c ###################################################################### c # c # CuSn PROPERTIES PACKAGE c # ------------------------------ c # Contains functions for the calculation of the thermo-physical c # properties of Cu-Sn as a function of alloy Sn percentage by weight c # c ###################################################################### c ###################################################################### real function dCuSn(T,W) c ###################################################################### c # c # Density of Cu-W%Ni as a function of Ni percentage c # c # Range: 0 <= T <= Inf K c # 0 <= W <= 100 % c # c # References c # ---------- c # c # c # variable I/O meaning units c # -------------------------------------------------------------------- c # T x absolute temperature K c # W x weight percentage of Sn % c # dCuSn x density kg/m**3 c # c # c # Author : L.Bottura at Cryosoft c # Version: 1.0 April 2020 c # c ###################################################################### implicit none c * external variables real T,W c * fit variables real A,T0,n real Wmin,Wmax data A / 8.8929966e3 / data T0 / 166.9684659 / data n / 2.6088228 / data Wmin / 0.0 / , Wmax / 100.0 / c * local variables real WW c * WW=W WW=min(WW,Wmax) WW=max(WW,Wmin) c * dCuSn = A * (T0/T)**n / (1+(T0/T)**n) c * return end c ###################################################################### real function cCuSn(T,W) c ###################################################################### c # c # Specific heat of Cu-W%Sn as a function of Sn percentage c # c # Range: 4 <= T <= 550 K c # 0 <= W <= 100 % c # c # References c # ---------- c # c # http://www.engineersedge.com/properties_of_metals.htm c # N.J. Simon, E.S. Drexler, R.P. Reed, Properties of Copper and Copper c # Alloys at Cryogenic Temperatures, NIST Monograph 177, 1992 c # c # variable I/O meaning units c # -------------------------------------------------------------------- c # T x absolute temperature K c # W x weight percentage of Sn % c # cCuSn x specific heat J/Kg K c # c # Author : L.Bottura at Cryosoft c # Version: 1.0 April 2020 c # c ###################################################################### implicit none c * external variables real T,W c * fit variables real T0 real a1,a2,a3,a4 real AA,BB,Ta,Tb,na,nb real Tmin,Tmax,Wmin,Wmax data a1 / 1.167267E-02 / , a2 / 6.546153E-07 / data a3 / 8.913366E-04 / , a4 / 1.233920E-05 / data AA / 106.2305432 / data Ta / 55.22278056 / data na / 4.003210193 / data BB / 261.1607592 / data Tb / 97.59025351 / data nb / 2.388246089 / data T0 / 12.5514554 / data Tmin / 4.0 / , Tmax / 550.0/ data Wmin / 0.0 / , Wmax / 100.0 / c * local variables real TT,WW c * TT=T TT=min(TT,Tmax) TT=max(TT,Tmin) c * WW=W WW=min(WW,Wmax) WW=max(WW,Wmin) c * if(TT.le.T0) then cCuSn = a1*TT + a2*TT**2 + a3*TT**3 + a4*TT**4 else cCuSn = AA*(TT/Ta)**na/(1+(TT/Ta)**na) + & BB*(TT/Tb)**nb/(1+(TT/Tb)**nb) endif c * return end c ###################################################################### real function kCuSn(T,W) c ###################################################################### c # c # Thermal conductivity of Cu-W%Sn as a function of Sn percentage c # c # Range: 1 <= T <= 550 K c # 1.5 <= W <= 25 % c # c # References c # ---------- c # Reference c # c # variable I/O meaning units c # -------------------------------------------------------------------- c # T x absolute temperature K c # W x weight percentage of Sn % c # kCuSn x thermal conductivity W/m K c # c # c # Author : L.Bottura at Cryosoft c # Version: 1.0 April 2020 c # c ###################################################################### implicit none c * external variables real T,W c * fit variables real alpha,beta,gamma real n1,n2,T0 real Tmin,Tmax,Wmin,Wmax data alpha / 0.746437948 / data beta / 201.2494341 / data gamma / 0.82272204 / data n1 / 1.34865192 / data n2 / 1.010720785 / data T0 / 39.71517813 / data Tmin / 1.5 / , Tmax / 550.0/ data Wmin / 1.0 / , Wmax / 25.0 / c * local variables real TT,WW,A c * TT=T TT=min(TT,Tmax) TT=max(TT,Tmin) c * WW=W WW=min(WW,Wmax) WW=max(WW,Wmin) c * A = alpha+beta/WW**gamma kCuSn = A * (TT/T0)**n1 / (1.0+(TT/T0)**n2) c * return end c ###################################################################### real function rCuSn(T,W) c ###################################################################### c # c # Electrical resistivity of Cu-W%Sn as a function of Sn percentage c # c # Range: 1 <= T <= 550 K c # 1 <= W <= 15 % c # c # References c # ---------- c # Reference c # c # variable I/O meaning units c # -------------------------------------------------------------------- c # T x absolute temperature K c # W x weight percentage of Sn % c # rCuSn x resistivity Ohm m c # c # c # Author : L.Bottura at Cryosoft c # Version: 1.0 April 2020 c # c ###################################################################### implicit none c * external variables real T,W c * fit variables real A,B,C real Tmin,Tmax,Wmin,Wmax data A / 0.071842918 / data B / 13.61993322 / data C / 0.988589131 / data Tmin / 1.0 /, Tmax / 550.0/ data Wmin / 1.0 /, Wmax / 15.0 / c * local variables real TT,WW c * TT=T TT=min(TT,Tmax) TT=max(TT,Tmin) c * WW=W WW=min(WW,Wmax) WW=max(WW,Wmin) c * rCuSn = 1.0e-9 * (A * TT + B * WW + C) c * return end