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Modelling Stability in Superconducting Cables
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Magnet stabilit y must address two critical issues: (1)
disturbance - both its source and the mechanism by which
it is coupled to the conductor - that drives the conductor
normal and (2) the response of a conductor driven normal.
Of the two issues, issue #2 is obviously a more pressing
matter [1] .

Introduction

“Stabilit y modelli ng” refers to the calculation of the transient response of an initially
superconducting cable to an arbitrary energy input, abstracting from the origin and nature of the
disturbance spectrum. The main result of the analysis is the stabilit y margin, the maximum energy
that can be deposited in the cable (over a given extension in space and time and with a given
waveform) for which the transient response ends with the cable back to the superconducting state.
This is a conceptually simple problem statement. However, depending on the level of detail and the
type of application, it involves modelli ng of a transient, coupled, thermal, fluid-dynamics and
electro-dynamics problem with, often, 3-D space dimension. The additional diff iculties intrinsic to
the knowledge of non-linear material properties and transport coeff icients at cryogenic temperature
can result in large margins of uncertainty and considerable computational complexity.

Why modelli ng stabilit y? Stabilit y models cannot, at present, substitute experimental results.
However they provide necessary complementary information. A stabilit y experiment is generally
aimed at a specific point in the design space (cable layout, operating conditions). Often experiments
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must be scaled to be applicable to the real operating conditions of the full size cable in the magnet
under consideration, with obvious doubts on relevance. Time schedule and feasibilit y can be other
major issues in the realisation of an experiment. A stabilit y model on the other hand provides
prediction and analysis capabiliti es in an arbitrary region of the design space. Giving access to all
parameters and details, modelli ng helps the interpretation of experimental results. Last but not least,
numerical models have a fast turn-over of results and, compared to experiments, are cheap.

Over the years several models of stabilit y have been developed for different applications, at
different levels of approximation and degrees of complexity. They range from models of an
adiabatic single strand, to models of a cable that include heat exchange to the helium and current
distribution. In this paper we review the main features of these models. The scope will be limited to
stabilit y models for low-Tc superconducting cables, although all considerations made are
conceptually applicable also to high-Tc materials. The references quoted should be considered as
typical examples of the application at the level of approximation discussed, and for obvious reasons
cannot be exaustive of the amount of work spent in the field. Finally, based on the review, we will
present and discuss a unified, state-of-the-art, lumped parameters model for cables.

Stability models

The calculation of the stabilit y margin is most often done as a virtual analog of a stabilit y
experiment. A trial energy input is selected and the ensuing transient is monitored until a decision
on recovery or thermal runaway can be taken. The energy input is adjusted based on the final
condition and a new transient is simulated. This trial-and-error procedure is repeated until the
distance of the upper and lower bounds, above and below the energy margin converges to an
arbitrarily small value. Different approaches are possible. In particular it is worth mentioning the
idea of backward integrating in time the differential equations governing the transient evolution [2],
or the use of variational principles to determine the stabilit y boundary [3]. These alternatives are
more elegant than the trial-and-error method, but because of non-linearity, coupling and the inherent
complexity of the underlying physics they are not necessarily simpler or faster. In all cases a
detailed thermal, hydraulic and electromagnetic model of the superconducting cable is needed,
which will form the main topic of this section.

Zero-dimensional models

Zero-dimensional models are based on the adiabatic balance of power generation and heat capacity.
They do not take into account heat flow other than heat exchange among lumped heat sinks, where
each heat sink represents the concentrated heat capacity of a cable component (e.g. strands or
helium). They represent well a situation where a conductor is subjected to an energy input over a
length and time such that heat flow out of the control volume is negligible. A 0-D model is simple
and easy to handle even taking into account material non-linearities. For a single strand exchanging
heat with an helium bath we can write the 0-D balance as follows:a b

Jouleexthiihih
i

iii qqTThp
t

T
CA cdefgh iijjk (1)

where symbols are defined in Tab. 1. Note that in spite of its apparent triviality, this approach has
led the way to the definition of the successful stabili zation criteria against flux jumps and of
cryostable conductors (see [4] for details). Because of the simplicity, 0-D models can be eff iciently
used for quick estimations and to provide a figure of merit for comparison and parametric
exploration of the stabilit y margin of different conductor designs [5, 2, 6]. The main unknown in the
model is the heat transfer  to the helium hih. Using adapted models of heat transfer, 0-D models
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were shown to reproduce with astonishing accuracy much complex situations, such as dual-stabilit y
boundaries [7, 8].

