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1. Introduction

Stabilit y and protection are two fundamental aspects of the physics of superconducting cables
that have deserved much attention since the first practical application of superconductors in
magnets[1]. Both are still of major concern for today’s designer: cable stabilit y is one of the
factors determining the reliabilit y and availabilit y of the magnetic system, while protection in
case of quench is of paramount importance in magnetic systems of large stored energy. The
natural outcome of this concern is the effort towards the definition of a design code that gives
an optimised cable design, satisfying stabilit y and protection constraints. Some examples of
how this has been translated into practice for force-flow cooled, cable-in-conduit conductors
(CICC’s) can be found in Refs. [2-4]. Simple analytical models of the stabil ity margin and
quench evolution were used there to deduce the cable design with the maximum operating
cable space current density, i.e. the minimum cable cross section for a given operating current.
In the meanwhile understanding of both processes has improved, and new conductor operating
conditions (superfluid helium) and layouts (hybrid cables with co-wound stabili zer, parallel
cooling channel) are considered. This paper starts with a summary of design procedures
commonly used for stabilit y and protection of CICC’s and already reviewed in Ref. [4]. The
aim is then to update these results based on the latest evolution of knowledge and designs. All
symbols used are collected in Table 1 for clarity. In addition most of them are coherent with
the notation of Ref. [4].

2. Stability

2.1 Limiting current and helium heat sink
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We wish as the first step to design the CICC that will operate at maximum current density
withstanding a given energy deposition over a given duration and length. This last is indeed
nothing else but the definition of the energy margin 6 E of the cable. Usually, for reasons of
safety margins and simplicity, the energy input is assumed to take place over a long (infinite)
length and a short (infinitesimal) time duration. This is representative, for instance, of the
energy deposition through AC loss caused by electromagnetic transients such as plasma
disruption in a fusion experiment. In reality the perturbation spectrum covers a wide scale of
lengths and times, a fact that must not be forgotten in the detailed analysis of the cable
stabilit y. However, the choice of a long lenth and a short time is a worst case and therefore
appropriate for design purposes.

The basic tools for the design of a stable CICC are the two concepts of the limiti ng current
and of the heat sink provided by the helium. In the original ideas developed by Dresner [5] the
stabilit y margin of a CICC is approximately equal to the total heat sink for operation below a
limiting current, a regime also called well -cooled after Schultz and Minervini [6]:7 7
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Above the limiti ng current, in the ill -cooled regime, the stabilit y margin is of the order of the
strands heat capacity plus the energy transferred to the helium during the heat pulse @ e and the
recovery time @ r [7]:

A B C D EE FGHH HIJ re

opcs
p

csT

opT SCstab

SCSCstabstab hdtTT
d

K
dT

ff

CfCf
E KK

0

4
(3)

where we note for completeness that the second integral above is usually small (negligible in
our assumption of instantaneous energy deposition). The definition of the limiti ng current is a
direct consequence of the balance of Joule heat generation and heat removal, obtained after
Stekly [8] as: L M
I
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or, using the material fractions in the cable to obtain an expression of the cable space current
density [4]:
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The power balance implied by Eq. (4) expresses a condition for recovery, and is referred to the
end of the heat pulse. In the interpretation of Dresner[5] and Schultz and Minervini[6] below
I lim the full heat sink of the cable can be used because the strands can recover from an arbitrary
temperature excursion, while above I lim recovery is conditional. Hence the heat sink provided
by the helium is eff iciently used only in the well -cooled regime, which is therefore
characterized by an energy margin much larger than in the ill -cooled regime. This ideal
situation has been schematically represented in Fig. 1. The sharp rise in stabilit y margin
located at the limiti ng current is obviously the optimal design point because at the limiti ng
current the best possible use is made of the helium available. The cable is designed fixing a
tentative value of the material fractions and using Eq. (2) to determine the Tcs that provides the
necessary heat sink. A value of Tcs corresponds to an operating current density in the
superconductor and thus, at fixed material fractions, in the cable space. This current density
must be matched to the limiti ng current density of Eq. (5). Scanning the range of feasible
material fractions the optimum selection can be found.

The main unknown of this procedure is the value of the heat transfer coeff icient h. As
discussed by Dresner [5] the heating induced flow in helium affects the formation and
evolution of the boundary layer. The determination of h becomes in principle coupled with the
external and Joule heat input. The approach proposed in [5] and [9] is to use a scaling law
empirically fitted to data. The limitation of this method is that an extrapolation becomes risky
in the regions where we lack experimental data on the cable configuration. A less rigorous
approach is to design using a value of h directly derived from a data base of experiments.
Typical values for h over a wide range of cables and operating conditions have been compiled
by Lue [10]. They range from 400 W/m2 K to 1400 W/m2 K, with an average of the order of
1000 W/m2 K.

The simple procedure outlined above is very useful for design and optimisation. It is however
much simpli fied and should be used with caution. In particular this model makes two basic
assumptions that we wish to challenge:[  the recovery condition Eq. (4), originally developed for bath cooled magnets, implicitl y

states that the helium temperature has not changed during the transient;[  the cable properties are assumed to be homogeneous, and in particular the current
distribution is taken uniform in the cable cross section.

