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Summary

Stability is one of the key issues in the design of a superconductor, and indeed deserves much attention in the magnet
design and analysis. Stability-oriented design procedures and calculations involve the detailed knowledge of the
response of the cable to thermal, fluid dynamic and electric transient phenomena that are difficult to tackle analytically
in cables. This has justified a significant numerical modelling effort in the field. This paper reviews basic stability
models and presents selected advances in the methods developed and results obtained. A unified, semi-continuum model
is proposed for stability analysis of cables. The time scales of relevance during stability transients are identified and
analysed.

Magret stability must address two critical isses. (1)
disturbarce - both its ©urce and the mechanism by which
it is couped to the condwctor - that drives the cndwctor
normal and (2) the resporse of a conductor driven namal.
Of the two isales, issue #2 is olviousdy a more pressng
matter [1].

Introduction

“Stability modelling” refers to the caculation d the transient resporse of an initialy
supercondicting céble to an arbitrary energy inpu, abstrading from the origin and reture of the
disturbance spedrum. The main result of the analysis is the stahility margin, the maximum energy
that can be deposited in the cadle (over a given extension in space ad time and with a given
waveform) for which the transient resporse ends with the cadle badk to the supercondtcting state.
Thisis a onceptually simple problem statement. However, depending on the level of detail and the
type of applicdion, it involves modelling of a transient, couded, thermal, fluid-dynamics and
eledro-dynamics problem with, dten, 3D spacedimension. The alditional difficulties intrinsic to
the knowledge of nonlinea material properties and transport coefficients at cryogenic temperature
can result in large margins of uncertainty and considerable computational complexity.

Why modelling stability? Stability models cannd, at present, substitute experimenta results.
However they provide necessary complementary information. A stability experiment is generaly
aimed at a spedfic paint in the design space(cable layout, operating condtions). Often experiments



must be scded to be gplicable to the red operating condtions of the full size cdle in the magnet
under consideration, with obvious doulds on relevance Time schedule and feasibility can be other
major isaes in the redisation d an experiment. A stability model on the other hand provides
prediction and analysis cgpabiliti es in an arbitrary region d the design space Giving accessto all
parameters and cktail s, modelli ng helps the interpretation o experimental results. Last but not least,
numerica models have afast turn-over of results and, compared to experiments, are cheap.

Over the yeas svera models of stability have been developed for different applicaions, at
different levels of approximation and degrees of complexity. They range from models of an
adiabatic single strand, to models of a cale that include hea exchange to the helium and current
distribution. In this paper we review the main feaures of these models. The scope will be limited to
stability models for low-Tc supercondicting cables, athough all considerations made ae
conceptually applicable dso to high-Tc materials. The references quaed shoud be @nsidered as
typicd examples of the goplicaion at the level of approximation dscussed, and for obvious reasons
canna be exaustive of the amourt of work spent in the field. Finally, based onthe review, we will
present and dscussaunified, state-of-the-art, lumped parameters model for cables.

Stability models

The cdculation d the stability margin is most often dore & a virtual analog of a stability
experiment. A trial energy inpu is ®leded and the ensuing transient is monitored urtil a dedsion
on remvery or thermal runaway can be taken. The energy inpu is adjusted based on the fina
condtion and a new transient is smulated. This tria-and-error procedure is repeaed urtil the
distance of the upper and lower bounds, above and kelow the energy margin converges to an
arbitrarily small value. Different approadches are possble. In particular it is worth mentioning the
ideaof badkward integrating in time the diff erential equations governing the transient evolution [2],
or the use of variational principles to determine the stability boundiry [3]. These dternatives are
more degant than the trial-and-error method, bu because of nontli neaity, cougding and the inherent
complexity of the underlying physics they are nat necessarily simpler or faster. In al cases a
detailed thermal, hydraulic and eledromagnetic model of the supercondwcting cable is neeled,
which will form the main topic of this sdion.

