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1. Introduction

Superconducting magnets cooled by a force-flow of helium can occasionally and
locally make a transition to the normal resistive state, where they begin to generate
Joule heating at exceedingly high rates. The initial normal conducting zone
propagates in the magnet because of expulsion of the heated helium and, in part,
thermal conduction at the normal-front. The detection of an electrical resistance due to
the normal zone in the magnet usually triggers protection systems which disconnect
the power supply and discharge the magnetic energy through an external resistor. This
describes schematically the process of quench in superconducting magnets [1].

The simplest model of the initiation and evolution of a quench in a force-flow cooled
superconducting cable is based on a 1-D schematization of the superconductor along
its length (see Refs. [2-5] for details).  The superconducting cable temperature is
obtained in general from a non-stationary, non-linear heat conduction equation. The
source terms in this equation are the Joule heat in the cable and the heat transfer to the
helium. The helium flow is described by mass, momentum and energy balances in the
form of the Euler equations, with the addition of source terms modelli ng the frictional
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pressure drop along the cable and heat exchange with the superconducting cable. The
flow in force-flow cooled is usually highly turbulent, with high heat transfer between
cable and helium. Hence, for simplicity, we assume here that the helium and the cable
have the same temperature and we neglect the influence of the structural cable
components (i.e. conduit wall ).  Finally, we neglect inertial effects in the coolant, and
we arrive to the following set of equations describing the thermal and hydraulic
processes during a quench [4]:c de e de
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where the meaning of most symbols is standard (see the list of symbols in App. 3) and
we have defined the following averaged heat capacities:| |
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The Joule heating term � { { {q  is zero everywhere except in the quench region where the
temperature is greater than the so called current sharing temperature Tcs.  The above
model gives a very good approximation to the propagation of a fully developed
quench in a superconducting cable [4]. In their original form the equations describing
a quench are strongly dominated by the hyperbolic character of the Euler equations,
and in particular the heat convection term. We took care to maintain this feature (the
second term on the l.h.s of Eq. (3)) in the simpli fication process leading to the model
above.

To present an example of a quench initiation and propagation and the diff iculties
associated with the numerical solution, we have considered conditions similar to those
of an experiment performed by Ando et al. [6].  In this experiment an external heater
was used to rapidly initiate a quench at the center of a superconducting cable of 26 m
length. The cable characteristics and operation conditions used as input for the
simulation are reported in Tab. I. Note that we have artificially modified the cable
characteristics, in particular decreasing the thermal conduction in the cable, in order to
more clearly highlight the numerical diff iculties.

A reference simulation, solving the system of Eqs. (1)-(3), was performed using a
standard, adaptive second order accurate algorithm based on central differencing in
space and time (see App. 1 and Ref. [5]) and taking care to reach numerically
converged results.  We show in Fig. 1 the temperature profiles at different times (solid
lines). The normal zone can be identified there as the region where the temperature is
above the current sharing limit Tcs=5 K. Note that symmetry around the central point,
located at x=0, has been assumed, and only a detail of half of the length has been
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plotted.  In the normal region Joule heating causes the temperature to increase,
accompanied by the expansion of the compressible helium in this region.  The heated
helium stream expands through the portions of the cable length which is still
superconducting. Through heat exchange between the high temperature helium and
the superconductor the normal zone propagates along the cable.

The normal zone propagation for this case is ill ustrated in Fig. 2 (solid curve), where
the location of the normal front Xq is plotted as a function of time. This location
represents a moving boundary layer in the problem, determined implicitl y by the
evolution of the temperature profile, and according to the condition:� �
T X Tq cs

� .

The diff iculties associated with the numerical simulation of quench propagation are
demonstrated using a first order accurate upwind finite difference algorithm with
implicit time stepping and fixed time and space steps (see again App. 1 for details on
the algorithm). In Fig. 1 we compare the temperature profiles obtained by this method
at typical practical space and time steps of 1 cm and 0.1 ms, respectively, to those of
the converged solution. While the accuracy on the maximum temperature at x = 0 is
acceptable, it is evident that the normal zone propagation is not. The temperature
profile at the front is strongly smeared, and the normal zone propagation is much
more rapid than for the converged results.