The assumption of constant helium temperature can be waved at the cost of littl e additional
complication as shown in the next section. Current distribution in pulsed field experiments
has been proven to have a serious impact on the cable stabilit y and its current carrying
capacity. Here we will address current distribution effects only from the point of view of the
influence on the energy balance in the cable cross section.

2.2 Helium bath temperature changes

The amount of helium present in the cable space of a CICC is limited, and any energy
deposition will cause the bath temperature to increase. During the thermal transient the helium
and strand temperatures will follow complex trajectories, but in case of recovery we know that
the end condition is of equal temperatures, both below Tcs. We call this final value the
recovery temperature Trec [11].
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As stated previously, the recovery condition implied by the power balance of Joule heat
production and heat removal used to derive Eq. (4) must hold at the end of the thermal
transient. At this time the helium temperature is already approximately Trec because littl e extra
energy flows into the heat sink during the last phase of the recovery. Hence the power balance
to be satisfied for recovery to take place is the following:\ ]^
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which evidences the fact that heat transfer at the strand surface takes place under a reduced
temperature difference. This gives the following value for Trec:
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As evident from Eq. (7), the recovery temperature varies as a function of the operating current.
In fact at the limiti ng current given by Eq. (4) we have that Trec=Top which demonstrates that
the helium is not allowed to absorb any significant heat otherwise the power balance cannot
be satisfied. At currents below I lim a smaller temperature difference is necessary to satisfy the
power balance condition and Trec increases above Top, thus giving room for using the helium
heat sink during the transient. Optimal usage of the helium heat sink is obtained when the
recovery takes place even in case of helium temperature increase up to Tcs, the maximum
possible value. This condition, which we can express as Trec=Tcs, can be conveniently
translated into a definition of a lower limiting current:c d
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We stress that the full heat sink in the cable cross section e Emax is completely used only at a
current equal or below I low

lim . A transition takes place between I low
lim  and I lim, where the energy

margin decreases gradually from the maximum value e Emax

 
to the ill -cooled value given by

Eq. (3). In the transition regime e E decreases proportionally to the square of the operating
current, as shown in [11]. Figure 1 shows a comparison of this behaviour to the simpler well -
cooled/ill -cooled model discussed in the previous section.

The interest for the designer is that the value of the lower limiti ng current and of the energy
margin in the transition region can be expressed using the cable fractions and the cable space
operating current density. After [4] and [11] we write that the cable space operating current
density at the lower limiti ng current is:f g h i f g
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As demonstrated in [11], if we take into account the energy margin transition between I low
lim

and I lim the cable design with maximum cable space current density is obtained operating
exactly at the lower limiti ng current. This can be intuitively understood as a consequence of
the fact that below I low

lim

 
we have an excess of stabili zer compared to the one necessary to use

the maximum heat sink, while above I low
lim  the stabilit y margin is lower than the maximum

available, and the helium inventory is not properly used for stabili zation. In summary, Eq.(9)
should be used in the place of Eq. (5) of the previous section. A cable designed using Eq. (9)
will have more copper than the one obtained from Eq. (5), but will also take into proper
account the recovery condition, thus requiring no safety factor.

A final result of this analysis is that we can derive a limit for the maximum useful ratio of
stabili zer to superconductor in the strand. This maximum ratio is reached when the lower
limiti ng current is equal to the operating current corresponding to the minimum requested
temperature margin l T=Tcs-Top. Using Eq. (9) we can write this condition as:
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Adding stabili zer above the ratio given by Eq. (10) will have the detrimental effect of
reducing the superconductor fraction and necessarily the operating current density in order to
maintain the specified temperature margin. As an example the limit above is of the order of 2
for a Nb3Sn strand in a 12 T field with a temperature margin of 2 K, a value which is in any
case above the typical manufacturing range. For a NbTi strand, operated in a 7 T field with the
same temperature margin, the typical maximum useful copper:NbTi ratio is about 5.

2.3 Current distribution effects

Current distribution is not necessarily, possibly never, uniform in a superconducting cable. A
current imbalance can have several origins, such as a difference in the series resistance in the
cable (joints or high field behaviour of the strands), or a difference in the inductive voltages
on the strands during ramping (field variations along the cable length or transposition errors).
We can describe the current distribution using the density of strands � (i) carrying a
normalized current i=I/Ic, a function defined such that its zero-th order moment with respect to
i is the number of strands and the first moment is the average normalised current carried by
the cable iop= Iop/Ic. The density function must necessarily be zero at the criti cal current. In
fact �  is zero for any i > imax, the normalised current carried by the most overloaded strand.