Zero-dimensiond models

Zero-dimensional models are based onthe aliabatic balance of power generation and hea cgpaaty.
They do nd take into acourt hea flow other than hea exchange anong lumped hed sinks, where
eath hea sink represents the concentrated hea cgpadty of a cdle comporent (e.g. strands or
helium). They represent well a situation where a onductor is sibeded to an energy inpu over a
length and time such that hea flow out of the control volume is negligible. A 0-D model is smple
and easy to handle even taking into acourt material nonlineaities. For a single strand exchanging
he& with an helium bath we can write the 0-D balance & foll ows:
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where symbals are defined in Tab. 1. Note that in spite of its apparent triviality, this approadch has
led the way to the definition d the succesdul stabili zation criteria against flux jumps and o
cryostable conductors (see[4] for detalls). Because of the simplicity, 0-D models can be dficiently
used for quick estimations and to provide a figure of merit for comparison and parametric
exploration d the stability margin of different condwctor designs[5, 2, §. The main unknavn in the
modedl is the hea transfer to the helium hj,. Using adapted models of hed transfer, 0-D models



were shown to reproduce with astonishing acairracy much complex situations, such as dual-stability
boundries[7, §.

Sngestrandmodels

The next level of approximationisthe single strandmodel. To oltain it we essumethat the strandis
a homogeneous composite with uriform temperature in the aoss ®dion, exchanging hea with a
helium bath, and we take into acount hea condwction along its length. This approximation is
diredly applicable only to smal windings (e.g. laboratory magnets, or magnets for NMR
applicaions). Nevertheless it was vital to the formulation o concepts such as the Minimum
Propagding Zone (MPZ), and the Equd Area Theorem (see a@ain [4] for a detail ed treament and
the gpropriate references). This model is mainly focussed onlocdised energy depositions, as they
originate from motions or insulation cradks. The governing equation d the model can be written as
follows:
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where symbols are again defined in Tab. 1.Asfor the 0-D approximation, the main unknavn of this
modedl is the hea transfer to the helium hj,. Thisisin fad a very criticad parameter as generaly the
hea flux to the helium is a dominating term in the dowve hea balance Therefore once more the
primary concern is the proper correlation describing the transient hea transfer. Induced helium flow
is generally negleded, and any asciated effed is condensed into the definition d the hea transfer
coefficient. Finaly, current distribution within the strand is also nd an issie for common
applicaions (see &so the discusson ontime scaes).

Conduwctor models

Conductors can be obtained in numerous configurations depending on the supercondicting cable
geometry, the aaling mode, the aldition d structural reinforcements or stabili zation and protedion
shunts. The avail able models of stability for condictors can range acordingly, as they were amed
at resolving the issues pedfic to the goplicaion considered.

High current density compaded cables. Medium size windings with high current density are built
with highly compaded cables. A typicd example ae the Rutherford cables used in accéerator
magnets [9]. This classof cables has a low intensity perturbation spedrum mostly concentrated at
high frequency (in the kHz range), daminated by perturbation energy depasitions from strand and
cable motions, stick-and-dlip events, insulation cracks, possbly external disturbances (e.g. beam
lossin an acceerator magnet). In summary, the energy deposition is very locdised in time and
gpace Finaly, hea transfer to the helium (if present) and thermal couging between strands can be
significant.

