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Summary

One of the most important thermofluid processes encountered in internally cooled superconducting
magnets is that of quenching. Numerical simulation of the quench propagation involves accurately
modeling a moving boundary layer at the quench front. Due to the highly non-linear nature of the
quench process, slightest numerical errors can rapidly grow to unacceptable limits. The quench
propagation in such a non-converged solution exhibits a very rapid propagation velocity which
resembles a “quenchback” effect. Hence, the term “Numerical Quenchback” is used to characterize a
numerically unstable solution of the governing quench model. This paper presents the underlying
physical phenomena that causes a numerical discretization scheme to have error terms that increase
exponentially with time, causing the numerical quenchback effect. Specifically, by analytically solving
the equivalent differential equation of the numerical scheme, we are able to obtain closed form relations
for the error terms associated with the propagation velocity. This allows us to define error criteria on
the space and time steps used in the simulation. The reliability of the error criteria is proven by
detailed convergence studies of the quench process.

1. Introduction

Supercondicting magnets cooled by a forceflow of helium can occesiondly and
locdly make atransition to the normal resistive state, where they begin to generate
Joule heding at excealingly high rates. The initial normal condwcting zone
propagates in the magnet becaise of expulsion d the heaed helium and, in part,
thermal conduction at the normal-front. The detedion d an eledricd resistance due to
the normal zone in the magnet usually triggers protedion systems which dsconred
the power suppdy and dscharge the magnetic energy throughan external resistor. This
describes chematicdly the processof quench in supercondicting magnets [1].

The simplest model of the initiation and evolution d a quench in a force-flow cooled
supercondcting cable is based ona 1-D schematization d the supercondictor along
its length (see Refs. [2-5] for details). The supercondicting cable temperature is
obtained in general from a nonstationary, nontlinea hea conduction equation. The
sourceterms in this equation are the Joule hea in the cale and the hea transfer to the
helium. The helium flow is described by mass momentum and energy balances in the
form of the Euler equations, with the aldition o sourceterms modelli ng the frictional



presaure drop dongthe cale and hea exchange with the supercondicting cable. The
flow in force-flow cooled is usualy highly turbulent, with high hea transfer between
cable and helium. Hence, for simpli city, we asume here that the helium and the cdle
have the same temperature and we negled the influence of the structura cable
comporents (i.e. condut wall). Finaly, we negled inertia effedsin the codant, and
we arive to the following set of equations describing the therma and hydaulic
processes during a quench [4]:
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where the meaning d most symbalsis gandard (seethe list of symbalsin App. 3 and
we have defined the foll owing averaged hed capadties:
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The Joule heaingterm " is zero everywhere except in the quench region where the

temperature is greaer than the so cdled current sharing temperature T_. The &owve
model gives a very good approximation to the propagation d a fully developed
guench in a supercondicting cable [4]. In their original form the equations describing
a quench are strondy dominated by the hyperbadlic charader of the Euler equations,
and in particular the hea convedion term. We took care to maintain this feaure (the
seandterm onthe I.hs of Eq. (3)) in the simplificaion pocesslealing to the model
abowe.

To present an example of a quench initiation and popagation and the difficulties
associated with the numericd solution, we have mnsidered condtions smilar to those
of an experiment performed by Andoet al. [6]. In this experiment an externa heaer
was used to rapidly initiate aquench at the center of a supercondicting ceble of 26 m
length. The cdle daraderistics and operation condtions used as inpu for the
simulation are reported in Tab. I. Note that we have atificialy modified the cédle
charaderistics, in particular deaeasing the thermal condictionin the cdle, in order to
more dealy highlight the numericd difficulties.

A reference simulation, solving the system of Egs. (1)-(3), was performed using a
standard, adaptive second ader acarate dgorithm based on central differencing in
space ad time (see App. 1 and Ref. [5]) and taking care to read numericdly
converged results. We show in Fig. 1the temperature profil es at different times (solid
lines). The normal zone can be identified there & the region where the temperature is
abowve the aurrent sharing limit T.=5 K. Note that symmetry aroundthe central point,
located at x=0, has been assumed, and orly a detall of half of the length has been



plotted. In the normal region Joule heding causes the temperature to increase,
acompanied by the expansion d the mmpressble helium in this region. The heaed
helium strean expands through the portions of the cdle length which is 4ill
supercondicting. Through hea exchange between the high temperature helium and
the supercondictor the normal zone propagates alongthe cdle.