Single strand models

The next level of approximation is the single strand model. To obtain it we assume that the strand is
a homogeneous composite with uniform temperature in the cross section, exchanging heat with a
helium bath, and we take into account heat conduction along its length. This approximation is
directly applicable only to small windings (e.g. laboratory magnets, or magnets for NMR
applications). Nevertheless, it was vital to the formulation of concepts such as the Minimum
Propagating Zone (MPZ), and the Equal Area Theorem (see again [4] for a detailed treatment and
the appropriate references). This model is mainly focussed on localised energy depositions, as they
originate from motions or insulation cracks. The governing equation of the model can be written as
follows: l m

Jouleexthiihih
i

ii
i

iii qqTThp
x

T
kA

xt

T
CA nonpqorstuvwx yyzzz zzz{ (2)

where symbols are again defined in Tab. 1. As for the 0-D approximation, the main unknown of this
model is the heat transfer to the helium hih. This is in fact a very criti cal parameter as generally the
heat flux to the helium is a dominating term in the above heat balance. Therefore once more the
primary concern is the proper correlation describing the transient heat transfer. Induced helium flow
is generally neglected, and any associated effect is condensed into the definition of the heat transfer
coeff icient. Finally, current distribution within the strand is also not an issue for common
applications (see also the discussion on time scales).

Conductor models

Conductors can be obtained in numerous configurations depending on the superconducting cable
geometry, the cooling mode, the addition of structural reinforcements or stabili zation and protection
shunts. The available models of stabilit y for conductors can range accordingly, as they were aimed
at resolving the issues specific to the application considered.

High current density compacted cables. Medium size windings with high current density are built
with highly compacted cables. A typical example are the Rutherford cables used in accelerator
magnets [9]. This class of cables has a low intensity perturbation spectrum mostly concentrated at
high frequency (in the kHz range), dominated by perturbation energy depositions from strand and
cable motions, stick-and-slip events, insulation cracks, possibly external disturbances (e.g. beam
loss in an accelerator magnet). In summary, the energy deposition is very localised in time and
space. Finally, heat transfer to the helium (if present) and thermal coupling between strands can be
significant.

A first level of approximation that allows to compute the stabilit y of such a cable is to represent it
as a composite with uniform properties in the cross section. It is then possible to model the cable
using Eq. (2), an approximation that has been adopted by several authors with alternating
success[10, 11, 12]. In reality, as anticipated, the dominating perturbation energy depositions
happen on a localised and finite size, requiring, in principle, 3-D modelli ng. Treating a cable in
detail i ncreases the complexity enormously. An intermediate level of approximation is to consider
the cable as an assembly of single strands in thermal contact through heat resistances [13, 15, 14].
Each strand can be modelled using Eq. (2), and the cable gives origin to a system of equations that
can be written as follows:
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where an equation is associated to each strand (identified with the index i). Once more one major
source of uncertainty is the heat transfer to the helium. In addition the interstrand thermal resistance
is unknown (and diff icult to measure), while the topology of the contacts can be quite complex. One
possible approach to estimate the interstrand thermal resistance is to deduce it from electrical
resistance values [14]. Heating induced flow can be again neglected because of the small amount of
helium present within a highly compacted cable. On the other hand current distribution effects can
be important for localised energy depositions, as the current transfer betwen strands affects Joule
heat generation and recovery[15, 14]. We will return to this point later in the discussion.

Super-stabili zed cables. Large magnets with a low intensity energy spectrum (such as detector
magnets for high energy physics or SMES magnets) may require a large amount of high
conductivity material for protection. This is conveniently added in parallel to a highly compacted
cable of the type described in the previous section. The distance of the stabili zer from the
multi filamentary area, and its low resistivity, result in an increase of the current diffusion time out
of the superconductor into the stabili zer. This effect is negligible within a strand, but becomes
appreciable in the limit of large segregated stabili zers, when this time can become comparable or
larger than the time scale of the evolution of the thermal transient. The cable is said to be super-
stabili zed  if the time needed for current distribution is comparable or larger than the time-of-f light
of the normal zone along the same section of conductor. In this type of cables the power dissipated
by Joule heating during a transition to the normal state is initially much higher than the value
reached after the current diffusion has taken place. After complete current diffusion the heating
decreases to the asymptotic steady-state value corresponding to a uniform current distribution. The
variation of Joule heating associated with the current diffusion affects the recovery of the cable.
Furthermore the current diffusion can cause multiple stabilit y boundaries, as well as stationary and
travelli ng normal zones. Stabilit y models for super-stabili zed cables are obviously focussed on the
effect of current distribution inside the massive stabili zer. Continuum models are commonly used to
describe this process [16, 17]. The details of the superconducting cable, as well as heat transfer to
the helium, are lesser issues.