The convergence of the first order algorithm can also be seen in Fig. 2, where the
location of the normal front is plotted as a function of time for different values of the
space step � x and for a fixed time step of 0.1 ms.  These results are compared with the
converged  solution obtained by using the second order method (solid line).  Notice
the large error introduced by the first order algorithm, leading to an artificial
acceleration of the quench front.  Such explosive propagation of the quench is only
physically possible during a “Thermal Hydraulic Quenchback” (THQB),  a situation
in which the frictional heating ahead of the normal zone can cause the helium
temperature to go above Tcs, resulting in a very different quench propagation
mechanism [7].  The numerically non-converged solution shows a similar behavior as
the physical process of the THQB.  For this reason, we use the term Numerical
Quenchback (NQB) to characterize a non-converged solution of the governing model.

In Fig. 3 we plot the error on the normal front location as a function of 1/ � x and for a
fixed time step of 0.1 ms.  The error is defined as the difference between the solution
obtained by the first order algorithm and the converged solution obtained with the
second order algorithm. The convergence rate of the first order method is
unexpectedly slow. In fact, the first order method appears to converge with a rate
close to 0.5, instead of the expected value of 1.  Similar results can be obtained for the
second order algorithm, where convergence rates slower than the expected value of 2
are observed (typical convergence rates are between 1 and 1.5).

The problem presented here is of practical interest as it implies that in order to obtain
accurate solutions of quench evolution, extremely small space and time step are
required.  Typical conductor lengths for superconducting coils range between 100 m
to 1 km, and quench time scales are of the order of 10 s.  Uniform space and time
mesh sizes as those used in the previous example would lead to astronomic CPU time.
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Mesh adaptivity has been used to more eff iciently solve the propagation of quench
[4,5], which still remains a heavy computational task. However, even when higher
order computational algorithms are used, a complete space and time convergence
analysis is a tedious and time consuming task.  It is therefore of interest to identify the
causes of the low convergence rate, so that a suitable and eff icient error control can be
implemented to quali fy the solution. Loss of accuracy on the position of the normal
front also results in extremely low accuracy of other important quantities of interest
such as the maximum helium pressure rise during the quench. Here, we will
concentrate on the normal front and its velocity as general indicators for the quality of
the solution. The influence of the normal length and its propagation on all other
variables is discussed in Ref. [4].

We will show that the low convergence rate is a feature of the non-linearity of the
governing system of equations and the motion of the boundary layer at the location of
the quench front.  Specifically, we first develop a “model problem” that maintains all
of the essential physics, but is easier to track analytically.  Furthermore, we show that
indeed the model problem reproduces the features of slow convergence rate and the
rapid quench front acceleration observed in the numerically non-converged solutions
of the more complete model.  Based on the results of the analytical study we show in
detail the physics underlying the NQB process. Finally, an analytic relation is
presented for the error introduced by the numerical scheme on the normal front
location, based on which the space and time steps can be chosen to avoid NQB. The
study will be based on the upwind (first order) and central differences (second order)
schemes already introduced. These are not the optimal choice for convection
dominated problems, as it can be demonstrated in the context of f inite elements [8].
Nevertheless, they have well established discretization properties that we will use to
derive more general conclusions on the effect of numerical errors on quench
propagation.

2. Model problem definition and analytical solution

The set of Eqs. (1)-(3) describing quench in CICC are cumbersome and diff icult to
solve analytically, even with the simpli fying assumption of constant material
properties. The main diff iculty lies in the non-linear coupling of the equations. To
simpli fy the analysis we define here a model problem that includes the important
feature of the moving boundary layer at the quench front.  Furthermore, all of the
diff iculties observed in the numerical solution of Eqs. (1)-(3) are also encountered in
solving the model problem.

We start by assuming that compressibilit y and friction phenomena can be neglected,
and we drop the contribution of heat conduction in the energy balance. Furthermore,
we assume that the dominant heat capacity is that of helium (i.e. � �C C Ct v

� � ). This is
a well j ustified approximation in the region close, and ahead of the normal front
where the temperatures are low.  On the other hand in the normal zone the helium
depletion during a real quench is such that the dominant heat capacity in this region is
that of the conductor. Also, in this region both the heat production and the heat
capacity increase rapidly with temperature, changing by orders of magnitude
according to the temperature dependence of the specific heat and that of the electrical
resistivity.  However, the ratio of the heat source term to the heat capacity varies by a
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much smaller factor and can be assumed to be constant for the purposes of our
analysis.