The normal zone propagation for this case isill ustrated in Fig. 2 (solid curve), where
the locaion d the normal front X, is plotted as a function d time. This locaion
represents a moving boun@ry layer in the problem, determined implicitly by the
evolution d the temperature profil e, and acrding to the cndtion:

T(X,)=T..
The difficulties asociated with the numericd simulation d quench propagation are
demonstrated using a first order acawrate upwind finite difference dgorithm with
implicit time stepping and fixed time and spacesteps (see @ain App. 1for details on
the dgorithm). In Fig. 1we cmmpare the temperature profil es obtained by this method
at typicd pradicd space ad time steps of 1 cm and 0.1ms, respedively, to those of
the cnverged solution. While the accracy on the maximum temperature & x = 0 is
accetable, it is evident that the normal zone propagation is not. The temperature
profile & the front is drondy smeaed, and the normal zone propagation is much
more rapid than for the converged results.

The @nwergence of the first order algorithm can also be seen in Fig. 2, where the
locaion d the normal front is plotted as a function d time for different values of the
spacestep Ax and for afixed time step of 0.1 ms. These results are cmmpared with the
converged solution oliained by using the second ader method (solid line). Notice
the large aror introduced by the first order algorithm, leading to an artificial
acceeration d the quench front. Such explosive propagation d the quench is only
physicdly possble during a “Thermal Hydraulic Quenchbadk” (THQB), a situation
in which the frictiona heaing aheal of the norma zone can cause the helium
temperature to go abowve T_, resulting in a very different quench propagation
mechanism [7]. The numericaly nonconverged solution shows a similar behavior as
the physicd process of the THQB. For this reason, we use the term Numericd
Quenchbadk (NQB) to charaderize anonconverged solution d the governing model.

In Fig. 3we plot the eror onthe normal front location as afunction d 1/4x and for a
fixed time step of 0.1 ms. The aror is defined as the diff erence between the solution
obtained by the first order algorithm and the conwverged solution oliained with the
sewmnd ader agorithm. The @nwergence rate of the first order method is
unexpededly slow. In fad, the first order method appeas to converge with a rate
closeto 0.5,insteal of the expeded value of 1. Similar results can be obtained for the
seawnd ader algorithm, where mnvergence rates dower than the expeded value of 2
are observed (typicd convergencerates are between 1and 1.5.

The problem presented here is of pradicd interest as it implies that in order to oltain
acarate solutions of quench evolution, extremely small space ad time step are
required. Typicd conductor lengths for supercondicting coil s range between 100m
to 1 km, and quench time scdes are of the order of 10 s. Uniform space ad time
mesh sizes as those used in the previous example would leal to astronamic CPU time.



Mesh adaptivity has been used to more dficiently solve the propagation d quench
[4,9, which still remains a heary computational task. However, even when higher
order computational algorithms are used, a wmplete space ad time cnwvergence
anaysisisatedious and time cnsumingtask. It istherefore of interest to identify the
causes of the low convergencerate, so that a suitable and efficient error control can be
implemented to qualify the solution. Loss of acarracy on the position d the normal
front also results in extremely low acairagy of other important quantities of interest
such as the maximum helium presaire rise during the quench. Here, we will
concentrate on the normal front and its velocity as general indicators for the quality of
the solution. The influence of the normal length and its propagation on all other
variablesis discus=d in Ref. [4].

We will show that the low convergence rate is a feaure of the nonlineaity of the
gowverning system of equations and the motion d the boundxry layer at the locaion o
the quench front. Speaficdly, we first develop a “model problem” that maintains all
of the esential physics, bu is easier to tradk anayticdly. Furthermore, we show that
indeed the model problem reproduces the feaures of slow convergence rate and the
rapid guench front accéeration olserved in the numericaly nonconverged solutions
of the more complete model. Based onthe results of the analytica study we show in
detail the physics underlying the NQB process Finaly, an analytic relation is
presented for the eror introduced by the numericd scheme on the normal front
locaion, kesed onwhich the space ad time steps can be dhosen to avoid NQB. The
study will be based onthe upwind (first order) and central differences (second ader)
schemes arealy introduced. These ae nat the optimal choice for convedion
dominated problems, as it can be demonstrated in the context of finite dements [8].
Nevertheless they have well established dscretization properties that we will use to
derive more genera conclusions on the dfed of numericd errors on quench
propagation.