The first and obvious effect of a non-uniform current distribution is that the strands carrying a
current above iop have less margin, compared to the average, and thus are more prone to
quenching. During a thermal transient these strands are the first to start Joule heating, while a
current transfer process takes place with a characteristic time � i. We can identify two limiti ng
conditions determined by the comparison of the current transfer time scale � i and the recovery
time scale � r. In the case � i >> � r the normal strands can produce Joule heat for a very long
time, eventually driving the whole cable normal. In the opposite case, when � r >> � i, the
current transfer can be considered instantaneous and the cable acts as if it had a uniform
current distribution. In practice in the first case, � i >> � r, the cable energy margin is equal to
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the energy margin of the strand that is carrying the largest current � E(imax), while in the
opposite case the energy margin is the same as for a cable with uniform current density, i.e.� E(iop). These two limiti ng cases provide minimum and maximum bounds for the cable
energy margin. A non uniform current distribution and a finite current transfer time always
result in an energy margin below the maximum value, because of the increased Joule heating
produced during the current transfer process. The actual location of the energy margin
between the two bounds depends on the details of the current distribution (the function � ), and
on the current transfer and recovery process.

This situation has been sketched in Fig. 2, where we show an hypothetical current distribution
function � (i) and the corresponding upper and lower bound for the energy margin. At a given
operating fraction iop the energy margin (dashed line) must be between the upper bound given
by the collective energy margin and the lower bound given by the worst strand energy margin.
As shown there, the lower bound is obtained from the collective energy margin by a shift of
imax-iop in the current fraction. Note that this shift is not necessarily a constant throughout the
operating current range, but can vary as a function of time and current. A behaviour similar to
the one depicted in Fig. 2 was indeed observed experimentally[11a] on a CICC with formvar
insulated NbTi strands used in the Demonstration Poloidal Coil DPC-U1. The energy margin
reported there was different by one order of magnitude depending on whether the stabilit y test
was performed before or after a sequence of short heating pulses, and the difference was
attributed to the fact that a limited normalcy can contribute to a better current distribution
among strands.

As we stated previously, the current distribution is generally not known in a CICC. Hence the
design must be made tolerant to an arbitrary current distribution through the capabilit y to
redistribute the current excess from overloaded strands. To demonstrate that this is possible
we must first derive an estimate of the time scales � r and � i. A good approximation of the
characteristic recovery time is given by the time constant of the temperature difference
between strands and helium:
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and for a typical CICC we have that � r 
�  1.5 ms. The current transfer time is determined by the

geometry of the cable as well as by the transverse and longitudinal resistances. An estimate of
the current transfer time from a quenched length Lq is [12]:
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where L’  and M’  are the self and mutual inductance per unit length of the strands, R’  is the
strand resistance per unit length. The current transfer length Li is given by:
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where we introduced the interstrand conductance per unit length G’ . Following our previous
discussion we must make the current transfer time as small as possible so that the energy
margin approaches the collective, uniform current density limit . After Eq. (12) this
corresponds to a negligible current transfer length compared to the quenched length. The only
free parameter in Eq. (13) is the interstrand conductance, which we need therefore to make as
large as possible compatibly with the requirement of low losses. In fact, we can use Eq. (13)
to compute the minimum value necessary to design a CICC with the fastest current
redistribution:  ¡ ¢G

L Rq

1
2 (14).

If we take typical values for the self and mutual inductance and longitudinal resistance of a 1
mm thick, copper stabili zed strand in a large CICC bundle (2(L’ -M’) £  1 ¤ H/m,
R’  ¥  2 m¦ /m), and we take an estimate of the minimum conceivable normal length Lq §  15
cm, of the order of the minimum propagating zone (MPZ) for a large size CICC, we obtain
that the minimum value of the interstrand conductance per unit length is of the order of 30,000¦ -1/m. Typical values obtained in CICC cabled with coated strands range widely, also because
of the random definition of the number and geometry of the interstrand contacts. Values
measured by Takayasu [13] on Cr coated Nb3Sn strands are of the order of 100,000 ¦ -1/m and
seem to provide a bottom estimate, indicating that a CICC can indeed fulfill t he condition Eq.
(14) on the current transfer length when the strands are not insulated. The current transfer time
is then given by the second of Eq. (12), i.e. with the choice of parameters above ¨ i §  0.5 ms.
We see that ¨ i and ¨ r  are of the same order, indeed making the estimate of the cable energy
margin a diff icult task. However both values are small , so that in the energy balance we can
neglect the Joule heat produced during the current transfer and recovery phases when
compared to the heat sink available. Therefore for a single event the energy margin of the
cable is close to the ideal homogeneous value © E(iop) discussed previously, the upper bound
for the energy margin in Fig. 2. We stress again that this is true only if the condition on the
transverse conductance, Eq. (14) is satisfied. A striking counter-example was given by the
DPC-U coils already mentioned above, wound using a CICC with formvar insulated strands
[14]. Owing to the very low interstrand conductance the current transfer time was extremely
long (up to several hours), so that the energy generated by the Joule heating of a single strand
was suff icient to eventually quench the whole cable.

So far we have examined the effect of current distribution from a collective point of view, i.e.
in terms of the overall cable energy margin against a uniform energy input in the cable cross
section. However, collective behaviour is not the only aspect to be considered in a cable with
non-uniform current distribution, especially when dealing with pulsed magnets. The current
distribution function ª  can change in time, for instance during a ramp of the operating current.
In this case we expect both the average value iop and the width imax-iop to vary. Eventually a
single strand can hit the criti cal surface or reach conditions where its energy margin is so
small that the natural perturbation spectrum induces a localised transition. A behaviour of this
type was shown by the US-DPC solenoid, that demonstrated an unexpected ramp-rate
limitation when operated above the limiti ng current [15]. Based on these results, on dedicated
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subsize experiments and on a much simpli fied model[16], Takayasu showed that cables
operated in average below their limiti ng current do not suffer from severe ramp-rate
limitation.