With the above simpli fying assumptions, Eqs. (1)-(3) become:� �� � ��
t

v

x
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where Q
q

C
� � � ���  is the ratio of heat generation to the heat capacity and H(T-Tcs) is the

Heavyside step function.  As discussed above, we consider Q  to be a constant. The
problem is defined over the domains x �  � + and t �  � +.

This simpli fied form evidences the convection term in the energy equation (Eq. (6)),
where we notice that in our case the velocity is not independent of temperature, as
generally assumed in convection dominated heat transport, but is coupled to the
temperature profile through the continuity equation (Eq. (4)). To allow further
analytic treatment of the problem, we now make the additional assumption that the
fluid behaves as an ideal gas, i.e.

p RT� � (7)

where R is the gas constant of helium. The model problem specification is now
complete.  The initial conditions are given by:

T(t=0)=Tcs
+ for 0 <  x �  Xq0

T(t=0)=T0<Tcs for x > Xq0  ,

where Xq0 is the location of the quench front at time t=0. The symmetry boundary
conditions at the center of the cable are given by:� � T

x x � �0

0� �
v t0 0,    .
Equations (5) and (7) give a relation between the gas density and its temperature.  By
appropriately adding Eqs. (4) and (6) a single relation is obtained between v and T:¡ ¢
T

v

x
QH T Tcs

££   ¤ (8)

which shows, as expected, that because of neglecting inertia the fluid velocity
responds immediately to the changes in the fluid temperature.  Equation (8) can now
be used to eliminate the velocity.
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Having eliminated both the density and velocity in terms of temperature, it is now
straightforward to find an analytical solution for the temperature profile. Since the
model contains no diffusion, the quench propagates with the heating-driven expansion
of the helium bubble contained in the initial normal region. The temperature profile is
a step function at the location of the moving front.  Ahead of the front the temperature
is equal to the unperturbed temperature T0, while behind the front the profile is
uniform and is given by:¦ §
T x x X T Qtq o; ¨ © ª (9).

The quench propagation speed is then calculated from Eq. (8), integrating the
temperature profile.  The normal front speed is given by:

V
Q

T
Xq

an

cs
qo© (10)

which is constant in time. Here, we use the superscript “ an”  to indicate the exact
analytic solution of the model problem. Observe that the value of the constant is
determined by the heating rate, material properties, and depends on the initial normal
length Xq0.  Also note that:« ¬

tXxvV q
an

q ,©©
the analytical propagation speed is identical to the fluid velocity at the front. The
instantaneous position of the normal front is finally obtained by integrating Eq. (10),
and is given by:

­­®¯°°±² ª© t
T

Q
XX

cs
qo

an
q 1 (11).

3. Numerical solution of the model problem

Consider the model problem defined in the previous section.  Here we demonstrate the
effect of numerical errors on the quench propagation velocity. For the numerical
solution of the model problem we have used the two algorithms introduced earlier
with global first and second order accuracy in time and space, respectively.

In Fig. 4(a) we present the temperature profile as obtained by the first and second
order schemes using the input data of Tab. 2.  The solid line in this figure represents
the analytic solution obtained in the previous section. Observe that the temperature
distribution obtained by both schemes clearly shows the pathology of non-
convergence. Namely both algorithms show a smeared front and an accelerating
normal zone.  Figures 4(b) and 4(c) show respectively the helium density and velocity
profiles for this case. Again, the non-converged solutions show a much different
behavior with almost an order of magnitude larger flow velocities. Finally, in Fig. 5
we present the normal front location (symbols) as a function of time. The exact
analytical solution (solid straight line) is also shown for comparison.



8

Let us try to understand the non-convergence behavior of the numerical schemes. As
shown in App. 1 any numerical scheme accurate to order n-1, including those used
here, has an associated error that appears in the equivalent differential equation [9],
given by: ³ ´µ ¶ · ·¸ ¹

n

n

n
n nT

x
o x t

º º
,

where the parameter » n is proportional to a combination of the (n-1)th power of the
space and time steps. Thus, a first order accurate scheme introduces a numerical
diffusion, while a second order scheme results in numerical dispersion. This well
known behavior appears in the different temperature profiles generated by the first
and second order schemes (see Fig. 4(a)), where the former smears the sharp front and
the latter produces oscill ations at the normal front. However, excessive diffusion and
dispersion alone cannot explain the exponential front acceleration.