2. Model problem definition and analytical solution

The set of Egs. (1)-(3) describing quench in CICC are wumbersome and dfficult to
solve anayticdly, even with the simplifying assuumption d constant materia
properties. The main dfficulty lies in the nonlinea couding d the euations. To
smplify the analysis we define here amodel problem that includes the important
feaure of the moving boundry layer at the quench front. Furthermore, al of the
difficulties observed in the numericad solution d Egs. (1)-(3) are dso encountered in
solving the model problem.

We start by assuming that compressbility and friction plenomena can be negleded,
and we drop the contribution o hea condiction in the energy balance Furthermore,

we aame that the dominant hea capadty isthat of helium (i.e. C, = C, = C). Thisis

a well justified approximation in the region close, and ahead o the normal front
where the temperatures are low. On the other hand in the normal zone the helium
depletion duing ared quench is such that the dominant hea cgpadty in thisregionis
that of the cnduwctor. Also, in this region bdh the hea production and the hea
cgoadty increase rapidly with temperature, changing by aders of magnitude
acording to the temperature dependence of the spedfic hea and that of the dedricd
resistivity. However, the ratio of the hea sourceterm to the hea cgpadty varies by a



much smaller fador and can be asumed to be @nstant for the purpaoses of our
anaysis.

With the @&ove smplifying assumptions, Egs. (1)-(3) become:

P, _H (4)
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P= P (5)
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where Q = g is the ratio of hea generation to the hea cgpadty and H(T-T_) is the

Heavyside step function. As discussed above, we @mnsider Q to be a onstant. The
problem is defined over thedomainsx e %" andt e 9.

This smplified form evidences the convedion term in the energy equation (Eg. (6)),
where we natice that in ou case the velocity is not independent of temperature, as
generally assumed in convedion daminated hea transport, bu is couded to the
temperature profile through the ntinuity equation (Eq. (4)). To alow further
anaytic treament of the problem, we now make the alditional assumption that the
fluid behaves asan ided gas, i.e.

p=pRT (7)

where R is the gas constant of helium. The model problem spedficaion is now
complete. Theinitial condtions are given by:

T(t=0)=Te for 0< X <Xqo
T(t=0)=Tp<Ts for X> Xq0

where X, is the locaion d the quench front at time t=0. The symmetry boundiry
condtions at the center of the cdle ae given by:

T o
@( x=0
v(0,t)=0

Equations (5) and (7) give arelation between the gas density and its temperature. By
appropriately adding Egs. (4) and (6) asinglerelationis obtained betweenvand T:

ov
N _ oH(T - 8
T =QH(T-T,) (8)

which shows, as expeded, that becaise of negleding inertia the fluid velocity
responds immediately to the changes in the fluid temperature. Equation (8) can now
be used to eliminate the velocity.



Having eliminated bah the density and \welocity in terms of temperature, it is now
straightforward to find an analyticd solution for the temperature profile. Since the
model contains no dffusion, the quench propagates with the heaing-driven expansion
of the helium bubde @ntained in the initial normal region. The temperature profileis
astep function at the location d the moving front. Ahead o the front the temperature
is equal to the unperturbed temperature T,, while behind the front the profile is
uniform andis given by

T(xix< X,)=T,+t 9).

The quench propagation spedl is then cdculated from Eq. (8), integrating the
temperature profile. The normal front speed is given by

wm_ Q
Vit == Xy (10)

which is constant in time. Here, we use the superscript “an” to indicae the exad
anaytic solution d the model problem. Observe that the value of the wnstant is
determined by the heaing rate, material properties, and depends on the initial normal
length X,,. Also nae that:

VA =v(x = X, ,t)

the analyticd propagation speel is identicd to the fluid velocity at the front. The
instantaneous position d the normal front is finally olbtained by integrating Eq. (10),
andisgiven by

X = xqo(u Tgtj (12).

cs

3. Numerical solution of the model problem

Consider the model problem defined in the previous ®dion. Here we demonstrate the
effed of numericd errors on the quench propagation welocity. For the numericd
solution d the model problem we have used the two algorithms introduced ealier
with gobal first and seand ader acaracgy in time and space respedively.