Force-flow cooled cables. Large size windings such as fusion and SMES magnets, tend to be
designed and built using force-flow cooled cables, and in particular cable-in-conduit conductors
(CICC’s) [18]. A CICC cable is highly subdivided to provide large wetted surface and low AC loss.
Both features are essential to achieve stable operation in the pulsed conditions that are typical to
these magnets. In particular high stabilit y is required to withstand the perturbation energy deposition
originated by field changes during normal operation (e.g. energy pulses in a SMES) or accidental
conditions (e.g. plasma disruptions in a tokamak). To accomplish this objective a large fraction of
the cable is fill ed with helium. For this type of cable the flow effects are no longer negligible, and
the thermal model of the strands provided by Eq. (3) must be complemented by a flow model. For a
CICC with a single channel, the additional equations that model compressible flow in a 1-D pipe
can be conveniently written as follows [19]: � �� � � ���� � ����� � �N
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The helium represents the dominating heat capacity in this type of cables, and therefore it is
important to model accurately heat transfer. As the helium receives heat from the strands, it expands
and flows out of the heated region. This phenomenon is often referred to as heating induced flow.
The heating induced flow during the transient plays a considerable role, affecting both heat transfer
and heat removal capabilit y (pressure and density variations influence the capabilit y of helium to
absorb heat). Indeed the coupling between heating induced flow and heat transfer is so strong that it
can result in multiple stabilit y boundaries [20].

In most cases all strands are assumed at uniform temperature, as a result of the large turbulence in
the helium during the heating transient. Recently, however, the effect of current distribution and
current imbalances between strands has been advocated to explain the anomalous sensitivity to
ramp-rate found in several prototype magnets for pulsed field applications [21]. This suggests that
the details at the strand, or cable sub-stage level, can be important.

Multiple helium channels. Force-flow cooled conductors, and CICC’s in particular, have large
hydraulic impedance. This is a beneficial property for heat transfer, but at the same time it can cause
a large pressure drop and pump work that must be removed by the cryogenic system. This drawback
can be circumvented by adding parallel cooling channels for the steady state flow necessary to
maintain the operating temperature. It is possible to model the effect of these additional, thermally
and hydraulically coupled channels by adding transverse mass, momentum and energy transport
terms to the flow model above[22]. The resulting set of equations for an arbitrary set of H helium
channels is then: « ¬ ®
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where a set of equation is intended to model each longitudinal cooling channel present in the cable
cross section. The additional terms inserted (isolated on the right hand side) take into account the
transverse coupling of channels. The main problem of this approach is that the transverse mass,
momentum and energy transfer cannot be easily quantified, nor measured. To maintain generality
we can write the transverse transport terms as follows [22]:

hkhkhk vA ÐÎ êÙÖ
(10)

vvvA hkhkhkhkhk
v
hk ëëì íîïðïî

(11)ñ ò ñ ò
khhkhkhkkhhkhkhkhk

e
hk TThphTThpvhA óôîïóôðïî íì (12)

where overbar terms indicate upwind quantities (i.e. evaluated from the upstream value). A simple
expression for the transverse velocity vhk can be then obtained approximating the cross flow
impedance as a concentrated hydraulic loss õ hk, resulting in:
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An expression similar to Eq. (13), with ý hk=1, could be obtained modelli ng the transverse flow as
the discharge of a gas through an orifice with known upstream and downstream pressures. These
approximations are presently subject of experimental validation and parametric study. In spite of the
uncertainties, this model has appeared to treat successfully situations that differ significantly. In
particular satisfactory agreement was found simulating thermal transients in CICC’s with a central
cooling channel either physically delimited by a cooling tube [23] or without any physical
delimitation (a cooling hole in a cable bundle) [24].