As shown in Appendix 2, the numerical error also results in an additional propagation
velocity. In the case of the model problem the additional velocity Vad associated with
the numerical discretization can be computed a priori using the equivalent differential
equation of the scheme.  In particular the following asymptotic expressions for the
two schemes considered here are obtained in App. 2:

first order algorithm:

¼ ½V
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second order algorithm:
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Note that the additional speed introduced by the numerical scheme is constant in both
cases.
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In the case of the first order scheme it is possible to verify that indeed the addition of
the numerical diffusion causes the problem to diverge. We have solved the equivalent
differential equation for the first order scheme - including the numerical error given
by Eq. (13) above - using the second order scheme. We have thus simulated the
asymptotic behavior of the first order scheme including its first truncation term. The
results of this study are reported in Fig. 5 (dotted lines) where they are compared to
the actual performance of the first order scheme (symbols). Note the good agreement
between the two solutions, which converge asymptotically towards the same behavior
(at the smallest mesh spacing the dashed curve cannot be distinguished from the
symbols). This proves that the front acceleration is caused by the numerical error, at
least in the first order accurate scheme.

The explanation for this fact lies in the coupled nature of the system of equations
under consideration. The constant propagation speed Vq for the model problem is
obtained only when the total helium mass in the normal zone is a constant. In the case
of the numerical solution the additional front velocity Vad causes the front to advance
the helium expulsion and to engulf new helium mass in the normal zone. To satisfy
the constant pressure condition, the fluid expulsion velocity from the normal zone v
must therefore continuously increase, causing an acceleration of the quench front.

The front propagation velocity for the equivalent differential equation of the
numerical scheme is given by the sum of the helium expulsion velocity at the front
location and the additional speed of numerical origin:

V v Vq
num num

ad
Ë Ì (16)

where the superscript “ num”  is used to denote the solution of the equivalent
differential equation of the numerical scheme. We already know Vad , hence to solve
Eq. (16) we need next to find the helium expulsion velocity vnum.  This can be done by
approximating the temperature profile in the normal region, just behind the quench
front, using a piece wise linear profile. Using this approximate profile in Eq. (8) we
obtain the following expression for the expulsion velocity:

v V
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where an
qV  and an

qX  are given by Eqs.(10) and (11), respectively.  The system of Eqs.

(16) and (17) is closed by the relation between the front position and its velocity:

V
dX

dtq
num q

numË
.

It is more convenient to solve Eqs. (16) and (17) in terms of the relative error on the
normal front location Ô , defined as:
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Equations (16) and (17) can be combined and rewritten in terms of Õ   as follows:
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This is an ODE for ï  with the initial condition ï (0)= 0.  If we retain only the dominant
terms at large times we obtain the following approximation:
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Qt Tcslog / (20).

The constant û
0 must be determined by matching Eq. (20) to the solution of Eq. (18)

in the limit t ý  0.  After a straight forward calculation it can be shown that:

þ
0 ÿ V

V
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q
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Now, recalli ng the definition of þ , we obtain from Eq. (20) an analytic expression for
the position of the normal front which includes the effects of the numerical
discretization error: � �� �
X X V t eq
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q
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2
log / (21).

This is the desired result.  Note the exponentially growing term in Eq. (21).  That is,
num

qV  does not simply equal to the sum ad
an

q VV �  as would be obtained from the

analysis of the numerical error in the linear case (i.e. neglecting the coupling with the
continuity balance). This would result in an error term which increases linearly in
time.  What we have found is a much more severe situation as can be seen in Eq. (20).
Three contributing factors result in the rapidly growing error term appearing in this
equation:  1) the constant multiplying the error term Vad is a direct consequence of the
numerical discretization error, 2) the term appearing in the exponential is directly
related to the moving source term, and more specifically the moving step function
located at the leading edge of the source term, and finally, 3) the fact that the error
term is a non-linear function of time is attributed to the non-linearity of the model
problem.

The estimated front position given by Eq. (21) has been computed for the case of the
model problem, and is reported in Fig. 5 (dashed lines) for comparison with the
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results of the numerical simulation.  The agreement between the dashed lines and the
symbols is good.  In addition, the results of the numerical simulation and its analytical
approximation get closer as the limit of small � x is approached (the error estimates for
the numerical schemes, Eqs. (13) and (15), are only accurate in the limit � x �  0).