A first level of approximation that allows to compute the stability of such a cdle is to represent it
as a mmpaosite with unform properties in the aoss dion. It is then pcssble to mode the cale
using Eq. (2), an approximation that has been adopted by several authors with alternating
succes410, 11, 12 In redity, as anticipated, the dominating perturbation energy depasitions
happen on a locdised and finite size, requiring, in principle, 3-D modelling. Treding a cdle in
detail i ncreases the mmplexity enormously. An intermediate level of approximation is to consider
the cdle @ an asembly of single strands in thermal contaa through hea resistances [13, 15, 14.
Each strand can be modelled using Eq. (2), and the cdle gives origin to a system of equations that
can be written as foll ows:
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where an equation is asciated to ead strand (identified with the index i). Once more one major
sourceof uncertainty isthe hea transfer to the helium. In addition the interstrand thermal resistance
isunknownn (and dfficult to measure), whil e the topdogy of the cmntads can be quite mmplex. One
possble gproadh to estimate the interstrand thermal resistance is to deduce it from eledricd
resistance values [14]. Heaing induced flow can be again negleded becaise of the small amourt of
helium present within a highly compaded cable. On the other hand current distribution effeds can
be important for locdised energy depositions, as the arrent transfer betwen strands affeds Joule
hea generation and recovery[15, 14. Wewill return to this point later in the discusson.

Super-stabili zed cables. Large magnets with a low intensity energy spedrum (such as detedor
magnets for high energy physics or SMES magnets) may require a large anount of high
conductivity materia for protedion. This is conveniently added in paralel to a highly compaded
cable of the type described in the previous sdion. The distance of the stabilizer from the
multi filamentary areg and its low resistivity, result in an increase of the aurrent diffusion time out
of the superconductor into the stabilizer. This effed is negligible within a strand, bu beammes
appredable in the limit of large segregated stabili zers, when this time can become wmparable or
larger than the time scde of the evolution d the thermal transient. The cale is sid to be super-
stahilized if the time needed for current distribution is comparable or larger than the time-of-flight
of the normal zone dong the same sedion d conductor. In this type of cables the power disspated
by Joule heding during a transition to the normal state is initially much higher than the value
readed after the aurrent diffusion hes taken place After complete arrent diffusion the heaing
deaeases to the asymptotic steady-state value wrrespondng to a uniform current distribution. The
variation d Joule heding associated with the airrent diffusion affeds the recvery of the cale.
Furthermore the airrent diffusion can cause multiple stability boundaries, as well as dationary and
travelling normal zones. Stability models for super-stabili zed cables are obviously focussed onthe
effed of current distribution inside the massve stabili zer. Continuum models are ommonly used to
describe this process[16, 17. The detail s of the supercondicting cable, as well as hed transfer to
the helium, are lesser isaues.

Forceflow coded cables. Large size windings such as fuson and SMES magnets, tend to be
designed and bult using forceflow coded cables, and in particular cable-in-condut condtctors
(CICC's) [18]. A CICCcableis highly subdvided to provide large wetted surface ad low AC loss
Both fedures are esentia to achieve stable operation in the pulsed condtions that are typicd to
these magnets. In particular high stability is required to withstand the perturbation energy depaosition
originated by field changes during normal operation (e.g. energy pulses in a SMES) or acddental
condtions (e.g. plasma disruptions in a tokamak). To acammplish this objedive alarge fradion o
the cdle is fill ed with helium. For this type of cable the flow effeds are no longer negligible, and
the therma model of the strands provided by Eq. (3) must be complemented by a flow model. For a
CICC with a single dhanndl, the alditional equations that model compressble flow in a 1-D pipe
can be omnwveniently written asfollows[19]:
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The helium represents the dominating hea cgpadty in this type of cables, and therefore it is
important to model acarately hea transfer. As the helium receves hea from the strands, it expands
and flows out of the heaed region. This phenomenonis often referred to as heating induced flow.
The heaing induced flow during the transient plays a wnsiderable role, affeding both hea transfer
and heda removal cgpability (pressure and density variations influence the caability of helium to
absorb hea). Indeed the coupging between heding induced flow and hed transfer is  strong that it
can result in multi ple stability boundaries [20].

In most cases al strands are ssumed at uniform temperature, as a result of the large turbulencein
the helium during the heding transient. Recently, however, the dfed of current distribution and
current imbalances between strands has been advocaed to explain the anomalous sensitivity to
ramp-rate foundin several prototype magnets for pulsed field applications [21]. This suggests that
the detail s at the strand, a cable sub-stage level, can beimportant.