In summary, we can conclude that a CICC should be designed below the limiti ng current (Eqs.
(5) or (9)), taking care that the interstrand resistance is suff iciently small (Eq. (14)) to
guarantee fast current distribution. Provided that these two conditions are satisfied, we expect
that the full cable heat sink is used for stabili zation.

2.4 Hybrid CICC’s

For large scale applications the stabili zer fraction needed for protection can be larger than the
one necessary for stabilit y. A cost-attractive alternative to the use of high stabili zer to
superconductor ratio is then the use of co-wound stabili zer strands. In this case an hybrid
cable CICC is obtained. For such a configuration we can ask ourselves how much the extra
strands will contribute to stabilit y, and in particular in the balance of power generation and
removal. This issue, depending in principle on the current redistribution length and times
discussed in the previous section, can have a significant cost impact on magnet construction.

Experiments performed by Mill er [9] using a resistive heater in a small size CICC have shown
that additional copper strands are not eff icient in the initial current sharing to decrease the
Joule heating and thus displace the power balance. The limiti ng current for the cables tested
agreed with the value obtained taking the copper cross section in the strand only, and ignoring
the co-wound strands. Nozawa et al. [16a] performed similar experiments subjecting two
small size (12 strands) CICC’s with and without copper strands to large field variations (2 T
in approximately 10 ms). Their results cannot be considered as conclusive, because the cables
had different criti cal currents owing to the fact that superconducting strands were replaced by
pure copper wires. In addition both cables showed excellent stabilit y thus restricting stabilit y
transients to a narrow range close to the criti cal current. In spite of these caveats, plotting their
results as a function of the operating density in the superconducting strands, and assuming that
the energy deposited in the cable must be proportional to the square of the field variation,
shows that the presence of additional copper strands has no significant effect on the energy
margin.

In the light of these results it seems obvious that co-wound stabili zer strands should be
neglected for stabilit y design. An intuitive justification was suggested by Mill er [9]. He
remarked that the balance recovery condition between heat generation and removal must be
full fill ed at the limiti ng current as soon as the strand is normal and thus carrying the full
current. A delay, as would be needed to transfer the current to co-wound stabili zer strands,
would cause additional heat and thus perturb irreversibly the delicate heat balance, pushing
the transient towards a quench. This qualitative explanation is based on a limited experimental
database, and lacks a sound demonstration. Although the neglect of segregated stabili zer
strands is a conservative choice, the potential for cost saving does justify further experimental
and modelli ng efforts

2.5 CICC with additional cooling channel

CICC’s are known to have a large impedance to the helium flow, a property related to their
large wetted perimeter and indeed beneficial for stabilit y. This has however a detrimental
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effect on the pressure drop necessary to circulate the helium. This limitation can be overcome
by the addition of a cooling channel with a large diameter compared to the hydraulic diameter
of the cable itself. This low impedance cooling channel can be delimited by a physical wall
[15,17,18], or simply be a space left in the cable [19]. As for co-wound stabili zer strands, we
ask ourselves whether this additional helium volume contributes significantly to the cable heat
sink. Few available experimental data [20] seem to indicate that when the channel is delimited
by a physical wall with small perforation its effect on stabilit y is negligible.

The question of the effect on stabilit y produced by a cooling channel with large perforation is
so far unresolved. In principle we must expect effects both on the heat sink and on the heat
transfer coeff icient. This last is caused mainly by the split of the induced flow between
channels, tending to decrease the heat transfer in the cable bundle, and by local transverse
flow patterns, tending instead to increase heat transfer. Simulations were performed in the
case of large perforation, taking into account the split of the flow but neglecting heat transfer
modifications that could be caused by transverse flow[20a]. The results confirm that in the
case of large perforation the energy margin of a cable with a separate cooling channel is
systematically lower than the value that would be obtained distributing the same helium
amount uniformly in the cable space. Furthermore, they show that conservative results are
found neglecting the additional cooling channel. It seems therefore appropriate in the design
phase to neglect the additional cooling channels in the accounting of the heat sink.

2.6 Operation in superfluid helium

Superfluid helium has been proposed as a cooling alternative in CICC to avoid forced-flow
cooling and thus also circunvent the problem of the large hydraulic impedance of the cable. In
addition superfluid helium has exceedingly high heat transfer characteristics, compared to
normal helium, and therefore has the potential for operation at higher current density still
satisfying the heat removal conditions expressed by Eq. (5) or Eq. (9). In fact the physics of
heat transfer in superfluid helium is rather involved [21] resulting in a peculiar behaviour of
stabilit y. In simpli fied terms a CICC operated in superfluid helium exhibits a second well
cooled regime after the first drop located at the limiti ng current. In this regime the helium is
capable of absorbing heat remaining in the superfluid state, i.e. below the transition
temperature T« . Therefore the stabilit y margin in the second well -cooled regime is given by
the heat sink between operation Top and T« , and can be significant, up to 200 to 300 kJ/m3 of
helium volume. This heat sink is available as long as the heat flux removed from the strands
during Joule heating ¬ ¬qJ  is well below a criti cal limit ¬ ¬q* , determined by the superfluid heat
transport properties and the geometry of the cable and surrounding helium:¬ ¬   ¬ ¬q qJ * (15).