Structural components, barriers, insulations. Cables can contain, or be surrounded, by a significant
fraction of structural material, resistive barriers, insulating materials. These can be passive with
respect to current carrying capabilit y (high resistance or insulating materials), but their heat capacity
can be relevant for the heat balance in the cable cross section. If the additional components have,
like the strands, a homogeneous temperature distribution in the cross section and a longitudinal
dimension much larger than the transverse dimension, then a diffusion equation of the type of Eq.
(3) is appropriate to obtain the temperature distribution. In this case the set of equations for the
strands can be simply augmented by additional  equations for the passive cable components.

Current distribution. The distribution - and redistribution - of current among the strands and within
the cable can have dramatic effects on stabilit y. As we mentioned above, this statement applies to
most cables used in technical applications (flat cables, CICC’s, super-stabili zed cables). Certainly
the general solution of thermal, hydraulic and electromagnetic behaviour of a cable can be defined a
formidable task. For this reason most of the efforts to understand current distribution in multistrand
cables have been limited so far at the pure electromagnetic problem, neglecting the intrinsic
coupling with the thermal behaviour [25, 26, 27]. Only recently more general attempts have been
made at the coupled problem, and models have been presented for triplet of strands [15] and flat,
accelerator cables [14].

During a thermal transient the current in a quenched strand tends to redistribute to the neighbouring
strands driven by the voltage of the normal zone. The redistribution takes place across the transverse
contact resistance (or at the joints in the case of insulated strands). The variation in the strand
current induces a change in the Joule heating rate, coupling back to the temperature evolution. To
model the redistribution process mutual inductive coupling of strands must be taken into account,
while capacitive effects are negligible. Because a cable is strongly non-isotropic and because it has
discrete contacts at the strand crossing, the first natural approach to a model of current distribution
is the use of an electrical network modelli ng the strands as uniform current density sticks, coupled
inductively and through localised cross resistances (see for instance Refs. [25] and [27]). This
network approach is solved by Kirchoff’ s voltage and current laws, and requires that appropriate
current loops are set for each degree of freedom in the cable cross section. It is very detailed,
providing information on each strand cross-over contact, but it can result in a very large number of
equations that are not conveniently coupled to a system of partial differential equations such as
those given above.

An alternative, that has been used extensively for analytical studies, is to approximate the cross
contacts as a continuous transverse conductance (see for instance [26]). A typical example is that of
an ideal two-strand cable. In this case the governing equations become identical to that of an
electrical transmission line with negligible capacitance, a well known problem in electromagnetics.
This semi-continuuum approach is also useful for stabilit y studies. To derive approximate equations
for a cable we assume that the inductive voltages can be written on a unit length basis, making them
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local to the infinitesimal length examined. This is true if the current in a strand is constant over the
length affecting self and mutual inductances, or, equivalently, that self and mutual inductances of
far sections of the cable can be neglected. In this case the vector of strand currents I will satisfy the
following system of PDE’s:

02

2 þÿ� grI
II

gl
xt

����
(14)

where the matrices g, l and r contain the interstrand conductance, inductance and longitudinal
resistance contributions respectively. In the derivation of Eq. (14) we have assumed that the external
voltage sources along the strands (e.g. caused by magnetic flux changes) are negligible. For the
simple case of a two-strands cable the matrices can be explicitl y written as follows:������þ
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From this form we can find by trivial algebra, adding the equations for the two strands, the model of
the circulating current in a two strands twisted cable [26].  The advantage of the matrix form Eq.
(14) is that it is readily extended to an N-strands cable. The symmetric and full matrix l and the
diagonal matrix r are obtained by assembly of the elemental contributions of each strand. The
symmetric matrix g is assembled from the contribution of each of the N(N-1)/2 couples of strands in
the cable, where each contribution is a 2 x 2 matrix identical to the one given above for two strands.
We note that the matrix g has zero determinant by construction, thus making the system of Eqs. (14)
singular. The reason is that we are lacking a condition on the conservation of the total cable current.
We can add this condition in the form:� 	

tII
N

i
i 0

1
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that holds for any cross section along the cable length. Eq. (15) removes the indetermination caused
by the singularity of g.