Multiple helium channels. Forceflow cooled condictors, and CICC's in particular, have large
hydraulic impedance Thisis abeneficia property for hea transfer, but at the same time it can cause
alarge presaure drop and pump work that must be removed by the ayogenic system. This drawbadk
can be drcumvented by adding parallel coding channels for the steady state flow necessary to
maintain the operating temperature. It is possble to model the dfed of these alditional, thermally
and hydraulicdly couped channels by adding transverse mass momentum and energy transport
terms to the flow model above[22]. The resulting set of equations for an arbitrary set of H helium
channelsisthen:
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where aset of equation is intended to model ead longitudinal cooling channel present in the cadle
cross ®dion. The alditiona terms inserted (isolated onthe right hand side) take into acourt the
transverse ouding of channels. The main problem of this approach is that the transverse mass
momentum and energy transfer canna be eaily quantified, na measured. To maintain generality
we can write the transverse transport terms as foll ows [22]:
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where overbar terms indicate upwind quantities (i.e. evaluated from the upstrean value). A smple
expresson for the transverse velocity vy can be then oltained approximating the aoss flow
impedance & a wncentrated hydrauli c lossépy, resulting in:
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An expresson similar to Eq. (13), with &n=1, could be obtained modelli ng the transverse flow as
the discharge of a gas through an arifice with knavn upstream and davnstrean presaires. These
approximations are presently subjed of experimental validation and parametric study. In spite of the
uncertainties, this model has appeaed to tred succesdully situations that differ significantly. In
particular satisfadory agreement was found simulating thermal transients in CICC's with a centra
coding channel either physicdly delimited by a @ding tube [23] or withou any physicd
delimitation (acoding hdein a cdle bunde) [24].

Structural comporents, barriers, insulations. Cables can contain, o be surrounded, by a significant
fradion d structural material, resistive barriers, insulating materials. These can be passve with
resped to current carrying cgpability (high resistance or insulating materials), bu their hea capadty
can be relevant for the hea balance in the cdle aoss dion. If the alditional comporents have,
like the strands, a homogeneous temperature distribution in the doss ®dion and a longitudinal
dimension much larger than the transverse dimension, then a diffusion equation d the type of Eq.
(3) is appropriate to oltain the temperature distribution. In this case the set of equations for the
strands can be simply augmented by additional equations for the passve cable comporents.

Current distribution. The distribution - and redistribution - of current among the strands and within
the cdle can have dramatic efeds on stability. As we mentioned abowe, this datement applies to
most cables used in technicd applicaions (flat cables, CICC's, super-stabili zed cables). Certainly
the general solution d thermal, hydraulic and eledromagnetic behaviour of a cdle can be defined a
formidable task. For this reason most of the dforts to understand current distribution in multi strand
cables have been limited so far a the pure dedromagnetic problem, negleding the intrinsic
couping with the thermal behaviour [25, 26, 27. Only recently more genera attempts have been
made & the couped problem, and models have been presented for triplet of strands [15] and flat,
acceerator cables[14].

During athermal transient the arrent in a quenched strand tends to redistribute to the neighbouing
strands driven by the voltage of the normal zone. The redistribution takes place aoossthe transverse
contad resistance (or at the joints in the cae of insulated strands). The variation in the strand
current induces a dhange in the Joule heding rate, couging bad to the temperature evolution. To
model the redistribution process mutual inductive cougding of strands must be taken into acount,
while cgadtive dfeds are negligible. Becaise a cale is drongly nonrisotropic and kecause it has
discrete mntads at the strand crosdng, the first natural approad to a model of current distribution
is the use of an eedricd network modelli ng the strands as uniform current density sticks, couped
inductively and through locdised cross resistances (see for instance Refs. [25] and [27]). This
network approac is olved by Kirchoff’ s voltage and current laws, and requires that appropriate
current loops are set for ead degree of freedom in the cdle aoss ®dion. It is very detailed,
providing information onead strand crossover contad, bu it can result in a very large number of
equations that are not conveniently couped to a system of partial differential equations such as
those given above.