An empirical design criterion, developed by Dresner [22], gives an estimate of the maximum
heat flux that can be supported by the superfluid helium. For design purposes it is useful to
simpli fy and rearrange the terms in the original expression, so to obtain the following limiti ng
value for the operating current density:® ¯ ° ±
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below which the cable operates in the second well -cooled regime.

3. Quench propagation and protection

The study of the protection of a CICC in case of quench involves mainly the following three
items:½  maximum (hot-spot) temperature, which should be below a value Tmax to limit thermal

stresses in the coil;½  maximum pressure, which is bounded to a value pmax to limit mechanical stresses on the
conduit;½  maximum induced outflow, to be used to size venting lines.

In addition the initial propagation of the quench, mostly the voltage growth rate, is of interest
to decide on the appropriate detection scheme, sensitivity, threshold and delay.

The power generated by Joule heat, and thus, in last analysis, the amount of stabili zer, is the
main parameter determining quench behaviour. Note that because of the large times involved
in quench propagation and current dump, the issue of current distribution in the cable does not
play a role. For this reason we assume that the complete stabili zer cross section is effective in
the transient, including co-wound stabili zer strands in hybrid cables.

Finally, quench propagation in CICC’s operated in superfluid helium is a field where both
experimental data and theory are lacking. Simulations suggest that the influence of superfluid
heat transport on quench propagation is negligible, mainly because the quench front is at a
temperature well above the superfluid transition T¾ . In this section we choose simplistically to
neglect operation in superfluid helium.

3.1 Hot-spot temperature

The hot-spot temperature in a CICC is determined by the local heat balance of heat generation
and heat capacity, and only marginally affected by heat transport in the winding pack. It is
therefore possible to predict accurately the maximum temperature without a detailed
knowledge of the quench propagation. We write the local adiabatic heat balance as follows:

¿ ÀdT

dt f T
J

stab
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where Â (T) is a function of the material fractions in the cable and of their temperature
dependent volumetric heat capacity and resistivity:
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with the index i running over all components in the cable. Once the geometry of the cable is
given, the function È  only depends on the temperature T. In Eq. (17) the actual size of the
cable disappears, and it is customary to write the following universal expression for the
maximum cable space current density corresponding to the specified maximum temperature:É Ê Ë ÌÍ T dT T T

f
J dt

T

T

stab
op

0

0
2

0

1max

, max

Î ÎÏ Ï ÐÑ
(19)

which provides an immediate design criterion when the behaviour of current is known as a
function of time. We can specialize Eq. (19) for the ideal case of constant current before the
quench detection time Ò det, followed by an exponential dump with time constant Ò dump:Ó Ô
J f

T T
op stab

dump

Õ Ö×ØÙ ÚÛ ÜÝ
0

2

, max

det
Þ Þ

(20)

where the integral of the current decay is equivalent to a constant current transient with an
effective duration:

Þ Þ Þ
q

dumpÕ Ö
det 2 .

Two aspects need some care in the heat balance, namely the effect of helium and of structural
components. In the definition of the function ß  we have implicitl y assumed that all
components included have the same temperature. Although this is true for the strands, it is not
the case for either helium or conduit. Significant temperature gradients can develop in the
cable cross section, which make the definition of à  inaccurate. Luckily the effect of helium is
only marginal (typically of the order of 10 %), both as a consequence of the helium expulsion
out of the normal zone and because the heat capacity of strands and structures becomes largely
dominant at increasing temperature. On the other hand the conduit can have a significant
impact, typically up to a factor 2 in the total heat capacity. A safe choice is to neglect the
conduit in the heat balance, with the consciousness that the results will be conservative. At
present only direct simulation gives insight on the effect of the temperature gradients in the
cable cross section.

3.2 Helium driven quench propagation and the q-l diagram

Mill er et al. investigated pressure rise in CICC’s and gave expressions for the maximum
pressure after a sudden and complete coil quench [23]. The maximum pressure can be written
using the material fractions in the cable as:

36.0

42
32

3

36.0
max

2
65.0 áááá

á
â
ã

ääää
ä
å
æ çáâãäåæè

opstab

hestab

SCstab
p

J
ff

ff

d

K
L

fp é
(21)
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which is used to derive the maximum allowable cable space current density for a specified
pressure increase and cable layout [4]. This expression agrees well with experiments
reproducing this limiti ng case, but has been found to largely overestimate the values to be
found in practice. The reason is that pressure increase, as well as helium expulsion, is a
process strictly determined by the characteristics of quench propagation. The assumption of
sudden and complete coil quench, implying instantaneous propagation, is rather unrealistic
and seldom found in reality. As recognized by Dresner [24], the main quench propagation
mechanism in CICC is hot helium expulsion. The helium in the initial normal zone is heated
by the cable, its temperature rises and it expands in the (still ) superconducting region driving
it into the normal state through convection heat exchange. Dresner postulated that

"...the velocity of normal zone propagation equals the local velocity of expansion of the
helium"[24].