In summary, we have shown that Eq. (21) approximates well the behavior of the
equivalent differential equation of the numerical scheme. We would like to reiterate
that Eq. (21) properly takes into account the physics behind the numerical solution of
the model problem, namely the interplay of the quench front advancement in time and
the fluid mass expulsion from the quench region. The method developed is general,
and can be applied to an arbitrary solution scheme once the additional front speed Vad

originated by the truncation error is known.

4. Numerical convergence criteria for quench simulation

The study of the numerical solution of the model problem performed in the previous
section has given considerable insight on the effect of numerical errors. These appear
as an additional front propagation speed which, in turn, is at the origin of the non-
physical and rapid front acceleration. It can be shown that the conditions of the model
problem are analogous to the small pressure rise limit i n the propagation of a real
quench [4].  Therefore from the point of view of the accuracy of the physics
modelli ng we expect that the conclusions reached in the previous section also apply
(at least approximately) to more realistic quench scenarios represented by Eqs. (1)-(3).

From the point of view of the numerical schemes used, we already remarked that both
schemes (upwind and central differencing) are not the choice of reference for
convection dominated problems. Several algorithms have been developed in the past
years, generally applicable to compressible and incompressible, viscous and inviscid
flow (see for instance Refs. [10-13] for some finite volume and finite element
algorithms and the general overview in Ref. [9]). Most of these methods are explicit
for reasons of computational eff iciency. Some taylored artificial diffusion, high order
dispersion or dissipation is generally added to stabili ze high frequency modes. The
addition is either made based on operating experience on the algorithm [9,10], or can
be justified in the frame of the general derivation of the method [11-13], and is usually
specific to the simulation of the flow. Only more recently generally applicable, well
stabili zed methods are being proposed [14], potentially capable of treating very
different situations in a consistent frame.

In fact in the most general solution of quench propagation [5], as discussed in the
introduction, we are confronted with strong thermal coupling between the
superconducting cable and helium making the problem intrinsically stiff . Furthermore
material properties and source terms are highly non-linear. Finally, a strong
convection term is present only in the mass and energy balances, while the other
equations are dominated by diffusion or source terms. To deal eff iciently with these
features low order, flexible, adaptive implicit methods have been preferred so far [2-
5,15]. Indeed, the schemes used at present for this purpose have at most second order
accuracy, and therefore the study based here on upwind and central differences is
directly applicable.
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In order to obtain a simple numerical convergence criteria for the problem of quench
propagation we propose to impose a tolerance on the error in the location of the
normal front at the end of the simulation.  That is, we must have

 �  (t=tmax) < 	 max,

where 	 max is the specified error tolerance, tmax is the time scale of interest during the
numerical simulation, and 	  is given by Eq. (20).  This criteria can easily be recast in a
relation that involves Vad, given by:
 �� 


2
max /log

2

1

max

csTT

q

ad e
V

V �� �
(22)

where we have replaced the product Q t by Tmax which is the maximum (hot-spot)
temperature reached during the quench and is usually a specified allowable for the
operation of a coil . This is the desired result for the convergence criteria of the
numerical solution.  Note that Vad is directly related to the space and time steps used in
the numerical discretization (see App. 2).

In order to demonstrate how Eq. (22) can be used to appropriately choose � x and � t,
consider a typical quench with Vq = 10 m/s, T0 = 5 K, Tcs = 10 K, Q = 10 K/s and Tmax =
100 K.  Setting for instance a 5 % tolerance on the front location (

�
max = 0.05) we find

that the limit condition on the additional quench speed of numerical origin is Vad <
0.035 m/s.  Depending on the scheme we can now determine from Eqs. (12) and (14)
the space and time step that would result in such an additional front speed. We can
assume that the helium velocity is approximately equal to the propagation speed, i.e. v�  10 m/s. If we suppose in addition to operate at unit Courant number, i.e. � t = � x/v,
we obtain that the first order scheme must have � x < 0.1 mm and � t < 10 � s, obtained
using Eqs. (12) and (13). In the case of the second order accurate algorithm, using
Eqs. (14) and 15 we find � x < 5 mm and � t < 0.5 ms.  From our direct experience
[15], this is in fact the range of mesh sizes that are required in order to obtain a
converged solution of the quench process.