Summary – a unified lumped parameters 1-D model

In summary, we have discussed in the above sections the various patches of a complete thermal,
hydraulic and electric, 1-D lumped parameters model of a superconducting cable. These patches can
be assembled in the form given, as they all consistently fall i nto the following common general
form of a parabolic-hyperbolic system of PDE’s for the vector variable u:

qsu
u

d
u

a
u

m
þ�������ÿ

xxt
��������

(16)

where the matrices m, a, d, s and the vector q can be readily obtained from the PDE’s. The thermal
and hydraulic problems, namely Eq. (3) and Eqs.(4)-(6) (or equivalently Eqs. (7)-(9)), are coupled
explicitl y through their temperature degrees of freedom, a convenient representation to achieve
eff icient solutions. Unluckily an explicit coupling of the thermal problem Eq. (3) and the current
distribution problem Eqs. (14) and (15) is not possible owing to the intrinsic non-linearity of the
current sharing and Joule heating terms. The coupling is therefore implicit, driven on the thermal
side by the temperature dependent longitudinal electric field, and on the electrical side by the
dependence of the Joule heating on the current. Already in this 1-D, lumped parameters form, the
model is of f ierce complexity. It combines most of the physical time scales relevant for stabilit y and
in general for transients of any nature (see the next section). In spite of this it has a conceptually
manageable form.
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Analysis of the model characteristics

To understand the features of the model, it is important to compare the spectrum of the time scales
of the phenomena. We concentrate here on the time scales of interest for stabilit y analysis, i.e. the
fastest time scales contained in the model. The expressions reported are estimates of the time scales,
and should only be regarded as such. The first time scale of interest is obviously that of the external
heating � q. This ranges from fractions of ms for mechanisms of mechanical origin (movements,
slips, cracks) to hundreds of ms for external energy inputs, e.g. caused by AC losses in pulsed
magnets or beam loss in accelerators.

The time scale of temperature diffusion along within and along a strand is determined by the
thermal diffusivity. Let us assume that the strand has a diameter d and that it is heated over a length
L. We can then define characteristic times for diffusion Ts

d��  and � d
T  necessary to establish the

temperature profile within a strand cross section and in the heated length respectively:
2

2

�������� d
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For a multi -strand cable with thermally coupled strands we can give the characteristic time,
necessary to equili brate temperature differences between two strands Ts

h

�� , that we estimate as

follows:
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For a cooled cable the heated strands are coupled thermally to the helium. We then define the
characteristic time for the evolution of the temperature difference between strands and helium � h

T

given by:

ihih
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h hp

CA �� �
where we have made the assumption that the strand heat capacity is much smaller than that of the
helium, and therefore the change in helium temperature can be neglected.

The heating of the strands in a cable causes a heating induced helium flow transient. Within the 1-D
approximation, and assuming a uniform heating over a length L, the induced flow can only be
established on a time scale � s

p  longer than the time needed for the sound waves to propagate in the

heated region. The characteristic time � s
p

 
is of the order of:

h

p
s c

L��
For conductors like CICC’s, where the flow is mostly governed by the friction force, a significant
induced velocity is established with slower rate. The characteristic time � d

p  needed for the
establishment of the pressure profile and the associated induced flow is:

p

p
d

L � 2�
Where  

p is a linearised pressure diffusivity given by:
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In the case of multi -channel cables, we can identify additional transverse modes for the evolution of
pressure and temperature differences. Again, the fastest time scale for transverse pressure
equili bration # s$ p  is given by the sound wave propagation time across the conductor. If we take a
transverse characteristic dimension l, this time is given by:

h

p
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l!$%
The above time scale has a physical correspondance only when the transverse flow is governed by
inertia (i.e. for large transverse perforations and low hydraulic impedance between channels). In the
case that the transverse velocity is dominated by the impedance of the perforation, we can derive a
second time scale # v$ p

 for pressure equili bration, namely:
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For the temperature difference, the two mechanisms that lead to the equili brium are heat exchange
and mass transport. For these two mechanisms we can write that the characteristic times Th

h$%  and
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are respectively given by:
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Note that this second time scale Th
v$%  has the same form of # v$ p  and differs only by having the

pressure difference instead of the square of the sound speed at denominator. Therefore in cables
where the pressure difference between channels is small (i.e. much smaller than the square of the
isentropic sound speed) the pressure equili bration will be much faster than the time needed to
equili brate the temperature by mass transport. In this case mass transport will not play a significant
role on the heat balance, and the temperature will equili brate governed by heat exchange on the time
scale # h$ T .