An aternative, that has been used extensively for analyticd studies, is to approximate the aoss
contads as a antinuows transverse mwndctance (seefor instance[26]). A typicd exampleis that of
an ided two-strand cable. In this case the governing equations become identicd to that of an
eledricd transmisgon line with negligible cgadtance, awell known problem in eledromagnetics.
This smi-continuuum approacd is also useful for stability studies. To derive goproximate equations
for a cdble we asume that the inductive voltages can be written ona unit length besis, making them



locd to the infinitesimal length examined. Thisis true if the aurrent in a strand is constant over the
length affeding self and mutual inductances, or, equivalently, that self and mutual inductances of
far sedions of the cdle can be negleded. In this case the vedor of strand currents | will satisfy the
following system of PDE’s:
a o2
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where the matrices g, | and r contain the interstrand conductance, inductance and longitudinal
resistance @ntributions respedively. In the derivation d Eq. (14) we have assumed that the externa
voltage sources along the strands (e.g. caused by magnetic flux changes) are negligible. For the
simple cae of atwo-strands cable the matrices can be explicitly written as foll ows:
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From thisform we can find by trivial algebra, adding the eguations for the two strands, the model of
the arculating current in a two strands twisted cable [26]. The advantage of the matrix form EQ.
(14) is that it is readily extended to an N-strands cable. The symmetric and full matrix | and the
diagonal matrix r are obtained by assembly of the demental contributions of ead strand. The
symmetric matrix g is aseembled from the contribution d ead of the N(N-1)/2 coupes of strandsin
the cdle, where eab contributionisa 2 x 2 matrix identicd to the one given abowve for two strands.
We note that the matrix g has zero determinant by construction, thus making the system of Egs. (14)
singular. Thereasonisthat we aelading a cndtion onthe @nservation d the total cable airrent.
We can add this condtionin the form:
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that halds for any cross £dion aong the cadle length. Eq. (15) removes the indetermination caused
by the singularity of g.

Sunmmary — a unified lumped parameters 1-D model

In summary, we have discussed in the éowve sedions the various patches of a mwmplete thermal,
hydraulic and eledric, 1-D lumped parameters model of a superconducting cable. These patches can
be asembled in the form given, as they all consistently fall into the following common genera
form of a parabadli c-hyperbadlic system of PDE’s for the vedor variable u:
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where the matricesm, a, d, s and the vedor g can be reaily obtained from the PDE’s. The thermal
and hydraulic problems, namely Eq. (3) and Egs.(4)-(6) (or equivaently Egs. (7)-(9)), are coupded
explicitly through their temperature degrees of freedom, a nwenient representation to adiieve
efficient solutions. Unluckily an explicit couging of the thermal problem Eq. (3) and the aurrent
distribution problem Egs. (14) and (15) is nat possble owing to the intrinsic nonlineaity of the
current sharing and Joule heaing terms. The wuging is therefore implicit, driven onthe thermal
side by the temperature dependent longitudinal eledric field, and onthe dedricd side by the
dependence of the Joule heaing on the airrent. Already in this 1-D, lumped parameters form, the
model is of fierce mmplexity. It combines most of the physicd time scaes relevant for stability and
in general for transients of any nature (seethe next sedion). In spite of this it has a wnceptualy
manageable form.



Analysis of the model characteristics

To understand the feaures of the model, it is important to compare the spedrum of the time scdes
of the phenomena. We a@ncentrate here on the time scdes of interest for stability anaysis, i.e. the
fastest time scdes contained in the model. The expressons reported are estimates of the time scdes,
and shoud only be regarded as such. Thefirst time scde of interest is obviously that of the externa
heding z;. This ranges from fradions of ms for medianisms of medanicd origin (movements,
dlips, craks) to hundeds of ms for external energy inpus, e.g. caused by AC losss in pused
magnets or bean lossin accéerators.