The result of this approximation is that

"...the normal zone engulfs no new helium, or in other words that the heated helium comprises
only the atoms originally present in the initial normal zone. We are thus led to the picture of a
bubble of hot helium expanding against confinement by the cold helium on either side of
it"[25]

This statement has been the basis for the largest part of the analytical work on quench
propagation in CICC's.

At present the most complete model of a quenching CICC is the one that has been developed
by Shajii and Freidberg [26] who have derived approximate expressions for quench
propagation speed and pressure increase based on the neglect of inertia in the equation of
helium motion, taking perfect gas properties for the helium, assuming that the cable has a
perfect thermal coupling to the helium (i.e. equal temperature in helium and cable) and
constant current throughout the transient. They differentiated among four regimes of quench,
depending on the quench strength (low and high pressure rise regimes), and on the effect of
the coil boundary (short and long coil regimes).

Any given quench condition can be located in the appropriate regime using a universal
diagram derived in [27]. This diagram can be obtained introducing the two following
dimensionless variables

l
L

L
qê ë (22)

q
L Jq opì 4 3/í (23)

where the two normalization parameters î  and í  are given by:

î ï ïð ñòó ôõ ö ñòó ôõ ö17 0

0

0
2

0

0

. maxRT

p

c

p
(24)
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p stab SC
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and subscript “0” stands for initial conditions. Once the material fractions are fixed, and the
initial conditions of the quench are given the two variables l and q can be calculated.
Depending on their values the quench will evolve in one of the four possible regimes. The
boundaries of the four regimes are reported in Tab. 2 from Ref. [22]. Each regime is
distinguished by different asymptotic expressions of the propagation velocity and the pressure
rise, also given in Tab. 2 in terms of material fractions. These expressions can be used directly
to determine the pressure rise and the helium expulsion during a quench. Note that because of
the assumptions made in the derivation of the model the perfect gas equation must be used
consistently to compute the initial density in Eqs. (24) and (25) and in Tab. 2.

3.3 Quenchback

In recent experiments [28,29], quench propagation in CICC's has been observed to rapidly
accelerate from an initial conventional phase, with propagation velocity of the order of 1 to 10
m/s, up to velocities exceeding 100 m/s. The reason for the  acceleration is the heating of the
dense helium column in front of the propagating normal zone through compression and
friction work. When the helium temperature reaches the current sharing limit Tcs, the strands
become resistive and suddenly large lengths of conductor transit to the normal state. The
propagation speeds up, with an upper limit set only by the sound speed in helium - a
thermohydraulic quenchback (THQB) has taken place.

Shajii and Freidberg have extended the quench propagation model discussed in the previous
section to the case of THQB [30]. They have introduced a new quantity M:

M
c

p

T T

T
cs op

op

ü þÿ� �� � �þÿ�� �� ��1

0

0 0
2

0

� � (26)

useful to identify the region in the q-l diagram where a THQB takes place. The quenchback
boundaries written as a function of M are reported in Tab. 2. A quench initiated within these
boundaries will eventually evolve into a THQB before the current dump is finished. Note that
no quenchback takes place in the long coil and low pressure rise regime.

THQB onset time and speed have been computed and are given in detail i n Ref. [30]. In the
most relevant case of long coil and small temperature margin (compared to the initial
temperature) their values are given by:

� �t
f dc
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We notice the extreme sensitivity of THQB onset time tqb with respect to the temperature
margin, a fifth power in Eq. (27). This means that small random uncertainties (in the cable
design or manufacturing) will produce a large scattering in the quench evolution, a fact that
has been already evidenced in simulations and experiments.

A quenchback has beneficial effects on quench detection and on the spread of the energy in
the coil , as it causes an acceleration of quench propagation. Nonetheless when considering
temperature and voltage evolution for design purposes it is safer to neglect THQB because its
onset is bound to a large uncertainty. On the other hand a quench evolving into a THQB will
cause a larger pressure increase than in a normal case, of the order of the maximum pressure
estimate provided by Eq. (21). It is therefore safer to take THQB into account when designing
for pressure rise.

3.4 Cable conduction at the normal front

In the previous sections we have assumed that the helium expansion, with its complexity, is
the only mechanism causing quench propagation. In doing this we have stated that the heat
flux along the cable length, responsible for the quench propagation, is exclusively due to
helium convection. In reality CICC’s often need a large amount of stabili zer to provide
stabilit y and protection. The stabili zer has good thermal conductivity, hence it can provide a
significant contribution to the heat flux at the quench front by means of thermal conduction.
This can be a significant effect for short initial normal zones, where the propagation through
conduction can indeed be the dominating mode until the normal length becomes suff iciently
large to drive a strong helium flow [31]. The effect of conduction can be evaluated, in first
approximation, as a front advance, i.e. an additional speed of the normal front with respect to
the expanding helium bubble. The front advance is given by [31]:

v
J K

T Tad

op stab

stab cs op

� �2

0
2

1� � (29)

and modifies, as an additional term, the propagation speed expressions reported in Tab. 2.
Note that this correction is only approximate, as it does not take into account the fact that
owing to the front advance the helium mass in the expanding bubble is no longer constant. It
can be shown that this phenomenon leads to a further acceleration of the quench front which
we neglect here.