5. Conclusions

In this paper we have discussed and analyzed the process of NQB observed in the
numerical solution of quench propagation in superconducting magnets.  Specifically,
we have shown that exponentially growing error terms are present in the numerical
solution of the normal front position.  The cause of such unstable solutions is shown
to be due to the discretization error, the nonlinear nature of the model, and the
boundary layer motion at the quench front. Analytic relations are presented to
minimize NQB when attempting to numerically solve the quench problem.
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Table 1. Data for the quench propagation experiment of Sect. 1. The conductor and operating
conditions are similar to the experiment of Ando et al. [6]. Particular parameters (marked
by an asterisk) have been adapted to show higher sensitivity to the numerical solution.

Conductor geometry

Strand diameter (mm) 0.98
Number of strands 18
NbTi cross section (mm2) 3.4

Copper cross section (mm2) 10.2

Helium cross section (mm2) 13.3
Hydraulic diameter (m) 0.069(* )

Copper resistivity ( � m) 6 �  10-10

Copper thermal conductivity (W/m K) 1(* )

Operating and criti cal conditions

Magnetic field (T) 7
Temperature (K) 4.2
Pressure (MPa) 1.0
Mass flow (g/s) 0.0
Critical temperature (K) 6.24
Critical current (kA) 3.0
Operating current (kA) 1.8
Current sharing temperature (K) � 5

Table 2. Parameters used in the numerical solutions of the model problem.

Initial temperature T0 1.0
Current sharing temperature Tcs 1.25
heating rate ratio Q q C� � � ��

/ � 1
Initial normal length Xq0 1.0
Analytical quench velocity Vq 0.8
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Figure 1. Temperature profiles computed at different times (indicated on the curves) for the quench
evolution in the case defined in Tab. I. The solid line represents the converged solution
obtained with a second order algorithm and is compared to non-converged profiles (dashed

lines) obtained with a first order algorithm on a fixed mesh size � x of 1.25 �  10-2 m, time

step � t of 0.1 �  10-3 s.



� 9

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

time (s)

no
rm

al
 fr

on
t p

os
iti

on
 (

m
) �

x = 5 10-2

�
x = 3.125 10-3

�
x = 6.25 10-3

�
x = 1.25 10-2

�
x = 2.5 10-2

�
x = 1 10-1

converged
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profiles obtained with a first order algorithm (fixed mesh spacing as indicated on the

dashed lines, time step � t of 0.1   10-3)
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Figure 4. Temperature (a), density (b) and velocity (c) distributions at different times (indicated on
the curves) computed with the first (dotted lines) and second (dashed lines) order
schemes for the conditions of the model problem taking a space step " x of 5 #  10-2 and a
time step $ t of 5 #  10-4. The exact, analytical solution is also shown for comparison (solid
lines).
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schemes for the conditions of the model problem taking the space step % x as a parameter
(indicated on the curves) and a time step % t of 5 &  10-3. The exact, analytical solution is
also shown for comparison. The dotted lines for the first order scheme are results from
the numerical solution of the equivalent differential equation using a second order
algorithm. The dashed line is the analytic approximation given by Eq. (16).



� ;

Appendix 1 Space and time discretization and numerical error

Equations (1)-(3) form a non-linear hyperbolic system. Apart from non-linearities, the
main features of such a system are conveniently studied using the simple scalar
equation:' ' ' 'T

t
v

T

x
( ) 0 (1.1).

which has the same structure as Eq. (6), defining the model problem.  Here, we
consider standard first and second order accurate algorithms[9] with the following
difference equations (subscripts indicate mesh points in space and superscripts stand
for time):

first order method implicit in time:

T T

t
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T T
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second order method implicit in time:
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we show here for completeness the errors associated with the above approximations as
they can be obtained using the equivalent differential equation of the schemes[9].  At
a given time step we have:
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and at a given mesh point we can write the following expressions:
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If we insert the above relations in the Eqs. (1.2) and (1.3) we find:

first order method:

: ; 7 16 6 6 6 6 6 6 6T
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v
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(1.4)

second order method:
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where the following identities have been used in deriving Eqs. (1.4) and (1.5):? ? ? ?? ? ? ?? ? ? ?
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The last two terms on the left hand side of the equivalent differential equations
represent the error introduced by the numerical discretization. For both methods the
solution of the discretized form of Eq. (1.1) is thus equivalent to the exact solution of
the following modified problem:? ? ? ? J ? ?T
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where for the first order accurate method:
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Appendix 2 Calculation of additional front velocity for the numerical
solutions of the model problem

Consider the governing equation for temperature in the model problem:

N OP P P PT

t
v

T

x
QH T Tcs

Q R S (2.1).