The time scde of temperature diffusion along within and aong a strand is determined by the
thermal diffusivity. Let us assume that the strand hes a diameter d and that it is heged over alength

L. We can then define charaderistic times for diffusion 7;™ and 7z necessary to establish the
temperature profil e within a strand cross ®dion and in the heaed length respedively:
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For a multi-strand ceble with thermally couded strands we can give the daraderistic time,

necessry to equili brate temperature diff erences between two strands 7;™°, that we etimate &

foll ows:
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For a wded cable the heaed strands are muded thermally to the helium. We then define the
charaderistic time for the evolution d the temperature difference between strands and relium 7,
given by:
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where we have made the assumption that the strand hea cgpaaty is much smaller than that of the
helium, and therefore the change in helium temperature can be negleded.

The heaing of the strandsin a cdle caises a heaing induced helium flow transient. Within the 1-D
approximation, and assuming a uniform heding over a length L, the induced flow can only be
established onatime scde 7 longer than the time needed for the soundwaves to propageate in the
heaed region. The charaderistic time 7! is of the order of:
L
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For conductors like CICC's, where the flow is mostly governed by the friction force a significant
indwed velocity is established with slower rate. The daraderistic time 7} needed for the
establi shment of the presaure profile and the associated induced flow is:
L2

%p

Where ¢, isalineaised presaure diffusivity given by:

P
Tq
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In the cae of multi-channel cables, we can identify additional transverse modes for the evolution o

presaure and temperature differences. Again, the fastest time scde for transverse presare

equili bration 75 is given by the soundwave propagation time acossthe cndictor. If we take a

transverse dharaderistic dimensionl, thistimeisgiven by:
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c:h
The a&owe time scde has a physicd correspondance only when the transverse flow is governed by
inertia (i.e. for large transverse perforations and low hydrauli c impedance between channels). In the
case that the transverse velocity is dominated by the impedance of the perforation, we can derive a

secndtime scde 7." for presare eyuili bration, remely:
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For the temperature difference, the two mechanisms that leal to the equili brium are hea exchange

and masstransport. For these two medhanisms we can write that the dharaderistic times 7, and
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Note that this scond time scde 7™ has the same form of zJ? and dffers only by having the

presaure difference instead of the square of the sound speed at denominator. Therefore in cables
where the presaure difference between channels is gnall (i.e. much smaller than the square of the
isentropic sound speed) the presaure equili bration will be much faster than the time neealed to
equili brate the temperature by masstransport. In this case masstransport will not play a significant
role onthe hea balance, and the temperature will equili brate governed by hea exchange on the time

scder; .

The last group d time scades of interest is given by the airrent distribution times. We can first give
an upper boundxry for the aurrent distribution from the filaments to the stabili zer within a strand,

based onthe magnetic diff usivity in the stabili zeri :

Oy
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Following Ries [28], the aurrent transfers from a quenching strand in a cédle over a dharaderistic
Iength L