In Fig. 4a) we present the temperature profile & obtained by the first and second
order schemes using the inpu data of Tab. 2. The solid line in this figure represents
the analytic solution oldained in the previous fdion. Observe that the temperature
distribution oliained by bdh schemes clealy shows the pathoogy of non
convergence. Namely bath algorithms $ow a smeaed front and an acceerating
normal zone. Figures 4(b) and 4(c) show respedively the helium density and velocity
profiles for this case. Again, the nonconverged solutions siow a much dfferent
behavior with aimost an arder of magnitude larger flow velocities. Finally, in Fig. 5
we present the normal front locaion (symbals) as a function d time. The exad
anaytica solution (solid straight line) is aso shown for comparison.



Let us try to understand the nonconvergence behavior of the numericd schemes. As
shown in App. 1any numericd scheme acarate to order n-1, including those used
here, has an associated error that appeas in the equivalent differential equation [9],
given by

oT
an @(n

&= +o(Ax”,At”)

where the parameter o, is propational to a cmbination o the (n-1)" power of the
space ad time steps. Thus, a first order acarate scheme introduces a numericd
diffusion, while asecond ader scheme results in numericd dispersion. This well
known behavior appeas in the different temperature profiles generated by the first
and second ader schemes (seeFig. 4@)), where the former smeas the sharp front and
the latter produces oscill ations at the normal front. However, excessve diffusion and
dispersion aone caxna explain the exporential front acceeration.

As fown in Appendix 2, the numerica error aso results in an addtiond propagation
velocity. In the cae of the model problem the alditional velocity V,q asociated with
the numericd discretization can be computed a priori using the equivalent differential
equation d the scheme. In particular the following asymptotic expressons for the
two schemes considered here ae obtained in App. 2

first order algorithm:

V= /(TQI%T') (12)

where:
v
a, = —E(Ax+vAt) (13

seoond ader algorithm:

) o , N3
Vs = {[ Z(Tcs _ To)j 0‘3] (14

2 2
a, = X(sz Y gt j (15).

Note that the alditional speed introduced by the numericd scheme is constant in bah
cases.



In the cae of the first order scheme it is possble to verify that indeed the aldition o
the numericd diffusion causes the problem to dverge. We have solved the equivaent
differential equation for the first order scheme - including the numericd error given
by Eq. (13) abowe - using the second ader scheme. We have thus smulated the
asymptotic behavior of the first order scheme including its first truncation term. The
results of this gudy are reported in Fig. 5 (dotted lines) where they are compared to
the adual performance of the first order scheme (symbals). Note the good agreement
between the two solutions, which converge asymptoticaly towards the same behavior
(at the smallest mesh spaang the dashed curve caina be distingushed from the
symbals). This proves that the front accéeration is caused by the numericd error, at
least in the first order acairate scheme.

The eplanation for this fad lies in the couped nature of the system of equations
uncer consideration. The cnstant propagation speed V, for the model problem is
obtained oy when the total helium massin the normal zoneis a onstant. In the cae
of the numericd solution the alditional front velocity V,q causes the front to advance
the helium expulsion and to enguf new helium massin the norma zone. To satisfy
the @nstant presuure @ndtion, the fluid expulsion velocity from the normal zone v
must therefore continuously increase, causing an acceeration d the quench front.