The last group of time scales of interest is given by the current distribution times. We can first give
an upper boundary for the current distribution from the filaments to the stabili zer within a strand,

based on the magnetic diffusivity in the stabili zer
0

1) * :

2

0 2

+,-./01 dstrand
d

) *2
Following Ries [28], the current transfers from a quenching strand in a cable over a characteristic
length LI:

rg
LI

11
and the characteristic time for the redistribution is of the order of:
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where we assume the initial heated length L to be identical to the quenched length. Finally, we give
for completeness the characteristic time of current diffusion in a massive stabili zer. If the stabili zer
has a characteristic transverse dimension ls the current diffusion characteristic time can be estimated
similarly to the case of a strand as:

2
0 s

stabilizer
d lF GE H

As a final exercise, we can compare the order of magnitude of the time scales derived above for a
typical large size cable such as a ITER-class CICC or an accelerator Rutherford cable. Figure 1
shows schematically the order of magnitude of the characteristic times obtained by a variation of the
conductor parameters in a typical range. The first important remark is that we see that the time
scales identified in the model are spanning eight orders of magnitude. In fact slower time scales, up
to steady state, are present. If we concentrate in the range of 10-4 to 10-1 s as representative of the
perturbation spectrum, we can clearly rule out influences from the very fast time scales associated
with temperature and current density gradients within the strand, or transverse pressure gradients
between parallel channels. Similarly we can rule out heat exchange between parallel channels as it
is too slow to affect stabilit y. We see finally from Fig. 1 that all remaining characteristic times are
such that the evolution of the associated phenomena is relevant to the response of the cable to an
external perturbation in the range of times typical of stabilit y transients. These important time scales
have thermal, hydraulic and electromagnetic origins and therefore justify the fact that a complete
stabilit y model should include the three aspects in a self-consistent manner.

Conclusions

...once we know the disturbance spectrum, we should be
able to design by calculation conductors that will be stable
against the disturbances. Unfortunately, that time has not
yet come [20] .

In this paper we have reviewed the main features of the models used in the past years to analyse the
stabilit y of a superconducting cable. The main result of this review is the formulation of a 1-D, self-
consistent model that generalizes the previous work and that can take into account heat diffusion,
helium flow and current distribution effects. A simple analysis of the time scales spanned by the
model has shown that all three aspects are relevant for stabilit y transients. The model equations
were written in a general matrix form, typical of a hyperbolic-parabolic system of partial differential
equations. This form has well -known theoretical properties and is well suited for a practical
numerical implementation.
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Table 1. List of symbols

extq IJ
, Jouleq IJ external and Joule heat inputK

hk

L
, v

hk

L
, e

hk

L transverse mass, momentum and energy flux per unit length

hkAI transverse flow cross section per unit length

hk
M upwind density

hkh upwind enthalpy

hkv upwind velocity

A cross section

c isentropic sound speed of helium

C specific heat ( at constant volume for helium)

d strand diameter

D hydraulic diameter

f helium friction factor

gij, g interstrand conductance and interstrand conductance matrix

h specific enthalpy of helium

hhk heat transfer coeff icient between channels h and k

hih helium heat transfer coeff icient at the wetted perimeter of strand (solid component) i

Hij thermal resistance between strands (solid components) i and j

Ii, I strand current and current vector

I0 total cable current

k heat conductivity

l ij, l inductance between strands and inductance matrix

L characteristic length of external heating

l characteristic transverse dimension of the cable

ls characteristic transverse dimension of the additional stabili zer (super-stabili zed cables)

p pressure of helium

phk equivalent perimeter of thermal contact between channels h and k

pih wetted perimeter of strand (solid component) i

ri, r strand longitudinal resistance and resistance matrix

t time variable

T temperature

v helium flow velocity

vhk transverse flow velocity between channels h and k

x space variableN
hk

transverse flow coeff icient between channels h and kN
p

longitudinal pressure diffusivity (friction dominated flow)O Gruneisen parameter of heliumP
0

magnetic permeabilit y of vacuumQ densityR electrical conductivityS characteristic time or time constantT
hk

transverse flow impedance between channels h and k
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1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

characteristic time (s)

strand temperature gradient

longitudinal temperature diffusion

strand-strand temperature difference

strand-helium temperature difference

longitudinal sound waves

longitudinal pressure
diffusion

transverse sound waves

transverse pressure equilibration

U
T inter-channel heat exchange 

U
T inter-channel mass convection

strand current diffusion

additional stabilizer current diffusion

cable current distribution

Figure 1. Relevant time scales for stabilit y analysis contained in the 1-D, lumped parameters model discussed in the
text. The ranges of time scales have been obtained by arbitrary variations of cable design parameters and
properties within typical expected limits.