and the charaderistic time for the redistribution is of the order of:
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where we asume the initial heaed length L to be identicd to the quenched length. Finally, we give
for completenessthe dharaderistic time of current diffusion in a massve stabili zer. If the stabili zer
has a dharaderistic transverse dimension |s the arrent diffusion charaderistic time can be estimated
similarly to the cae of astrand as:
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As afina exercise, we can compare the order of magnitude of the time scdes derived abowve for a
typicd large size cdle such as a ITER-class CICC or an accéerator Rutherford cable. Figure 1
shows <hematicdly the order of magnitude of the dharaderistic times obtained by avariation d the
condwctor parameters in a typica range. The first important remark is that we see that the time
scdesidentified in the model are spanning eight orders of magnitude. In fad slower time scdes, up
to stealy state, are present. If we @ncentrate in the range of 10“ to 10* s as representative of the
perturbation spedrum, we can clealy rule out influences from the very fast time scdes associated
with temperature and current density gradients within the strand, a transverse presaure gradients
between parale channels. Similarly we can rule out hea exchange between perallel channels as it
istoo slow to affed stability. We seefinaly from Fig. 1 that al remaining charaderistic times are
such that the evolution d the assciated phenomena is relevant to the resporse of the cdle to an
externa perturbation in the range of timestypica of stability transients. These important time scaes
have thermal, hydraulic and eledromagnetic origins and therefore justify the fad that a complete
stability model shoud include the three &peds in a self-consistent manner.

Conclusions

...once we know the disturbarce spedrum, we shoud be
able to design by calculation condictors that will be stable
aganst the disturbances. Unfortunately, that time has not
yet come[20].

In this paper we have reviewed the main feaures of the models used in the past yeas to analyse the
stability of a supercondicting cable. The main result of thisreview is the formulation o a 1-D, self-
consistent model that generali zes the previous work and that can take into acount hea diffusion,
helium flow and current distribution effeds. A simple analysis of the time scdes ganned by the
mode has fown that all three &peds are relevant for stability transients. The model equations
were written in ageneral matrix form, typicd of a hyperbadli c-parabali c system of partial diff erential
equations. This form has well-known theoreticd properties and is well suited for a pradicd
numericad implementation.
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Table 1. List of symbadls

o7 Al
qext ’ quuIe

P v e
1—‘hk 7Fhk ’Fhk

external and Joule hed input

transverse mass momentum and energy flux per unit length

A:k transverse flow cross gdion per unit length

D upwind density

ﬁhk upwind enthalpy

Vi upwind velocity

A cross ®dion

C isentropic sound speed of helium

C spedfic hea ( at constant volume for helium)

d strand diameter

D hydrauli c diameter

f helium friction fador

Gi, 9 interstrand conductance and interstrand conductance matrix
h spedfic enthalpy of helium

hnk hea transfer coefficient between channels h and k

hin helium hea transfer coefficient at the wetted perimeter of strand (solid component) i
H; thermal resistance between strands (solid components) i and
li, | strand current and current vedor

lo total cable aurrent

k hea conductivity

| i | inductance between strands and inductance matrix

L charaderistic length of external heding

| charaderistic transverse dimension of the cale

ls charaderistic transverse dimension of the alditional stabili zer (super-stabili zed cables)
p presaure of helium

Phk equivalent perimeter of thermal contad between channels h and k
Pin wetted perimeter of strand (solid component) i

i, I strand longjtudinal resistance and resistance matrix

t time variable

T temperature

Vv helium flow vel ocity

Vhi transverse flow velacity between channels h and k

X spacevariable

Olhk transverse flow coefficient between channels h and k

op longitudinal presaure diff usivity (friction dominated flow)

b Gruneisen parameter of helium

Lo magnetic permeability of vaauum

p density

c eledricd conductivity

T charaderistic time or time wnstant

Enk transverse flow impedance between channels h and k
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[, cable current distribution

additional stabilizer current diffusion H
1 {1 strand current diffusion
N, L] AT inter-channel mass convection
AT inter-channel heat exchange H
Il ] trans?/erse pressure equilibration

1 transverse sound waves

| Iongitudinal_pressure
[ { ] diffusion
Il ] Iongitudinatl sound waves
strand—helrum temperature difference
O | { ] strand- strand temperature drfference
longitudinal temperature diffusion [} { ]
[ strand temperature gradient

1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

characteristic time (s)

Figure 1. Relevant time scdes for stability analysis contained in the 1-D, lumped parameters model discussed in the
text. The ranges of time scdes have been obtained by arbitrary variations of cable design parameters and
properties within typicd expeded limits.
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