3.5 Normal voltage

A final parameter of interest for the design of the protection system of a CICC based coil i s
the voltage in the normal zone. As CICC are mainly used in large scale applications, the coil
discharge relies on an external resistor which dominates the voltage drop during dump.
Therefore the maximum voltage is usually attained at the coil terminals and is known from the
characteristics of the discharge system. Here the main concern is rather on the detection of the
quench through a measurement of the normal voltage in the coil operating in a system that can
be pulsed or subject to large electromagnetic perturbation. For this purpose we can give here
an estimate of the normal voltage development based on the results of the previous sections.
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From the expressions presented till now it is easy to verify that for a typical CICC both the
temperature growth rate (see Eq. (17)) and the quench velocity (see Tab. 2) are approximately
constant or weakly dependent on time. The consequence is that a quench initiating over a
length Lq will develop an approximately piecewise linear temperature profile. The temperature
is flat in the initial quenched length and linearly decreasing over the remaining length. The
total normal length at a time t after the quench initiation will be approximately Lq+2vqt, a
situation schematically depicted in Fig. 3.

The voltage drop V(t) (a function of time) can be found integrating the electric field along the
length of this zone, or:� � � �� �
V t

J

f
T x t dx

op

stab
stab

� � � ,

In general the above integral requires the detailed knowledge of the temperature as a function
of space and time. If we take the linear temperature profile of Fig. 3, with maximum
temperature Tm in the initial quenched length and temperature Top in the superconducting
region, we can approximate the voltage as follows:� �  !  !" #
V t

J

f
T L T v t

op

stab
stab m q m q

$ %& ' 2 (30)

where, according to Eq. (17), the central temperature Tm is  approximately given by:
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T t T
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and the function + (Tm)  gives a measure of the weight of the new normal length 2 vq t
compared to the initial length Lq, taking into account the differences in the cable temperature
and its distribution. The definition of +  and a suitable approximation for copper are:
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 (32)

Equations (31) and (32) can be substituted into Eq. (30) providing the explicit relation for the
voltage as a function of time that can be used to estimate the initial development of normal
voltage once the quench velocity has been computed from Tab. 2 and the correction for cable
condution.

3.7 Parallel cooling channel
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As mentioned earlier in the discussion on stabilit y, cables with additional cooling channel
offer a better steady state flow characteristic because of their reduced hydraulic impedance.
This effect is remarkable also during quench, because the low-impedance cooling channel acts
as a preferential relief line. We can take into account this effect using the homogenised
hydraulic properties of the channels. Assuming that the flow is incompressible, it can be
shown that the parallel of two channels (subscripts “1” and “2”) is equivalent to a single
channel(subscript “eff ” ) with the same total area (i.e. cable space fraction):

2,1,, heheeffhe fff => (33)

and an effective friction factor:
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h he
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,
(34).

The two expressions above allow to adapt the equations given so far for quench propagation
to the case of a CICC with cooling channel.

4. An example of cable optimization

As an example of application of the equations collected in this paper, we have performed an
optimisation of the stabili zer fraction in the case of a Nb3Sn CICC at 12 and 13 T maximum
field. The main parameters chosen for this case study are reported in Tab. 3. A strand diameter
of 0.8 mm was chosen, and an upper limit of 2.5 was assumed for the copper:non-copper
ratio. Finally, the cable design was performed for a void (helium) fraction of 40 %. The
copper fraction was scanned from the minimum to the maximum possible values (i.e. 0 to
0.6), computing for each value of the copper and superconductor fractions the maximum
allowed current density defined by Eq. (5) for the limiti ng current, Eq. (9) for the lower
limiti ng current and Eq. (20) for the maximum hot-spot temperature. All curves are increasing
functions of the copper fraction until the limit on the copper:non-copper ratio is reached. Note
the slope change for the limiti ng current density and lower limiti ng current density at the
maximum copper:non-copper ratio, due to the fact that above this limit any additional copper
fraction cannot be used for stabili zation. Equation (2) was used to calculate the current sharing
temperature that gives the requested heat sink, namely 500 mJ/cm3 as given in Tab. 3. This
corresponds to a current sharing temperature of Tcs 

?  5.5 K, that is a temperature margin of
approximately 1 K. The cable space current density corresponding to this temperature margin
is proportional to the superconductor fraction, and is plotted as a solid line in Fig. 4. Finally,
because of the non-linearity of the quench equations reported in Tab. 2, the maximum
pressure limit calculation requires some approximation. The procedure followed here was to
use the expressions in Tab. 2 to compute the quench regime, quench velocity and pressure
corresponding to the current density at the maximum temperature (hot-spot) limit . It was
found that for the conditions used here the quench would develop in the short coil , low
pressure rise regime. The ratio of the quench pressure computed in this way to the maximum
allowable specified pmax was then used to extrapolate the current density to the maximum
pressure current density limit , based on the power scaling laws also reported in Tab. 2. Note
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that this is only an approximation, because a change of cable space current density could
result in a change of quench regime.

