p,) of 1 [bar] we obtain a value of:

i =1.1110° [Kg/s]

that corresponds to a volume flow of approximately 0.004 [m’/h] as expected
(the same value as the K)).

As a second example we take a large valve of type DN50, with a K of 66. The
valve has in this case a diameter 4 of 50 [mm] and a cross section A of 19.6 10
[m’]. We take again the same inlet and outlet diameter so that the Bernoulli terms
cancel out, and a reducer diameter D of 60 [mm] before and after the valve.
In this case we have that:
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£ =0.047 £ =0.093

and the valve piping factor is:
F,=0.971.

Also in this case we assume that:
Y=1

and we compute from Eq. (17):
£~ 0.61.

Using Eq. (12) we can estimate that a relatively large massflow M of 1 [Kg/s] of
helium at 4.5 [K] and 10 [bar] (density p = 147 [Kg/m’]) would cause a pressure
drop (p, - p,) of 0.021 [bar]. The large valve offers little resistance as expected.

As a final remark, we note that the values computed here are for valves
completely opened. Control valve generally have the capability to vary the valve
sizing coefficient K, following pre-defined waveforms (e.g. linearly, constant
percentage, and others) from the fully opened value, computed here, to zero for
a valve completely closed. The calculation of the head loss factor £ can be
performed in accordance inserting the K variation in Egs. (17) or (18).
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