The front propagation welocity for the eguivaent differential equation d the
numerica scheme is given by the sum of the helium expulsion weocity at the front
location and the additional speed of numericd origin:

VALRSVELAVS (16)

where the superscript “num” is used to denote the solution o the eguivalent
differential equation d the numerica scheme. We dready know V,, , hence to solve
Eqg. (16) we ned next to find the helium expulsion welocity V™. This can be dore by
approximating the temperature profile in the normal region, just behind the quench
front, using a piecewise linea profile. Using this approximate profile in Eq. (8) we
obtain the foll owing expresson for the expulsion velocity:

Xnum B Xan Q
num an q q
v = V] +flo{1+ T—tj (17)
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where V" and X;" are given by Eqgs.(10) and (11), respedively. The system of Egs.
(16) and (17) isclosed bythe relation between the front paosition and its velocity:
dx num
Vnu"n — q
d dt

It is more wnvenient to solve Egs. (16) and (17) in terms of the relative aror on the
normal front location ¢, defined as:



num an
_Xe —Xq

&= an
Xq

Equations (16) and (17) can be combined and rewritten in terms of ¢ asfollows:

%—i V. +Va 1+I0({1+gtj
dt x| e e T, (18)

Thisisan ODE for ¢ with theinitial condtion g0)= 0. If weretain orly the dominant
terms at large times we obtain the foll owing approximation:

de ¢ Q
E = ? IO{T_ ] (19)

CcSs
with the solution:

= ol (20

The mnstant & must be determined by matching Eq. (20) to the solution d Eq. (18)
inthelimit t —> 0. After astraight forward cdculationit can be shown that:
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& = :
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Now, recdli ng the definition d &, we obtain from Eq. (20) an analytic expresson for
the position d the normal front which includes the dfeds of the numericd
discretizaion error:

1 2
num an 7[Iog(Qt/TS)] (21)
XM= X34Vt e

This is the desired result. Note the exporentially growing term in Eq. (21). That is,
V,"" does nat smply equal to the sum V" +V,, as would be obtained from the

analysis of the numericd error in the linea case (i.e. negleding the mugding with the
continuity balance). This would result in an error term which increases linealy in
time. What we have foundis a much more severe situation as can be seen in Eq. (20).
Three ontributing fadors result in the rapidly growing error term appeaing in this
equation: 1) the constant multi plying the eror term V_, is adired consequence of the
numerica discretizaion error, 2) the term appeaing in the exporentia is diredly
related to the moving source term, and more spedficdly the moving step function
locaed at the leading edge of the source term, and finally, 3) the fad that the aror
term is a nontlinea function o time is attributed to the nonlineaity of the model
problem.

The estimated front paosition gven by Eq. (21) has been computed for the cae of the
model problem, and is reported in Fig. 5 (dashed lines) for comparison with the



results of the numericd simulation. The agreament between the dashed lines and the
symbolsis good. In addition, the results of the numerica simulation and its analyticd
approximation cet closer asthe limit of small Ax is approached (the eror estimates for
the numericd schemes, Egs. (13) and (15), are only acairate in the limit Ax — 0).

In summary, we have shown that Eq. (21) approximates well the behavior of the
equivaent differential equation d the numericd scheme. We would like to reiterate
that Eq. (21) properly takes into acmurt the physics behind the numericd solution o
the model problem, namely the interplay of the quench front advancement in time and
the fluid mass expulsion from the quench region. The method developed is generd,
and can be gplied to an arbitrary solution scheme oncethe alditional front speed Vo4
originated by the truncaion error is known.

4. Numerical convergence criteria for quench simulation

The study d the numericd solution d the model problem performed in the previous
sedion hes given considerable insight on the dfed of numericd errors. These gopea
as an additional front propagation speed which, in turn, is at the origin o the non
physicd and rapid front acceeration. It can be shown that the cnditions of the model
problem are analogous to the small presare rise limit in the propagation d a red
guench [4]. Therefore from the point of view of the accragy of the physics
modelling we exped that the conclusions readed in the previous ®dion also apply
(at least approximately) to more redi stic quench scenarios represented by Egs. (1)-(3).

From the point of view of the numericd schemes used, we dready remarked that both
schemes (upwind and central differencing) are not the doice of reference for
convedion daninated problems. Severa algorithms have been developed in the past
yeas, generaly applicable to compressble and incompressble, viscous and inviscid
flow (see for instance Refs. [10-13] for some finite volume and finite dement
algorithms and the general overview in Ref. [9]). Most of these methods are epli cit
for reasons of computational efficiency. Some taylored artificia diffusion, high ader
dispersion a disspation is generaly added to stabili ze high frequency modes. The
addition is either made based on oerating experience on the dgorithm [9,10, or can
be justified in the frame of the general derivation d the method[11-13], andisusually
spedfic to the smulation d the flow. Only more recently generaly applicable, well
stabilized methods are being poposed [14], paentialy cgpable of treaing very
different situations in a cnsistent frame.