The results of the scans are reported in Fig.4. At a field of 12 T the best selection of copper
fraction is found at 43 % of the cable space, right at the maximum allowable copper:non-
copper ratio of 2.5. The optimal cable space current density is approximately 65 A/mm2, and
the cable is limited by protection (maximum temperature limit ). At a higher field of 13 T the
temperature margin limit decreases considerably, while the other limits are practically
unchanged. This shifts the optimal intersection towards lower copper content. The optimal
copper fraction at 13 T is around 36 %, for a copper:non-copper ratio of 1.5, and the
maximum cable space current density is 62 A/mm2. Note that in this particular condition the
copper fraction needed for stabilit y is identical to the one needed for protection, resulting in
the best possible use of the stabili zer.

5. Conclusions

This paper collects formulae for CICC design, as they have been developed during the last 20
years, bringing them into a uniform notation. It includes, as far as possible, the evolution of
the understanding of CICC stabilit y and protection, and addresses new features of CICC
layout (cooling channel, hybrid cables) and operation (superfluid helium). The formulae
presented here can be used as a platform for a cost-based optimization at guaranteed stabilit y
and protection performance. With respect to earlier work, the improved knowledge allows to
decrease safety margins and to predict better the actual cable behaviour. Open questions
remain mainly in the field of synergistic interaction of cable current distribution and stabilit y.
Here both analytical and experimental work is requested before valid design criteria can be
proposed and confirmed.
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ACS=Ahe+ASC+Astab [m2] cable space
Ahe , ASC , Astab [m2] cross sections of helium, superconductor, stabili zer
c [m/s] sound speed in helium
Che , CSC , Cstab [J/Km3] heat capacity of helium, superconductor, stabili zer
d [m] strand diameterF

E [J/m3] energy margin
Dh [m] hydraulic diameterF

T [K] temperature margin
f [-] friction factorG

[-] Gruneisen parameter for helium
fhe , fSC , fstab [-] fraction of helium, superconductor, stabili zerH [J/ I m4K] hot spot heating rate functionJ

[J/ I m4] hot spot integral
G’ [ I -1/m] interstrand conductance per unit length
h [W/K m2] heat transfer coeff icientK [A4/3/m5/3] quench strength scaling parameter
I [A] current
J [A/m2] current density
K [W3/m5K] superfluid helium conductivity function
Kp [-] wetted perimeter reduction factor
Kstab [W/m K] stabili zer thermal conductivity
l [-] dimensionless quench length variableL

[-] quench length scaling parameter
L , Lq [m] coil l ength, initial quenched length
L’ ,M’ [ M /m] strand self and mutual inductances per unit length
Li [m] current transfer length
M [-] dimensionless quenchback parameter
p [Pa] pressure
pw [m] wetted perimeterN

[rad] average cabling angle
q [-] dimensionless quench strength variable
R [J/Kg K] helium gas constantO [Kg/m3] helium density
R’ [ P /m] strand resistance per unit lengthO

stab [W m] stabili zer resistivity
T [K] temperatureQ

e ,
Q
r ,

Q
i , 

Q
det , 

Q
dump [s] characteristic time of energy deposition, recovery, current

transfer, detection, dump
v [m/s] velocity
V [V] voltage

Table 1. List of symbols
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operating temperature Top [K] 4.5
operating pressure p [bar] 5
detection time � det [s] 1
current dump time � dump [s] 15
coil l ength L [m] 300
initial quenched length Lq [m] 1
minimum energy margin � E [mJ/cm3] 500
maximum quench temperature Tmax [K] 150
maximum quench pressure pmax [bar] 150

Table 3. Main parameters used for the optimization scans reported in Fig. 4
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Figure 1. Schematic representation of the stabilit y margin for a CICC with uniform
current distribution. The upper and lower dashed lines are the minimum (strands) and
maximum (strands + helium) heat sinks. The approximation of the stabilit y margin after the
well -cooled/ill -cooled model has a discontinuity located at the limiti ng current. A more
realistic approximation is obtained using the recovery temperature model, with a continuous
transition from the upper value at the lower limiti ng current to the lower value at the limiti ng
current.
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Figure 2. Schematic representation of the effect of non-uniform current distribution on
the stabilit y of a CICC. For the arbitrary current distribution function (top) with average value
iop and maximum value imax (worst strand) the CICC energy margin (bottom, dashed line) has
an upper bound given by the energy margin of the cable with uniform current distribution
(upper solid line) and a lower bound given by the energy margin of the strand carrying the
normalised current imax (lower solid line).
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Figure 3. Schematic temperature distribution along a cable at two times (t1 and t2) during
a quench, used to approximate the initial normal voltage evolution. The initial quenched
length Lq is assumed to propagate at constant speed vq.
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12 T Nb3Sn conductor
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13 T Nb3Sn conductor
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Figure 4. Sample optimizations for a Nb3Sn based CICC at 12 and 13 T, obtained using
the procedure described in this paper. The conductor is protection dominated at 12 T, and
becomes stabilit y dominated at 13 T. The optimal deisgn point is marked with a circle in the
plots.