By virtue of the results of App. 1, any numerical solution of (2.1) is equivalent to the
integration of a modified equation of the following form:

N OP P P P T P PT

t
v

T

x

T

x
QH T Tn

n

n cs
Q Q R S (2.2)

where the leading order numerical error has been written as a space derivative
contribution of order n (n-1 is the global order of accuracy of the method). The
coeff icient T n will be in general related to the n-1 power of the space and time steps
used in the discretization.

The exact solution of Eq. (2.2), and therefore a numerical approximation to Eq. (2.1)
produces an additional propagation speed for the quench front (Vad). To prove this
statement consider the following coordinate transformation:U V W

x V tq

The change of coordinates in Eq. (2.2) gives the following result:

X Y Z [\ \ \ \ U ] \ \ U ^ UT

t
v V

T T q

C
Hq n

n

n

_ W _ V ` ` ` Wa
(2.3).

We now make the assumption that asymptotic behavior is reached, and therefore in
the immediate vicinity of the quench front the temperature profile in the moving
reference frame does not change in time. This justifies neglecting the time derivative
term in Eq. (2.3).  Thus, we have

W _ V b
V

T T
forad n

n

n

c c d e c c d d
0 0 (2.4)

f g h i i i jV
T T q

C
forad n

n

n

k k l m k k l n lo
0 (2.5).

where by definition X q .  The solution of these equations, and the jump

conditions on the temperature and its derivatives at the quench front are specific to the
particular value of n.  Here, we present the results for n=2 (first order accurate
algorithm) and n=3 (second order accurate algorithm).
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First order accurate algorithm (n=2).

In this case the general solution of the homogeneous Eq. (2.4) is:

pq
2

21

adV

eAAT rs (2.6)

while the general solution to Eq. (2.5) is given by:
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where A1, A2, B1, B2 are arbitrary integration constants. The asymptotic boundary
conditions are given by:z {z {
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where the first two boundary conditions give the value of the temperature at two
known points (in the non-perturbed state and at the front), the third and fourth
conditions are used in order to avoid a diverging solution, and the last condition
assures continuity in the first derivative of the temperature at the front location. These
5 conditions are used to eliminate the 4 arbitrary constants and to determine the
additional parameter Vad, given by

� �V
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(2.8).

Second order accurate algorithm (n=3).

The general solution of the homogeneous Eq. (2.4) is:
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while the general solution to Eq. (2.5) is obtained similarly as:
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where A1, A2, A3, B1, B2, B3 are again arbitrary integration constants. The set of
boundary conditions for this case are:� �� �
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where with respect to the previous case, additional regularity conditions have been
added on the second derivative terms in the temperature distribution. The resulting
expression for the additional front speed Vad is given by
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Appendix 3 List of Symbols

² diffusivity
Ac conductor cross section
Ah fluid (helium) cross section
C specific heat³
Cv average fluid (helium) specific heat at constant volume³
Ct averaged specific heat of conductor and helium coolant
Cc conductor specific heat
Cv fluid (helium) constant volume specific heat
Dh hydraulic diameter´

t time step´
x space stepµ relative error on the front position

f friction factor¶
Gruneisen parameter of f luid (helium)

H( · ) Heavyside function
k thermal conductivity
p fluid (helium) pressure
p0 initial pressure¸ ¹ ¹ ¹
q heating rate per unit volumeº fluid (helium) density
R gas constantº

c conductor density
T temperature
t time
Tcs current sharing temperature (transition superconducting > normal conducting)
v fluid (helium) velocity

numv approximated fluid flow velocity as computed numerically
Vad additional propagation velocity of the normal front (due to numerical errors)

Vq velocity of the normal front

Vq
an velocity of the normal front as computed analytically

Vq
num velocity of the normal front as computed numerically· moving coordinate

x space coordinate
Xq position of the normal front

Xq
an position of the normal front as computed analytically

Xq
num position of the normal front as computed numerically

Xq0 initial position of the normal front