In fad in the most general solution d quench propagation [5], as discussed in the
introdwtion, we ae onfronted with strong therma couding between the
supercondcting cable and helium making the problem intrinsicdly stiff. Furthermore
material properties and source terms are highly nonlinea. Finally, a strong
convedion term is present only in the mass and energy balances, while the other
equations are dominated by dffusion a source terms. To ded efficiently with these
feaures low order, flexible, adaptive implicit methods have been preferred so far [2-
5,19. Indeed, the schemes used at present for this purpose have & most second ader
acaracgy, and therefore the study besed here on upwvind and centra differences is
diredly applicable.
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In order to oltain a simple numericd convergence citeria for the problem of quench
propagation we propcse to impaose atolerance on the aror in the locaion d the
normal front at the end o the smulation. That is, we must have

8(t:tmax) < gmax’

where ¢, is the speafied error tolerance t_, is the time scde of interest during the
numericd simulation, and ¢isgiven by Eq. (20). Thiscriteria can easily berecast in a
relationthat involvesV_, given by.

Vad

1
- E[IOQ (Tmax/Tcs)]2

< Emax® (22

q

where we have replacal the product Q t by T Which is the maximum (hot-spot)
temperature reated duing the quench and is usualy a spedfied allowable for the
operation d a il. This is the desired result for the mnwvergence citeria of the
numericd solution. Notethat V_,is diredly related to the space ad time steps used in
the numericd discretization (seeApp. 2.

In order to demonstrate how Eq. (22) can be used to appropriately choase Ax and At,
consider atypicd quenchwithV, =10m/s, T,=5K, T, = 10K, Q=10K/sand T, =
100K. Setting for instance a5 % tolerance on the front location (¢, = 0.05 we find
that the limit condtion onthe alditional quench speed of numericd origin is V,, <
0.035m/s. Depending onthe scheme we can nov determine from Egs. (12) and (14)
the space ad time step that would result in such an additional front speed. We can
asume that the helium velocity is approximately equal to the propagation spedl, i.e. v
~ 10m/s. If we suppacse in additionto operate & unit Courant number, i.e. At = Axlv,
we obtain that the first order scheme must have Ax < 0.1 mm and At < 10 us, oktained
using Egs. (12) and (13). In the cae of the seand ader acarate dgorithm, using
Egs. (14) and 15we find Ax < 5 mm and 4t < 0.5 ms. From our dired experience
[15], this is in fad the range of mesh sizes that are required in order to oktain a
converged solution d the quench process

5. Conclusions

In this paper we have discussed and analyzed the process of NQB observed in the
numericd solution d quench propagation in supercondicting magnets. Spedficdly,
we have shown that exporentially growing error terms are present in the numericd
solution d the normal front pasition. The caise of such urstable solutions is $rown
to be due to the discretization error, the norlinea nature of the model, and the
boundry layer motion at the quench front. Analytic relations are presented to
minimize NQB when attempting to numericdly solve the quench problem.
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Tablel. Data for the quench propagation experiment of Sed. 1. The condwtor and operating
condtions are similar to the experiment of Ando et al. [6]. Particular parameters (marked
by an asterisk) have been adapted to show higher sensitivity to the numerica solution.

Conductor geometry

Strand dameter (mm) 0.98
Number of strands 18
NbTi cross ®dion (mm2) 3.4
Copper cross &dion (mm2) 10.2
Helium cross ®dion (mm2) 13.3
Hydrauli ¢ diameter (m) 0.069*’
Copper resistivity (QQm) 6x 10%°
Copper thermal conductivity (W/m K) 16

Operating andcritical condtions

Magnetic field (T) 7
Temperature (K) 4.2
Presaure (MPa) 1.0
Massflow (g/s) 0.0
Criticd temperature (K) 6.24
Criticd current (kA) 3.0
Operating current (kA) 1.8
Current sharing temperature (K) ~

Table2. Parameters used in the numericd solutions of the model problem.

Initial temperature T, 1.0
Current sharing temperature T 1.25
heaing rateratio Q=q" / pC 1

Initia normal length X,o 1.0
Analyticd quench velocity V, 0.8

13



temperature (K)

Figure 1.

14

9P r

70 |

50 P

N
o

20

80 |

60 |

30

10 |

0.5 1 15 2 25 3
x (m)
Temperature profiles computed at different times (indicated on the aurves) for the quench

evolution in the cae defined in Tab. I. The solid line represents the converged solution
obtained with a second order algorithm and is compared to non-converged profil es (dashed

lines) obtained with afirst order algorithm on a fixed mesh size Ax of 1.25 x 10% m, time
step Atof 0.1 x 10°s.
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@

12

wor N first order

second order

oo

temperature (K)

15 20 25

density (Kg/m**3)
N
(o))

x(m)

(©)

W
wn
T

w
T

g
3
T
~
n

velocity (m/s)
N

15 20 25

x(m)

Temperature (a), density (b) and velocity (c) distributions at different times (indicated on
the arves) computed with the first (dotted lines) and seand (dashed lines) order

schemes for the conditi ons of the model problem taking a spacestep Ax of 5 x 10%and a

time step At of 5 x 10°. The exad, analytica solution is also shown for comparison (solid
lines).

17



Figure 5.
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Appendix 1 Space and time discretization and numerical error

Equations (1)-(3) form a nortlinea hyperbdlic system. Apart from nonlineaities, the
main feaures of such a system are onveniently studied using the simple scdar
equation:

T L, (1.D).
a &

which hes the same structure a Eg. (6), defining the model problem. Here, we
consider standard first and second ader acarate dgorithmg[9] with the following
difference ejuations (subscripts indicate mesh pants in space ad superscripts dand
for time):

first order methodimplicit in time:

n+1 n n+1 n+1
L A N

=0 1.2
At AX (1.2

seoond ader methodimplicit in time:

-I-in+1_-rn VTn Tn -I-n+l -I-ITII B

i i+1 i-1 i+1

At 2 2AX 2 2AX

0 (1.3.

we show here for completenessthe erors associated with the @bove gpproximations as
they can be obtained using the equivalent differential equation d the schemes[9]. At
agiven time step we have:

n

At ATl
6 a°

ae F
2 A2

T At
a

+o{at’)

and at agiven mesh pant we can write the foll owing expressons:

AX? FPT| A T .
T,=T- A—‘ > o 6 a0 +0{Ax*)
2
Ti+l:Ti+Ax£ +AX 51- Ax° 631 +0(Ax4).
Xl 2 & 6 X

If weinsert the dowe relationsin the Egs. (1.2) and (1.3) wefind:

first order method

£+V£—X(AX+VA'[) zal
X 2

. -0 (1.4)

send ader method
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ar o v, vatZ]ﬁT o T
—+V—+—| AX" + —— + 0| AX =0 1.5.
a X 6( 2 o O< )o’x“ (1.9

where the foll owing identiti es have been used in deriving Egs. (1.4) and (1.5):

a__
a X
T LT
7 =V 2

a X
T T
—3 -V 3
a X

The last two terms on the left hand side of the eguivalent differential equations
represent the aror introduced by the numericd discretization. For both methods the
solution d the discretized form of Eq. (1.1) is thus equivalent to the exad solution d

the following modified problem:
ar or T (1.6

—+V—+a, =0
a X X"

where for the first order acarate method
n=2

a, = —%(Ax+ VALt)

and for the seaond ader acarrate method

n=3

2 2
oo 228
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Appendix 2 Calculation of additional front velocity for the numerical
solutions of the model problem

Consider the governing equation for temperature in the model problem:

oT 0T
E"'VE:QH(T_Tcs) (2.D.

By virtue of the results of App. 1,any numericd solution d (2.1) is equivaent to the
integration d amodified equation d the foll owing form:

oT oT oT
— tV—_+a
ot ox "

_ B (2.2
o QH(T-T,)

where the leading ader numericd error has been written as a space derivative
contribution o order n (n-1 is the global order of acaracy of the method). The
coefficient ¢, will be in general related to the n-1 power of the space ad time steps
used in the discretizaion.

The exad solution d Eq. (2.2), and therefore anumerica approximation to Eq. (2.1)

produces an additional propagation speed for the quench front (V_). To prove this
statement consider the foll owing coordinate transformation:

F=x-Vt

The thange of coordinatesin Eq. (2.2) gives the foll owing resullt:

ar ar T q”
E+(V—Vq)§—§+a’na—§n:EH(—§) (23)

We now make the assumption that asymptotic behavior is readed, and therefore in
the immediate vicinity of the quench front the temperature profile in the moving
reference frame does not change in time. This justifies negleding the time derivative
term in Eq. (2.3). Thus, we have

or oT

-V, —+a,—=0 for £>0 2.4
ad é’é: an ﬁfn é: ( )
or T q”
-V, —+ = for <0 2.5).
ad 55 an afn pC 5 ( a
where by definition X . The solution d these ejuations, and the jump

condti ons on the temperature and its derivatives at the quench front are speafic to the
particular value of n. Here, we present the results for n=2 (first order acarate
algorithm) and n=3 (second ader acarrate dgorithm).
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First order accaurate algorithm (n=2).

In this case the general solution d the homogeneous Eq. (2.4) is:

Vad

T=A+Ae" (2.6)
whil e the general solutionto Eq. (2.5) isgiven by

Vad

E+B, +Be™ 2.7

T--_4
pcvad

where A, A,, B,, B, are abitrary integration constants. The aymptotic boundary
condtions are given by:

T(§ =) =T,

T(0) =T,

%(é—ﬂﬁ)ﬂ
e
Fle-0)=-Ze-0)

where the first two boundry condtions give the value of the temperature & two
known pants (in the nonperturbed state and at the front), the third and fourth
condtions are used in order to avoid a diverging solution, and the last condtion
asaures continuity in the first derivative of the temperature & the front location. These
5 condtions are used to eliminate the 4 arbitrary constants and to determine the
additional parameter V.4, given by

q‘/// a2|
Vy=.—F"= (2.8).
’ pC(Tcs _TO)
Seawond ader accurate algorithm (n=3).
The general solution d the homogeneous Eq. (2.4) is:
T=A1+AzeJ‘:+AseJ’: (2.9
whil e the general solutionto Eq. (2.5) is obtained similarly as:
Vad Vad
o e[

T=- +B +Be'®™ +Be'™ 2.1

V., ¢+B +B, 3 (2.10
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where A, A, A, B, B, B, are again arbitrary integration constants. The set of

boundry condtionsfor thiscase ae:

T(E>»)=T,

T(0) =T,

THeom)=0
Tre>=)-0
St
e 0)=S{e0)
e 0)=Zi(e0)

where with resped to the previous case, additional regularity condtions have been
added onthe second divative terms in the temperature distribution. The resulting

expressonfor the alditional front speed V4 is given by

1/3

(2.19).
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Appendix 3 List of Symbols

diffusivity

condictor cross gdion

fluid (helium) cross ®dion

spedfic hea

average fluid (helium) spedfic hed at constant volume

averaged spedfic hea of condwctor and helium codlant
conduwctor spedfic hea

fluid (helium) constant volume speafic hea

hydrauli c diameter

time step

spacestep

relative aror onthe front position

frictionfador

Gruneisen parameter of fluid (helium)

Heavyside function

thermal conductivity

fluid (helium) presaure

initial presaure

heding rate per unit volume

fluid (helium) density

gas constant

condwctor density

temperature

time

current sharing temperature (transition supercondicting > normal conducting)
fluid (helium) velocity

approximated fluid flow velocity as computed numericaly
additional propagation welocity of the normal front (due to numericd errors)

velocity of the normal front

E909000002PR

&
X

G

o

()

A 4D TV 0T T XIS "o

3

_Q<SD<<:<
> 5

S

o

velocity of the normal front as computed analyticdly

=]
c
3

velocity of the normal front as computed numericaly

o)

Pre

moving coordinate
space oordinate

pasition d the normal front

><><

o)

X
E

e}

pasition d the normal front as computed anayticaly

X4 ™ postion d the normal front as computed numericaly
Xqo  initia position d the normal front
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